信号与系统范围
厦门大学(电子与通信工程)847考试范围

通信工程系:847信号与系统1. 信号与系统概念主要包括信号的定义及其分类;信号的运算;系统的定义及其划分;线性时不变系统的定义及特征等。
2. 连续时间系统的时域分析包括连续时间系统采用常系数微分方程的建立与求解;线性时不变系统通用微分方程模型;零输入响应与零状态响应的划分和求解;冲激响应与阶跃响应;卷积的定义,性质,计算等。
3. 离散时间系统的时域分析主要内容有离散时间信号的分类与运算;离散时间系统的数学模型及求解;单位样值响应;离散卷积和的定义,性质与计算等。
4. 拉普拉斯变换S域分析、极点与零点包括L变换及逆变换;L变换的性质;线性系统L变换求解;系统函数与冲激响应;周期信号与抽样信号的L变换,系统零、极点分布与其时域特征的关系;自由响应与强迫响应,暂态响应与稳态响应和零、极点的关系;系统零、极点分布与系统的频率响应;一阶系统,二阶谐振系统的S域分析;以及系统稳定性的定义与判断等。
5. 离散时间信号与系统的Z变换分析主要包括Z变换的定义与收敛域;典型序列的Z变换;逆Z变换;Z变换的性质;Z变换与拉普拉斯变换的关系;差分方程的Z变换求解;离散系统的系统函数;离散系统的频率响应;数字滤波器的基本原理与构成等6. 傅里叶变换主要内容包括周期信号的傅里叶级数和典型周期信号频谱;傅里叶变换及典型非周期信号的频谱密度函数;傅里叶变换的性质;周期信号的傅里叶变换;抽样信号的傅里叶变换;抽样定理;能量信号,功率信号,相关等基本概念;以及能量谱,功率谱,维纳-欣钦公式等。
7. 傅里叶变换应用于通信系统-滤波、调制与抽样主要内容包括利用系统函数求响应,无失真传输,理想低通滤波器,系统的物理可实现性,佩利-维纳准则,调制与解调,带通滤波器的运用,从抽样信号恢复连续时间信号,脉冲编码调制,频分复用与时分复用,从综合业务数字网到信息高速公路。
8. 系统的状态变量分析主要内容有信号流图的概念,性质,运算及梅森公式;连续时间系统状态方程的建立与求解,离散时间系统状态方程的建立与求解等。
信号与系统重要知识总结

信号与系统重要知识总结信号与系统是电子信息类专业中的一门重要课程,它是研究信号的产生、传输、处理与分析的学科。
信号与系统的重要知识主要包括信号的基本概念、信号的分类、信号的时域和频域表示、线性时不变系统、卷积运算、系统的稳定性等。
以下是对信号与系统重要知识的总结。
一、信号的基本概念信号是随时间、空间或其他自变量变化的物理量。
根据自变量的不同,信号可以分为时域信号和频域信号。
时域信号是关于时间的函数,而频域信号是关于频率的函数。
二、信号的分类根据信号的性质和特点,信号可以分为连续时间信号和离散时间信号。
连续时间信号是在整个时间范围内存在的信号,离散时间信号仅在一些离散时间点存在。
三、信号的时域和频域表示时域表示是将信号表示为随时间变化的函数,常用的时域表示方法有冲激函数表示、阶跃函数表示和周期函数表示等。
频域表示是将信号表示为随频率变化的函数,常用的频域表示方法有傅里叶变换和拉普拉斯变换等。
四、线性时不变系统线性时不变系统(LTI)是信号与系统中的重要概念,它是指系统的输出只取决于输入的当前值和过去值,且满足线性叠加原理。
LTI系统具有很多重要性质,如时域稳定性、频域稳定性、因果性、时域线性和频域线性等。
五、卷积运算卷积运算是信号与系统中的重要运算工具,它描述了输入信号经过系统响应的输出信号。
卷积运算实质上是将两个信号相乘并对一个变量进行积分的过程。
在时域中,卷积运算可以表示为输入信号和系统冲激响应的卷积;在频域中,卷积运算可以使用傅里叶变换和反变换来进行。
六、系统的稳定性系统的稳定性是指当输入有界时,输出是否也是有界的。
稳定性是一个重要的系统性质,不稳定系统可能导致系统失控或发生崩溃。
稳定性的判定方法有多种,常用的方法有判定系统传递函数的极点位置和利用BIBO(有界输入有界输出)稳定性判据。
综上所述,信号与系统是电子信息类专业中的一门重要课程,它涉及信号的产生、传输、处理与分析的方法。
信号与系统中的重要知识包括信号的基本概念、信号的分类、信号的时域和频域表示、线性时不变系统、卷积运算和系统的稳定性等。
信号与系统课程教学大纲

