洛伦兹变换的推导[1]
简单推导洛伦兹变换(狭义相对论)

简单推导洛伦兹变换(狭义相对论)洛伦兹变换是狭义相对论的基本公式,从中我们可以进一步得到尺度缩减、时钟慢度、质能转换等奇妙有趣的推论。
值得一提的是,虽然洛伦兹变换最早是由洛伦兹得到的,但他并没有赋予这组变换方程组以相对论的内涵,他只是编造了一个数学观点来纠正错误的以太时空。
所以作者认为洛伦兹变换的结果应该还是属于爱因斯坦的。
1. 先导知识:波速取决于介质的速度,而不是波源的速度或许你听说过,光即是粒子又是波。
没错,但这个“粒子”已经不是我们日常理解的小微粒了,一定不能将发射一束光想象成手枪发射子弹。
许多困扰可能就来自于此,把光想象成子弹你可能永远也想不明白相对论的奇妙变换。
为了方便思考我们需要把光理解成波,发射光就像在水面触发一个涟漪。
我们先看看机械波,建立起对波的正确看法发射一波和发射一颗子弹有什么区别?根本区别在于,触发机械波实际上并不发射任何物理粒子,而是触发介质的传播振动,所以波速完全取决于介质,而不是波源的速度。
站在地上观察时,跑步时说话不会改变声音传播的速度,蜻蜓高速掠过水面也不会改变波纹扩散的速度,只会造成多普勒效应(仔细观察图1中最外层波纹的速度是否受波源速度影响)。
相反,考虑谈话的例子。
如果你站着不动,风在动,声速就会变。
比如逆风说话,声速会增加,逆风说话,声速会变慢。
仔细理解这里的区别,跑步不会改变波的传播速度,但空气运动会。
图1:一个运动的波源并不会导致波速的变化(观察最外层涟漪的速度)现在我们来考虑光的一个例子一列以速度v前进的火车在经过你的时候突然向前进方向发出了一个闪光,光是电磁波,不同于手枪发射子弹,不管这个光源运动情况怎么样,在你看来,这个闪光就像在水面上激起的一个涟漪,以不变的速度c前行。
(但是这里说的不变速度c还不是相对论说的光速不变,只是说光速与光源速度无关)2.光在真空中是通过什么介质传播的?从上面的分析我们看到波的速度,甚至波的性质似乎完全都取决于传递波的介质,波的行为似乎只与介质有关,完全由介质定义,完全由介质约束,波源在触发波之后好像就没有什么关系了。
洛伦兹变换的严格推导

洛仑兹变换的严格推导此推导过程从狭义相对性原理及光速不变原理出发,进行严格推导。
设事件P在S系中坐标为()t z yx,,,,在'S系中坐标为()',',','t zyx,'S系以速度u沿'S系的x轴正方向匀速运动。
设真空中光速为c。
洛仑兹变换推导过程如下:因洛仑兹变换为伽利略变换中速度u接近光速c时的数学形式,当速度u 远远小于光速c时洛仑兹变换应能退化为伽利略变换。
所以参照伽利略变换,洛仑兹变换形式可设为:⎪⎩⎪⎨⎧+=+=+=gfedbagtfzzetdyybtaxxλλλλλλ'''⎪⎩⎪⎨⎧+=+=+=gfedbatgzfzt eydyt bxax''''''''''''''''''λλλλλλ1.讨论',xx之间的数学关系:当'',0utxx-==时,有:ba t buta'''')'('0λλ+-=,即baa t btua'''''')('0λλλ+-='t为齐次型aaa t btuaba'''''')('0,''λλλλλ+-==∴若等式成立,有:aaabubua'''',')('λλ-=--=-u-的正负性与aab'''λ-无关且有意义1''==∴baλλ则''bua-=-,有:''''utaxax+=当utxx==,0'时,有:ba btutaλλ+=)(0,即baa bttauλλλ+=t为齐次型aaa bttaubaλλλλλ+==∴0,若等式成立,有:aaabubauλλ-=-=,u 的正负性与aabλ-无关且有意义 1==∴b a λλ则b au -=,有:aut ax x -='。
洛仑兹变换的新推导

