洛伦兹变换的详细推导6

合集下载

洛伦兹变换的详细推导(最新整理)

洛伦兹变换的详细推导(最新整理)

第三节洛伦兹变换式教学内容:1. 洛伦兹变换式的推导;2. 狭义相对论的时空观:同时性的相对性、长度的收缩和时间的延缓;重点难点:狭义相对论时空观的主要结论。

基本要求:1. 了解洛伦兹坐标变换和速度变换的推导;2. 了解狭义相对论中同时性的相对性以及长度收缩和时间延缓概念;3. 理解牛顿力学中的时空观和狭义相对论中的时空观以及两者的差异。

三、洛伦兹坐标变换的推导()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧--='='='--='22211c v c vx t t z z y y c v vt x x 或()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-'+'='='=-'+'=22211c v c x v t t z z y y c v t v x x 据狭义相对论的两个基本假设来推导洛仑兹变换式。

1. 时空坐标间的变换关系作为一条公设,我们认为时间和空间都是均匀的,因此时空坐标间的变换必须是线性的。

对于任意事件P 在S 系和S'系中的时空坐标(x ,y ,z ,t )、(x ',y ',z ',t '),因S' 相对于S 以平行于 x 轴的速度v 作匀速运动,显然有y'=y, z'=z 。

在S 系中观察S 系的原点,x =0;在S'系中观察该点,x'=-vt',即x'+vt'=0。

因此x=x '+vt'。

在任意的一个空间点上,可以设:x=k (x '+vt'),k 是—比例常数。

同样地可得到:x'=k'(x-vt )= k'(x+(-v )t )根据相对性原理,惯性系S 系和S'系等价,上面两个等式的形式就应该相同(除正、负号),所以k=k '。

2. 由光速不变原理可求出常数k设光信号在S 系和S'系的原点重合的瞬时从重合点沿x 轴前进,那么在任一瞬时t (或t '),光信号到达点在S 系和S'系中的坐标分别是:x=ct, x'=ct',则:t t c x x '='2()()()()t v t c vt ct k t v x vt x k '+'-='+'-=22()222v c t t k -'=由此得到()22211c v v c c k -=-=。

洛仑兹变换的新推导

洛仑兹变换的新推导

洛仑兹变换的新推导
洛伦兹变换是数学中一种重要的变换,是求解常微分方程的一个重要
工具。

它把问题转化为求解一组数值的问题,从而使得求解对应的常
微分方程的问题变得简单。

下面是洛伦兹变换的推导:
1. 首先,将常微分方程转化为逆变换公式;
2. 根据Laplace变换的性质,计算出逆变换的解析解表达式;
3. 将洛伦兹变换的解析解表达式代入,得出原常微分方程的解;
4. 根据洛伦兹变换的性质,寻找对此解析解表达式及其导数进行洛伦
兹变换的常微分方程;
5. 根据确定性条件,计算洛伦兹变换的数值解;
6. 根据求解的数值,得出洛伦兹变换的原常微分方程的数值解。

洛伦兹变换是现代数学中一种非常有用的变换,它结合了数学分析和
计算,可以用来求解复杂的常微分方程。

上述是洛伦兹变换的新推导,希望能为大家解决常微分方程的问题提供便利。

洛伦兹变换的最简单推导

洛伦兹变换的最简单推导

洛伦兹变换的最简单推导在相对论中,洛伦兹变换是描述物体在不同参考系中运动的数学工具。

它对于理解光速不变原理以及时间和空间的相对性至关重要。

虽然推导洛伦兹变换可能需要高等数学和物理学知识,但以下是最简单的推导方法:1. 假设有两个参考系S和S',它们之间的相对速度为v。

2. 假设S和S'的坐标系是相互垂直的,并且在t=0时它们的原点重合,如下图所示。

3. 假设在S中有一个事件,其坐标为(x,y,z,t),在S'中有一个事件,其坐标为(x',y',z',t')。

4. 根据相对性原理,可以得出:x' = ax + bty' = yz' = zt' = ct + dt其中a、b、c和d是待定系数,需要通过数学推导来确定它们的值。