信号与系统课程教学大纲课程名称:信号与系统英文名称:Signal and System课程编号:1学时数:64其中实验(实训)学时数:14 课外学时数:学分数:4.0适用专业:通信工程、电子信息工程、自动化(试点)一、课程的性质和任务本课程是通信工程、电子与信息工程、自动化(试点)专业本科生的一门主干专业基础课,是信息处理技术方面的一门基础课。
本课程学习的目的是为进一步学习其它专业课打下必要的基础。
本课程的任务是使学生获得信号处理方面的基本理论、基本知识和基本方法,培养学生分析问题和解决问题的能力,为以后深入学习通信技术某些领域中的内容,以及为信号处理在专业中的应用打下更好的基础。
二、课程教学内容的基本要求、重点和难点通过本课程的学习,应理解和掌握信号分析与系统分析的基本方法、理论及应用,为专业课学习打下必要的基础。
基本要求:1、熟练掌握信号的时域变换、正交函数及正交函数集的判断;正确理解和熟记常见的连续和离散信号;一般了解信号的分类和表示、卷积计算。
2、熟练掌握非周期信号的傅立叶变换、傅立叶变换的性质;正确理解周期信号的频谱、抽样信号的频谱;一般了解周期信号的傅立叶变换。
3、熟练掌握常见信号的拉普拉斯变换、拉普拉斯变换的性质、拉普拉斯逆变换的求解方法;正确理解拉普拉斯变换的收敛域、拉普拉斯变换的定义;一般了解拉普拉斯变换与傅立叶变换的区别与联系。
4、熟练掌握Z变换的定义与收敛域、常见信号的Z变换、Z变换的性质和Z反变换的求解方法;一般了解Z变换与拉普拉斯变换的关系。
5、熟练掌握用微分方程描述系统、零输入响应和零状态响应的求解原理;正确理解冲激响应和阶跃响应的关系;一般了解微分方程的经典解法、用卷积求解零状态响应的方法。
6、熟练掌握用傅立叶变换分析法求解系统的零状态响应、判断系统是否为无失真传输系统;正确理解系统无失真传输的条件、理想低通滤波器的频率特性;一般了解理想低通滤波器的冲激响应和阶跃响应。
信号与系统的基本概念

信号与系统的基本概念
信号与系统是现代通信、控制、电子等领域的基础课程,是电子信息类专业中
非常重要的一门课程。
在学习信号与系统之前,首先要了解信号和系统的基本概念。
信号是携带信息的载体,可以是任何随时间或空间变化的物理量,比如声音、光、电压等。
信号可以分为连续信号和离散信号两种。
连续信号是定义在连续时间范围内的信号,通常用数学函数来描述;离散信号是在离散时间点上取值的信号,通常用数列来表示。
系统是对信号的一种处理方式,可以将系统看作信号的输入与输出之间的关系。
系统可以是线性的或非线性的,时变的或不变的,因果的或非因果的。
线性系统满足叠加原理,即输入信号的线性组合对应于输出信号的线性组合;时不变系统的性质在不同的时间下保持不变;因果系统的输出只取决于当前和过去的输入。
信号与系统的基本概念包括信号的分类、信号的基本性质、系统的分类和系统
的基本性质。
信号的分类包括连续信号和离散信号,信号的基本性质包括幅度、相位、频率等。
系统的分类包括线性系统和非线性系统,系统的基本性质包括冲击响应、单位阶跃响应、频率响应等。
在信号与系统的学习中,我们会学习信号的时域分析、频域分析、系统的时域
分析、频域分析等内容。
时域分析主要是对信号或系统在时间域内的性质进行分析,频域分析则是对信号或系统在频率域内的性质进行分析。
总的来说,信号与系统是电子信息类专业的基础课程,掌握信号与系统的基本
概念对于理解通信系统、控制系统、信号处理系统等方面的知识至关重要。
通过学习信号与系统,我们可以更好地理解和分析信号的特性、系统的性质,为日后的专业发展打下坚实的基础。
信号与系统的基本概念