洛仑兹变换的新推导
洛伦兹变换是数学中一种重要的变换,是求解常微分方程的一个重要
工具。
它把问题转化为求解一组数值的问题,从而使得求解对应的常
微分方程的问题变得简单。
下面是洛伦兹变换的推导:
1. 首先,将常微分方程转化为逆变换公式;
2. 根据Laplace变换的性质,计算出逆变换的解析解表达式;
3. 将洛伦兹变换的解析解表达式代入,得出原常微分方程的解;
4. 根据洛伦兹变换的性质,寻找对此解析解表达式及其导数进行洛伦
兹变换的常微分方程;
5. 根据确定性条件,计算洛伦兹变换的数值解;
6. 根据求解的数值,得出洛伦兹变换的原常微分方程的数值解。
洛伦兹变换是现代数学中一种非常有用的变换,它结合了数学分析和
计算,可以用来求解复杂的常微分方程。
上述是洛伦兹变换的新推导,希望能为大家解决常微分方程的问题提供便利。
洛伦兹坐标变换公式推导

洛伦兹坐标变换公式推导洛伦兹变换是描述时空间随参考系的运动而发生变化的重要理论,它在爱因斯坦的狭义相对论中起到了关键的作用。
本文将从推导的角度来介绍洛伦兹变换的公式。
首先,我们来考虑一个参考系S和一个相对于S以速度v沿着x轴方向运动的参考系S'。
假设S'参考系的原点在S参考系中的x轴上的位置为x',两个参考系的时间原点重合。
现在我们要推导出洛伦兹变换的坐标公式。
在S参考系中,假设有一个事件P,它的空间坐标为(x,y,z),时间坐标为t。
在S'参考系中,事件P的空间坐标为(x',y',z'),时间坐标为t'。
根据狭义相对论原理,我们可以得到以下两个假设:1.时间的间隔在不同参考系中是一致的,即∆t=∆t'。
2.空间的间隔在不同参考系中也是一致的,即∆s^2=(c∆t)^2-(∆x)^2=∆s'^2=(c∆t')^2-(∆x')^2,其中c是光速。
我们将事件P的坐标代入上述的两个假设中,可以得到:(c∆t)^2-(∆x)^2-(∆y)^2-(∆z)^2=(c∆t')^2-(∆x')^2-(∆y')^2-(∆z')^2其中,∆x=x2-x1,∆y=y2-y1,∆z=z2-z1,∆x'=x'2-x'1,∆y'=y'2-y'1,∆z'=z'2-z'1接下来,我们假设S'参考系相对于S参考系的速度为v,那么∆x'、∆y'和∆z'可以表示为:∆x'=∆x-v∆t∆y'=∆y∆z'=∆z将上述的式子带入原方程中,我们可以得到:(c∆t)^2-(∆x)^2-(∆y)^2-(∆z)^2=(c∆t')^2-(∆x')^2-(∆y')^2-(∆z')^2(c∆t)^2-(∆x)^2-(∆y)^2-(∆z)^2=(c∆t')^2-(∆x-v∆t)^2-(∆y)^2-(∆z)^2提取引入速度v的项并进行整理,得到:(c∆t)^2-(∆x-v∆t)^2=(c∆t')^2展开括号可以得到:(c∆t)^2-(∆x^2-2v∆x∆t+v^2∆t^2)=(c∆t')^2继续整理得到:(c^2∆t^2-∆x^2)+2v∆x∆t-v^2∆t^2=(c^2∆t'^2)由于洛伦兹变换要保持事件之间的间隔不变,我们可以进一步简化上述方程:(c^2-v^2)∆t^2-∆x^2=(c^2-v^2)∆t'^2为了使得公式的形式更加简洁,我们可以引入一个名为γ的参数来表示:γ=1/√(1-v^2/c^2)其中,c是光速,γ被称为洛伦兹因子。
(完整版)洛伦兹变换的详细推导