5. 假设在S中有两个事件,它们在S'中的间隔为Δx',在S中的间隔为Δx。

则有:Δx' = aΔx + bΔt因为Δx和Δt是相对的,所以可以认为Δx'=Δx和Δt'=Δt。

因此,上式可以写为:1 = a^2 - b^2也就是说,a和b之间存在一个关系式。

同样地,可以根据y、z 和t坐标轴的相对性得到其他系数之间的关系式。

6. 在相对论中,光速是不变的,因此光在S和S'中的速度是相同的。

设在S中有一束光从(x,y,z,t)出发,经过Δt的时间后到达(x+Δx,y,z,t+Δt),在S'中的坐标为(x',y',z',t') = (x,y,z,t),则有:c^2Δt^2 - Δx^2 - Δy^2 - Δz^2 = c^2Δt'^2 - Δx'^2 - Δy'^2 - Δz'^2将4式和5式代入上式,可以得到:Δt'^2 = (c^2Δt^2 - Δx^2 - Δy^2 - Δz^2) / (c^2 - v^2) Δx'^2 = (c^2Δt^2 - Δx^2 - Δy^2 - Δz^2)v^2 / (c^2 - v^2)Δy'^2 = Δy^2Δz'^2 = Δz^27. 根据勾股定理,可以将上式化简为:Δs^2 = Δt'^2 - Δx'^2 - Δy'^2 - Δz'^2 = Δt^2 - Δx^2 - Δy^2 - Δz^2这就是著名的时间和空间的相对性方程式。

(完整版)洛伦兹变换的详细推导

(完整版)洛伦兹变换的详细推导

第三节 洛伦兹变换式教学内容:1. 洛伦兹变换式的推导;2. 狭义相对论的时空观:同时性的相对性、长度的收缩和时间的延缓; 重点难点:狭义相对论时空观的主要结论。

基本要求:1. 了解洛伦兹坐标变换和速度变换的推导;2. 了解狭义相对论中同时性的相对性以及长度收缩和时间延缓概念;3. 理解牛顿力学中的时空观和狭义相对论中的时空观以及两者的差异。

三、洛伦兹坐标变换的推导()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧--='='='--='22211c v c vx t t z z y y c v vt x x 或 ()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-'+'='='=-'+'=22211c v c x v t t z z y y c v t v x x据狭义相对论的两个基本假设来推导洛仑兹变换式。

1. 时空坐标间的变换关系作为一条公设,我们认为时间和空间都是均匀的,因此时空坐标间的变换必须是线性的。

对于任意事件P 在S 系和S '系中的时空坐标(x ,y ,z ,t )、(x ',y ',z ',t '),因S ' 相对于S 以平行于 x 轴的速度v 作匀速运动,显然有y '=y , z '=z 。

在S 系中观察S 系的原点,x =0;在S '系中观察该点,x '=-v t ',即x '+v t '=0。

因此x =x '+v t '。

在任意的一个空间点上,可以设:x =k (x '+v t '),k 是—比例常数。

同样地可得到:x '=k '(x -v t )= k '(x +(-v )t )根据相对性原理,惯性系S 系和S '系等价,上面两个等式的形式就应该相同(除正、负号),所以k =k '。

五种洛仑兹变换的推导方法

五种洛仑兹变换的推导方法
五种洛仑兹变换的推导方法
一、首先来看看爱因斯坦在《狭义与广义相对论浅说》中的推导方法。 有两个坐标系 K 和 K' ,各坐标系内的事件分 别由坐标(x,y,z,t)和(x' ,y',z' ,t')表示。 我们把问题分成几部分,首先只考虑 x 轴上 发生的事件。任何一个这样的事件, 对于坐标系 K 是由横坐标 x 和时间 t 来表示, 对于坐标系 K'则由 横坐标 x' 和时间 t'来表示。当给定 x 和 t 时,我们 要求出 x' 和 t'。 约定 t=0 时刻 O 和 O' 重合, K' 有沿 x 正方向 的速度 v。 假设沿着 x 轴正方向有一束光信号从 t=t'=0 时刻射出,则光信号在 K 系中满足
⎧ x ' = ax + bt ⎨ ⎩t ' = dx + et
为了使(5)式满足于(3)式,要求
(5)
x 2 − c 2 t 2 = x ' 2 −c 2t ' 2
于是, (5)式应具有下列形式:
(6)
⎧ x ' = xchθ − ctshθ ⎨ ⎩ct ' = − xshθ + ctchθ
其中,θ为常量,shθ和 chθ为双曲函数,即
x − vt ⎧ ⎪ x' = v2 ⎪ 1− 2 c ⎪ ⎪ y' = y ⎪ ⎨z' = z ⎪ v ⎪ t− 2 x ⎪t ' = c ⎪ v2 1− 2 ⎪ c ⎩
进一步得逆变换式为
x'+vt ' ⎧ ⎪x = v2 ⎪ 1− 2 c ⎪ ⎪ y = y' ⎪ ⎨z = z' ⎪ ⎪ t ' + v x' ⎪t = c2 ⎪ v2 1− 2 ⎪ c ⎩