信号与系统的基本概念信号与系统是现代通信、电子、计算机等领域中的基础学科,它是一门研究信号在系统中传输、处理、变换和分析的学科。
信号是指在时间或空间上发生变化的物理量,如声音、图像、电压等,而系统则是对信号进行处理的设备或装置,如滤波器、调制器、解调器等。
信号与系统的研究范围涉及到数学、物理、电子、计算机等多个学科,具有广泛的应用价值。
在信号与系统中,信号可以分为连续信号和离散信号两类。
连续信号是指在时间上连续变化的信号,如声波、电压等,它们可以用连续函数表示。
离散信号则是指在时间上呈现出离散变化的信号,如数字音频、数字图像等,它们可以用数列表示。
信号的处理包括滤波、调制、解调、采样等操作,这些操作可以通过系统来实现。
系统可以分为线性系统和非线性系统两类。
线性系统是指其输入和输出之间存在线性关系的系统,如低通滤波器、线性调制器等。
非线性系统则是指其输入和输出之间不存在线性关系的系统,如非线性滤波器、非线性调制器等。
系统的性质可以通过其冲激响应、频率响应等来描述,这些描述方法可以用于系统分析和设计。
在信号与系统中,还有一些重要的概念和工具,如傅里叶变换、拉普拉斯变换、离散傅里叶变换等。
傅里叶变换可以将一个信号分解成不同频率的正弦波成分,这对于频域分析非常有用。
拉普拉斯变换则可以将一个连续时间域的系统转换为一个复平面上的函数,这对于时域和频域分析都非常有用。
离散傅里叶变换则是将一个离散时间域的信号转换为一个复平面上的函数。
总之,信号与系统是一门重要的学科,它涉及到多个学科和领域,具有广泛的应用价值。
了解信号与系统的基本概念和工具对于从事相关领域的人员来说非常重要。
信号与系统知识点整理

信号与系统知识点整理信号与系统是电子、通信、自动化等领域中的基础课程之一,主要研究信号的产生、传输、处理和分析等内容。
下面是信号与系统的知识点整理。
1.信号的分类:-连续信号:在时间和幅度上都是连续的信号,如声音、电压波形等。
-离散信号:在时间上是离散的信号,如数字音频、数字图像等。
-周期信号:在一定时间周期内重复出现的信号,如正弦信号、方波等。
-非周期信号:在一定时间段内不重复出现的信号,如脉冲信号、矩形波等。
2.基本信号:-阶跃信号:在其中一时刻突然跃变的信号。
-冲击信号:在其中一时刻瞬间出现并消失的信号。
-正弦信号:以正弦函数表示的周期信号。
-方波信号:由高电平和低电平构成的周期信号。
3.系统的分类:-时不变系统:输出不随时间变化而变化的系统。
-线性系统:满足叠加性质的系统。
-因果系统:输出仅依赖于当前和过去的输入的系统。
-稳定系统:有界的输入产生有界的输出的系统。
4.线性时不变系统的特性:-线性性质:满足叠加性质。
-时不变性:系统的输出只取决于输入信号的当前和过去的值。
-冲激响应:线性时不变系统对单位冲激信号的响应。
5.离散时间系统的表示:-差分方程:用差分方程表示离散时间系统。
-传输函数:用传输函数表示系统的输入和输出之间的关系。
6.离散时间信号的分析:-Z变换:将离散时间信号从时域变换到Z域的方法。
-序列的频率表示:幅度谱、相位谱和角频率。
7.连续时间系统的表示:-微分方程:用微分方程表示连续时间系统。
-传递函数:用传递函数表示系统的输入和输出之间的关系。
8.连续时间信号的分析:-傅里叶级数:将连续时间周期信号分解成一系列正弦和余弦函数的和。
-傅里叶变换:将连续时间非周期信号从时域变换到频域。
9.信号处理的应用:-通信系统:对信号进行调制、解调、编码、解码等处理。
-图像处理:对图像进行滤波、增强、压缩等处理。
-音频处理:对音频信号进行降噪、消除回声、变声等处理。
-生物医学信号处理:对生理信号如心电图、脑电图等进行分析和识别。
信号和系统

t
ht
H
二.阶跃响应 1.定义
系统在单位阶跃信号作用下的零状态响应,称为单位阶跃响 应,简称阶跃响应,一般用g(t)表示。
ut
gt
H
系统的输入 e(t)=u(t) ,其响应为 r(t)=g(t) 。系统方程 的右端将包含阶跃函数u(t) ,所以除了齐次解外,还有特解项。
我们也可以根据线性时不变系统特性,利用冲激响应与阶 跃响应关系求阶跃响应。
f (t) (t)dt f (0)
f (t) (t t0)dt f (t0)
2、δ(t) 的尺度变换
(at) 1 (t)
a
(at t0)
1 a
(t t0 )
a
f (t) (at)dt 1 f (0)
a
f (t) (at t0 )dt
Hale Waihona Puke 1 af (t0 ) a
这里 a 和 t0为常数,且a0。
y(t) e2t 3 yx (t) y f (t) (2e2t 4et ) (e2t 4et 3),t 0
强迫响应
自由响应
零状态响应 零输入响应
2.2 冲激响应和阶跃响应
一.冲激响应 1.定义 系统在单位冲激信号δ(t) 作用下产生的零状态响
应,称为单位冲激响应,简称冲激响应,一般用h(t)表
2、冲激函数匹配法 目的: 用来求解初始值,求(0+)和(0-)时刻值 的关系。 应用条件:如果微分方程右边包含δ(t)及其各阶导 数,那么(0+)时刻的值不一定等于(0-) 时刻的值。 原理: 利用t=0时刻方程两边的δ(t)及各阶导数 应该平衡的原理来求解(0+)
三、零输入响应和零状态响应 1、定义: (1)零输入响应:没有外加激励信号的作用,只有起始状态所产生的响应。 (2)零状态响应:不考虑起始时刻系统储能的作用,由系统外加激励信号所
信号与系统名词解释