第三节 洛伦兹变换式教学内容:1. 洛伦兹变换式的推导;2. 狭义相对论的时空观:同时性的相对性、长度的收缩和时间的延缓; 重点难点:狭义相对论时空观的主要结论。
基本要求:1. 了解洛伦兹坐标变换和速度变换的推导;2. 了解狭义相对论中同时性的相对性以及长度收缩和时间延缓概念;3. 理解牛顿力学中的时空观和狭义相对论中的时空观以及两者的差异。
三、洛伦兹坐标变换的推导()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧--='='='--='22211c v c vx t t z z y y c v vt x x 或 ()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-'+'='='=-'+'=22211c v c x v t t z z y y c v t v x x据狭义相对论的两个基本假设来推导洛仑兹变换式。
1. 时空坐标间的变换关系作为一条公设,我们认为时间和空间都是均匀的,因此时空坐标间的变换必须是线性的。
对于任意事件P 在S 系和S '系中的时空坐标(x ,y ,z ,t )、(x ',y ',z ',t '),因S ' 相对于S 以平行于 x 轴的速度v 作匀速运动,显然有y '=y , z '=z 。
在S 系中观察S 系的原点,x =0;在S '系中观察该点,x '=-v t ',即x '+v t '=0。
因此x =x '+v t '。
在任意的一个空间点上,可以设:x =k (x '+v t '),k 是—比例常数。
同样地可得到:x '=k '(x -v t )= k '(x +(-v )t )根据相对性原理,惯性系S 系和S '系等价,上面两个等式的形式就应该相同(除正、负号),所以k =k '。
五种洛仑兹变换的推导方法

一、首先来看看爱因斯坦在《狭义与广义相对论浅说》中的推导方法。 有两个坐标系 K 和 K' ,各坐标系内的事件分 别由坐标(x,y,z,t)和(x' ,y',z' ,t')表示。 我们把问题分成几部分,首先只考虑 x 轴上 发生的事件。任何一个这样的事件, 对于坐标系 K 是由横坐标 x 和时间 t 来表示, 对于坐标系 K'则由 横坐标 x' 和时间 t'来表示。当给定 x 和 t 时,我们 要求出 x' 和 t'。 约定 t=0 时刻 O 和 O' 重合, K' 有沿 x 正方向 的速度 v。 假设沿着 x 轴正方向有一束光信号从 t=t'=0 时刻射出,则光信号在 K 系中满足
⎧ x ' = ax + bt ⎨ ⎩t ' = dx + et
为了使(5)式满足于(3)式,要求
(5)
x 2 − c 2 t 2 = x ' 2 −c 2t ' 2
于是, (5)式应具有下列形式:
(6)
⎧ x ' = xchθ − ctshθ ⎨ ⎩ct ' = − xshθ + ctchθ
其中,θ为常量,shθ和 chθ为双曲函数,即
x − vt ⎧ ⎪ x' = v2 ⎪ 1− 2 c ⎪ ⎪ y' = y ⎪ ⎨z' = z ⎪ v ⎪ t− 2 x ⎪t ' = c ⎪ v2 1− 2 ⎪ c ⎩
进一步得逆变换式为
x'+vt ' ⎧ ⎪x = v2 ⎪ 1− 2 c ⎪ ⎪ y = y' ⎪ ⎨z = z' ⎪ ⎪ t ' + v x' ⎪t = c2 ⎪ v2 1− 2 ⎪ c ⎩
洛伦兹变换的推导

一、间隔不变原理1、事件:一件事情发生可以用地点和时间来标识。
在一个参考系如S 中可以记作(,,,),x y z t 另一参考系'S 中可以记作''''(,,,),x y z t 两件事情发生,分别在两参考系中可以记为22222221212121()()()()s x x y y z z c t t ∆=-+-+---这两事件的间隔在'S 参考系中定义为'2''2''2''22''221212121()()()()s x x y y z z c t t ∆=-+-+---注意两事件的间隔只能在同一惯性参考系才有意义,2s ∆是一种整体记法,就表示两事件在S 系中的惯性,计算方法如下,22222221212121()()()()s x x y y z z c t t ∆=-+-+---不表示两间隔之差,这种写法22221s s s ∆=-是错误的。
由光速不变原理可以推出间隔不变:任何两事件的间隔,从一个惯性参考系变换到另一惯性参考系保持不变。
2'2s s ∆=∆ 二、洛伦兹变换设惯性参考系'S 相对于惯性参考系S 以速度v 运动,选取两个参考系的坐标轴相互平行,x 轴方向沿速度v 方向,且0t =时两坐标原点重合。
在这种情况下有'',y y z z ==考虑两个事件,事件1在0t =时刻发生在两惯性参考系的原点,事件2在S 系中发生t 时刻,两事件在两个惯性参考系S 和'S 分别记为 由两事件在两惯性参考系中间隔相等可以得到'2'2'22'222222x y z c t x y z c t ++-=++- (1)由于从一个惯性参考系到另一个惯性参考系的变换为线性变换,所以有'1112'2122x a x a ct ct a x a ct=+=+ (2)将(2)式代入(1)式再结合'',y y z z ==可以得到2222222221112212222222111221222222222222222111112122121222222222221121111221221222()()()()(2(2)(1)(22)(a x a ct y z a x a ct x y z c t a x a ct a x a ct x c t a x ca a xt a c t a x ca a xt a c t x c ta a x ca a ca a xt a c a c c +++-+=++-+-+=-++-++=---+-+-+22)0t =上式在任何情况下成立,所以只有相应的系数为零。
爱因斯坦洛伦兹变换公式推导