洛伦兹变换推导过程详细

洛伦兹变换推导过程详细

洛伦兹变换推导过程详细全文共四篇示例,供您参考第一篇示例:洛伦兹变换(Lorentz transformation)是狭义相对论中的重要概念,描述了不同惯性参考系之间的时空坐标变换关系。

由荷兰物理学家亨德里克·安杰洛·洛伦兹(Hendrik Antoon Lorentz)首先提出,并由爱因斯坦在他的狭义相对论中进一步发展。

洛伦兹变换不仅在相对论中有着广泛的应用,而且也成为了后来爱因斯坦提出的广义相对论中的基础之一。

在这篇文章中,我们将详细推导洛伦兹变换的过程,并探讨其物理意义。

我们从狭义相对论的两个基本假设开始。

第一个假设是等效原理,即在加速度为零的惯性参考系中的物理定律是相同的。

第二个假设是光速不变原理,即光在真空中的传播速度对于所有惯性观察者都是相同的,不受光源或观察者的运动状态的影响。

根据这两个假设,我们可以推导出洛伦兹变换。

假设有两个惯性参考系S和S',S'相对于S以速度v沿x轴方向匀速运动。

在S参考系中,事件的时空坐标为(x, y, z, t),而在S'参考系中为(x', y', z', t')。

我们希望通过洛伦兹变换找到这两个参考系之间的坐标变换关系。

首先考虑S'参考系中的时间坐标t'和空间坐标x'之间的变换。

由光速不变原理可知,在S'参考系中静止的光源发出的光信号在空间中传播的速度是恒定不变的,即光速c。

假设光源在S参考系中坐标为(x, t),在S'参考系中坐标为(x', t'),那么光信号在S参考系中的传播距离为c(t-t'),在S'参考系中的传播距离为c(t'-t)。

根据光速不变原理,这两个传播距离应该相等,即:c(t-t') = c(t'-t)整理得到:t' = γ(t - vx/c^2)其中γ为洛伦兹因子,定义为1/√(1-v^2/c^2),即:γ = 1/√(1-v^2/c^2)这个式子描述了S'参考系中事件的时间与S参考系中事件的时间之间的关系。

洛伦茨变换 推导

洛伦茨变换 推导

洛伦茨变换推导
洛伦兹变换是描述狭义相对论中时空关系的重要理论,其推导过程较为复杂,下面是一种基于特殊坐标系运动的推导方法:
首先,在速度有上限的情况下,根据不变量的表达式,要求此表达式在坐标变换下保持不变。

然后,利用虚数单位以及三角函数与双曲函数的关系,求得了保持度规不变的坐标变换公式。

最后,将坐标变换中的参数φ换成坐标系的相对运动速度u,导出了洛伦兹变换。

洛伦兹变换的推导是相对论的重要基础,它对于理解时空关系和物理现象有着重要的作用。

写出洛伦兹变换及其逆变换的形式。

写出洛伦兹变换及其逆变换的形式。

洛伦兹变换及其逆变换是狭义相对论中的重要概念,它描述了当两个惯性系之间相对运动时,时间和空间的变化规律。

本文将从以下几个方面展开讨论:一、洛伦兹变换的推导1.1 介绍洛伦兹变换的背景狭义相对论是爱因斯坦在19世纪初提出的一种理论,它颠覆了牛顿力学的观念,重新定义了时间和空间的概念。

在狭义相对论中,运动状态并不是绝对的,而是相对于观察者的。

当两个惯性系相对运动时,时间和空间的观测数值会发生变化,而这种变化规律由洛伦兹变换来描述。

1.2 推导洛伦兹变换的数学表达式根据狭义相对论的基本原理和洛伦兹对称性,可以推导出洛伦兹变换的数学表达式。

假设有两个惯性系S和S',它们之间以速度v相对运动。

假设在S系中有事件的时空坐标为(x, y, z, t),在S'系中的时空坐标为(x', y', z', t'),那么洛伦兹变换的数学表达式可以表示为:\[x'=\frac{x-vt}{\sqrt{1-\frac{v^2}{c^2}}}, y'=y, z'=z, t'=\frac{t-\frac{v}{c^2}x}{\sqrt{1-\frac{v^2}{c^2}}}.\]其中c为光速。