1. 信号:是信息的载体。
通过信号传递信息。
2. 系统:是指若干相互关联的事物组合而成具有特定功能的整体3. 数字信号:仅在一些离散的瞬间才有定义的信号。
4. 模拟信号:在连续的时间范围内(-∞<t<∞)有定义的信号。
5. 连续系统:若系统的输入信号是连续信号,系统的输出信号也是连续信号。
6. 离散系统:若系统的输入信号和输出信号均是离散信号。
7. 动态系统:若系统在任一时刻的响应不仅与该时刻的激励有关,而且与它过去的历史状况有关。
8. 即时系统:不含有记忆元件(电容、电感等)的系统。
9. 线性系统:满足线性性质的系统。
10. 因果系统:零状态响应不会出现在激励之前的系统。
11. 连续因果系统的充分必要条件是:冲激响应 h(t)=0,t<0 或者,系统函数H(s)的收敛域为:Re[s]>σ012. 离散因果系统的充分必要条件是:单位响应 h(k)=0, k<0 或者,系统函数H(z)的收敛域为:|z|>ρ013. 稳定系统:一个系统,若对有界的激励f(.)所产生的零状态响应y f (.)也是有界时,则称该系统为有界输入有界输出稳定。
14. 时不变系统:满足时不变性质的系统称。
15. 时不变性质:若系统满足输入延迟多少时间,其零状态响应也延迟多少时间。
16. 零状态响应:当系统的初始状态为零时,仅有输入信号f(t)/f(k)的响应。
17. 零输入响应:是激励为零时仅有系统的初始状态{x(0)}所引起的响应。
18. 自由响应:齐次解的函数形式仅与系统本身的特性有关,而与激励f(t)的函数形式无关19. 强迫响应:特解的函数形式由激励确定,称为强迫响应。
20. 冲激响应:当初是状态为零是,输入为单位冲激函数δ(t)所引起的零状态响应。
21. 阶跃响应:当初是状态为零是,输入为单位阶跃函数所引起的零状态响应。
22. 正交:定义在(t 1,t 2)区间的两个函数ϕ 1(t)和ϕ 2(t),若满足 23. 完备正交函数集:如果在正交函数集{ϕ1(t), ϕ 2(t),…, ϕ n (t)}之外,不存在函数φ(t)(≠0)满足⎰=210d )()(t t i t t t ϕϕ ( i =1,2,…,n)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
824信号与系统考试大纲
“信号与系统”研究生入学考试考试大纲
考试科目代码:824
适用招生专业:物理电子学电路与系统电磁场与微波技术通信与信息系统信号与信息处理
一.考试内容:
1.连续和离散时间系统的时域分析:
基本的连续与离散时间信号、系统的概念及基本性质,奇异函数,卷积和与卷积积分的计算,单位冲激响应和单位脉冲响应。
2.连续时间与离散时间周期信号的傅立叶级数:
连续时间和离散时间信号的周期性,连续与离散时间周期信号傅立叶级数的概念与性质。
3.连续与离散时间信号傅立叶变换:
连续时间信号与离散时间信号的傅立叶变换的定义及性质,周期信号的傅立叶变换,系统的频域分析和系统的频率响应。
同步和异步AM调制与解调的基本原理。
4.连续时间信号拉普拉斯变换:
拉普拉斯变换的定义与性质、收敛域;系统的复域分析、系统函数及其零极点图,傅立叶变换的几何分析法,系统的稳定性,单边拉普拉斯变换。
5.离散时间信号Z变换:
Z变换的定义和性质、收敛域;离散系统的Z域分析,系统函数及其零极点图,傅立叶变换的几何分析法,系统的稳定性;单边Z变换。
6.采样、滤波
连续时间信号的时域及频域采样,采样定理;离散时间信号的时域及频域采样;连续时间信号的离散处理;内插及信号的重建;连续时间和离散时间系统之间的变换;滤波的原理及典型滤波器的特性及简单设计。
二.考试题型:
填空题、选择题、判断题、问答题、计算题。