爱因斯坦洛伦兹变换公式推导
(1)正常相对论
按照正常相对论,任意两个相互运动的观察者之间事件及物体的最终位置可以描述为Lorentz变换。
设原系的坐标(t,x,y,z),相对系的坐标(τ, x’, y’, z’),两者要求关系式
τ=γ(t-vx/c^2) (1)
x‘=γ(x-vt) (2)
其中,γ=(1−v2/c2)−1/2 为Lorentz因子,v被称为相对速度,根据一般变换性质:
原系中物体的能量E0,相对系中为E’,要求能量守恒,即E=E’
两个框架也要求守恒物质数量,即N=N’,分别为原系和相对系中相应刚量的数量。
根据德鲁克斯定理,能够确定相对系中的物体能量,即
E’=γ(E0-vp0) (3)
故有:N’ =γ(N0-vN0) (4)
得出E0的表达式
E0=γE’+γvN’ (5)
(2)拓展相对论
拓展相对论,现在有5个变量t,x,y,z,φ,φ为未知量。
设原系坐标t,x,y,z,φ,相对系坐标为τ,x’,y’,z’,φ’,两者要求关系式
τ=γ(t-v/c^2*φ) (6)
x’=γ(x-vφ) (7)
同样采用德鲁克斯定理,能够确定相对系中的物体能量,即
E’=γ(E0-vφ0) (8)
两个框架要求守恒物质数量,即N=N’,分别为原系和相对系中相应刚量的数量。
根据德鲁克斯定理,能够确定相对系中的物体能量,即
E’=γ(E0-vφ0) (9)
故有:N’ =γ(N0-vN0) (10)
得出E0的表达式
E0=γE’+γv(N’+φ)(11)
由此,可以得出拓展相对论的爱因斯坦洛伦兹变换公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
三、狭义相对论的基本原理 1. 狭义相对论的基本原理 (1)相对性原理:基本物理定律在所有惯性系中 都保持相同形式的数学表达式,一切惯性系都是等 价的; (2)光速不变原理:在一切惯性系中,光在真空 中的传播的速率都等于c,与光源的运动状态无关。 这两条原理非常简明,但意义深远。它们是狭义相 对论的基础,其正确性要由它们所导出的结果和实验 事实来判定。
2
2. 洛伦兹变换
(1)坐标变换
假设 x = k( x v t ) k 是比例系数,与x和t 都无关。 y
按照狭义相对论第一条基本原 理, S系和S 系除了作相对运动 外别无差异,考虑运动的相对性, 应有: x = k(x + vt ) 另外两个坐标的变换容易写出
S
y
r
o
o
v
S
4
在S系有 在S 系有
x = ct x = ct
y
y
S
S
x
x
将两式分别代入
x = k( x v t ) 和 x = k(x + vt )
得
ct k (c v)t
ct k (c v)t
消去t 和t 后,可解得
k
1 1 v / c
2 2
5
将k 代入坐标和时间变换式中,得到洛伦兹变换 的最终形式: 逆变换 正变换
x 2 2 1 v / c y y z z 2 t vx / c t 1 v2 / c2
x vt
x 2 2 1 v / c y y z z 2 t vx / c t 1 v2 / c2
6
x vt
在v << c的情况下,洛伦兹变换过渡到伽利略变换。
从洛伦兹变换中可以看到,x 和t 都必须是实数, 所以速率v必须满足
v 1 2 0 c
或者2ຫໍສະໝຸດ vc我们得到了一个十分重要的结论,这就是一切物 体的运动速度都不能超过真空中的光速 c,或者说 真空中的光速c 是物体运动的极限速度。
7
P
r
x
x
y = y
z = z
3
(2)时间变换 将 x = k( x v t ) 代入 x = k(x + vt ) ,得
x k ( x vt ) kvt
2
解出
1 k 2 t kt ( )x kv
当两个坐标系的原点重合时,t = t = 0。这时,如 果在原点处有一点光源发出一光脉冲,S系和S 系都 将观察到光脉冲以速率c向各个方向传播。