1.3 推导出洛伦兹变换的矩阵形式将洛伦兹变换的以上数学表达式整理成矩阵形式,并引入矩阵运算的概念,可以得到洛伦兹变换的矩阵形式如下:\[ \begin{bmatrix} x' \\ y' \\ z' \\ t' \end{bmatrix}= \begin{bmatrix} \frac{1}{\sqrt{1-\frac{v^2}{c^2}}} 0 0 -\frac{v}{c^2}\frac{1}{\sqrt{1-\frac{v^2}{c^2}}} \\ 0 1 0 0 \\ 0 0 1 0 \\ -\frac{v}{c^2}\frac{1}{\sqrt{1-\frac{v^2}{c^2}}} 0 0\frac{1}{\sqrt{1-\frac{v^2}{c^2}}} \end{bmatrix}\begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix}.\]二、洛伦兹变换的逆变换形式2.1 介绍洛伦兹变换的逆变换洛伦兹变换的逆变换即是将事件的时空坐标从S'系变换到S系的坐标变换规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节 洛伦兹变换式教学内容:1. 洛伦兹变换式的推导;2. 狭义相对论的时空观:同时性的相对性、长度的收缩和时间的延缓; 重点难点:狭义相对论时空观的主要结论。

基本要求:1. 了解洛伦兹坐标变换和速度变换的推导;2. 了解狭义相对论中同时性的相对性以及长度收缩和时间延缓概念;3. 理解牛顿力学中的时空观和狭义相对论中的时空观以及两者的差异。

三、洛伦兹坐标变换的推导()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧--='='='--='22211c v c vx t t z z y y c v vt x x 或 ()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-'+'='='=-'+'=22211c v c x v t t z z y y c v t v x x据狭义相对论的两个基本假设来推导洛仑兹变换式。

1. 时空坐标间的变换关系作为一条公设,我们认为时间和空间都是均匀的,因此时空坐标间的变换必须是线性的。

对于任意事件P 在S 系和S '系中的时空坐标(x ,y ,z ,t )、(x ',y ',z ',t '),因S ' 相对于S 以平行于 x 轴的速度v 作匀速运动,显然有y '=y , z '=z 。

在S 系中观察S 系的原点,x =0;在S '系中观察该点,x '=-v t ',即x '+v t '=0。

因此x =x '+v t '。

在任意的一个空间点上,可以设:x =k (x '+v t '),k 是—比例常数。

同样地可得到:x '=k '(x -v t )= k '(x +(-v )t )根据相对性原理,惯性系S 系和S '系等价,上面两个等式的形式就应该相同(除正、负号),所以k =k '。

2. 由光速不变原理可求出常数k设光信号在S 系和S '系的原点重合的瞬时从重合点沿x 轴前进,那么在任一瞬时t (或t '),光信号到达点在S 系和S '系中的坐标分别是:x =c t , x '=c t ',则:t t c x x '='2()()()()t v t c vt ct k t v x vt x k '+'-='+'-=22()222v c t t k -'=由由此此得得到到()22211c v v c c k -=-=。

这样,就得到()21c v vt x x --=',()21c v t v x x -'+'=。

由上面二式,消去x '得到()221c v c vx t t --=';若消去x 得到()221c v c x v t t -'+'=,综合以上结果,就得到 洛仑兹变换, 或 洛仑兹反变换()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧--='='='--='22211c v c vx t t z z y y c v vt x x ()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-'+'='='=-+'=22211c v c x v t t z z y y c v vt x x可见洛仑兹变换是两条基本原理的直接结果。

3. 讨论(1)可以证明,在洛仑兹变换下,麦克斯韦方程组是不变的,而牛顿力学定律则要改变。

故麦克斯韦方程组能够用来描述高速运动的电磁现象,而牛顿力学不适用描述高速现象,故它有一定的适用范围。

(2)当|v /c |<<1时,洛仑兹变换就成为伽利略变换,亦即后者是前者在低速下的极限情形。

故牛顿力学仅是相对论力学的特殊情形—低速极限。

四、相对论速度变换公式洛仑兹变换是事件的时空坐标在不同惯性系之间的关系,根据洛仑兹变换可以得到狭义相对论的速度变换公式。

设物体在S 、S '系中的的速度分别为()z yxu uu ,,,()z y x u u u ''',,,根据洛仑兹变换式可得:()()()()()222111c v dtv u c v dt v dt dx c v vdtdx x d x --=--=--='()()()2222111c v c vu dt c v c vdx dt t d x --=--='因此:()()()()222111c v c vu dt c v dt v u t d x d x x ----='',即:21c vu vu u x x x --='因y '=y , z '=z ,有d y '=d y , d z '=d z 则()()2211c v c vu dt dyt d y d x --='',即()2211c vu c v u u x y y --='。

同理:()2211c vu c v u u x z z --='因此得相对论的速度变换公式:21c vu vu u x x x --='、()2211c vu c v u u x y y --='、()2211c vu c v u u x z z --='其逆变换为:21c u v v u u x x x '++'=、()2211c u v c v u u x y y '+-'=、()2211c u v c v u u x z z '+-'=。

讨论(1)当速度u 、v 远小于光速c 时,即在非相对论极限下,相对论的速度变换公式即转化为伽利略速度变换式vu u x x -='。

(2)利用速度变换公式,可证明光速在任何惯性系中都是c 。

证明:设S '系中观察者测得沿x ' 方向传播的一光信号的光速为c ,在S 系中的观察者测得该光信号的速度为:c c vc v c u x =++=21,即光信号在S 系和S '系中都相同。

第四节狭义相对论的时空观一、一、同时的相对性1. 概念狭义相对论的时空观认为:同时是相对的。

即在一个惯性系中不同地点同时发生的两个事件,在另一个惯性系中不一定是同时的。

例如:在地球上不同地方同时出生的两个婴儿,在一个相对地球高速飞行的飞船上来看,他们不一定是同时出生的。

如图设S'系为一列长高速列车,速度向右,在车厢正中放置一灯P 。

当灯发出闪光时:S'系的观察者认为,闪光相对他以相同速率传播,因此同时到达A、B两端;S系(地面上)的观察者认为,A与光相向运动(v、c反向),B与光同向运动,所以光先到达A再到达B,不同时到达。

结论:同时性与参考系有关—这就是同时的相对性。

假设两个事件P1和P2,在S系和S'系中测得其时空坐标为:()()()()2222111122221111tzyxtzyxStzyxtzyxS''''''''',,,,,,,:,,,,,,,:由洛伦兹变换得:()()222222211111cvcx vttcvcvxtt--='--=',在S系和S'系中测得的时间间隔为()12tt'-'和(t2-t1),它们之间的关系为:()()()221212121cvcxxvtttt----='-'可见,两个彼此间作匀速运动的惯性系中测得的时间间隔,一般来说是不相等的。

2. 讨论(1)在S 系中同时发生:t 2=t 1,但在不同地点发生,12x x ≠,则有:()()2221121c v c x x v t t --='-'这就是同时的相对性。

(2)在S 系中同时发生:t 2=t 1,而且在相同地点发生,12x x =,则有:()()()1222121212101t t c v c v x x t t t t t '='=----='-'='∆,()()()12212121201x x c v t t v x x x x '='=----='-',即在S 系中同时同地点发生的两个事件,在S ’系中也同时同地点发生。

(3)事件的因果关系不会颠倒,如人出生的先后假设在S 系中,t 时刻在x 处的质点经过t ∆时间后到达x x ∆+处,则由:()221cv c v x t t --='得到()()()⎪⎭⎫ ⎝⎛∆∆=--∆=-∆-∆='∆t x u c v c v u t c v c v x t t 1112222因为v ≯c ,u ≯c ,所以Δt '与Δt 同号。

即事件的因果关系,相互顺序不会颠倒。

(4)上述情况是相对的。

同理在S ’系中不同地点同时发生的两个事件,在S系看来同样也是不同时的。

(5)当c v 〈〈时,t t ∆≈'∆,回到牛顿力学。

二、长度收缩(洛伦兹收缩)假设一刚性棒A B 静止于S ’系中12x x l '-'=',在S 系中同时()t t t ==21测量得12x x l -=。

由洛伦兹坐标变换式:()()2222211111c v vt x x c v vt x x --='--=',得:()()()()212212121211c v x x c v t t v x x x x --=----='-'即()21c v l l -'=1. 固有长度观察者与被测物体相对静止时,长度的测量值最大,称为该物体的固有长度(或原长),用l 0表示。

即()201c v l l -=2. 洛伦兹收缩(长度缩短)观察者与被测物体有相对运动时,长度的测量值等于其原长的()21c v -倍,即物体沿运动方向缩短了,这就是洛伦兹收缩(长度缩短)。

讨论:(1)长度缩短效应具有相对性。

若在S 系中有一静止物体,那么在S '系中观察者将同时测量得该物体的长度沿运动方向缩短,同理有()21c v l l -='即看人家运动着的尺子变短了。

(2)当v <<c 时,有l l '≈三、时间膨胀(时间延缓)由洛伦兹变换得()()()221212121c v c x x v t t t t -'-'+'-'=-,事件P 1、P 2在S 系中的时间间隔为12t t t -=∆,事件P 1、P 2在S ’系中的时间间隔为12t t t '-'='∆。

相关文档
最新文档