初中几何三角形五心及定理性质电子教案
三角形的重心、外心、垂心、内心和旁心(五心定理)[参照]
![三角形的重心、外心、垂心、内心和旁心(五心定理)[参照]](https://img.taocdn.com/s3/m/bff5d6ed6037ee06eff9aef8941ea76e59fa4a74.png)
三角形的重心、外心、垂心、内心和旁心(五心定理)[参照]
三角形的重心:是指三角形内任意一点,它到三条边上三个顶点连线的质心,即三角形的外心和所有顶点的重心。
外心:指三角形的外接圆心,也就是三条边的质心,即三角形的重心。
垂心:指三角形的垂心,也就是三角形所有内角的质心,即三角形的重心。
内心:指三角形内角平分线的交点,也就是三角形各内角的质心,即三角形的重心。
旁心:指三角形的垂直平分线的交点,也就是三角形各边的质心,即三角形的重心。
初中几何三角形五心及定理性质

初中几何三角形五心定律及性质三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。
三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称重心定理三角形的三条边的中线交于一点。
该点叫做三角形的重心。
三中线交于一点可用燕尾定理证明,十分简单。
(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。
即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。
5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。
外心定理三角形外接圆的圆心,叫做三角形的外心。
外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
5、外心到三顶点的距离相等垂心定理图1 图2三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。
(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。
4、垂心分每条高线的两部分乘积相等。
推论:1. 若D 、E 、F 分别是△ABC 三边的高的垂足,则∠1 = ∠2 。
初中的几何三角形五心及定理性质

初中几何三角形五心定律及性质三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。
三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称重心定理三角形的三条边的中线交于一点。
该点叫做三角形的重心。
三中线交于一点可用燕尾定理证明,十分简单。
(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。
即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。
5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。
外心定理三角形外接圆的圆心,叫做三角形的外心。
外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
5、外心到三顶点的距离相等垂心定理图1 图2三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。
(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。
4、垂心分每条高线的两部分乘积相等。
推论:1. 若D 、E 、F 分别是△ABC 三边的高的垂足,则∠1 = ∠2 。
三角形的五心综合讲稿(陶平生)

【几何十讲】三角形的五心-B (欧拉线心)(外心、重心与垂心) 陶平生三角形的五心是指内心、外心、重心、垂心与旁心;在数学竞赛中占有十分重要的位置. 从赛题统计方面来看,其中又以内心问题最为突出,必须熟悉五心的基本性质,基本构形,常用辅助线以及基本定理的应用.外心、重心与垂心ABC ∆的外心为O ,重心为G ,垂心为H ,则有(1)、,,O G H 三点共线(欧拉线)且:::1:2OG GH DG AG DO AH ===;(2)、2,2,2BOC A COA B AOB C ∠=∠=∠=;(3)、13AGB BGC CGA ABC ∆=∆=∆=∆;(4)、,,HAB HBC HCA ∆∆∆与ABC ∆具有相等的外接圆半径;(5)、ABC ∆的垂心H 是其垂足三角形的内心.例1、ABC ∆中,O 为外心,三条高,,AD BE CF 交于点H ,直线ED 和AB 交于点M , FD 和AC 交于点N ;求证:0(1)、,OB DF OC DE ⊥⊥;0(2)、OH MN ⊥. (2001全国联赛)证一、(纯几何方法)设OK AB ⊥于K ,则1==2KOB AOB C ∠∠,又由AFDC 共圆,D则BFD C KOP ∠==∠,所以KOPF 共圆,所以0==90OPF OKF ∠∠,因此OB DF ⊥,同理有OC DE ⊥.为证OH MN ⊥,由,AEDB AFDC 分别共圆,=,==FDB A MDB EDC A ∠∠∠,2FDM A BOC ∠==∠,设OB CF T =,在直角三角形BTF 中,由于DF BT ⊥, 则==OTC BTF DFB ∠∠∠,因此COT ∆∽MDF ∆,且其对应边互相垂直. 作DG ∥MN ,于是只要证,OH DG ⊥,即要证MDG ∆∽COH ∆,由=DMF OCT ∠∠, 只要证=MG CH MD CO… ① 因===MG MG MF ND MF ND CT MD MF MD NF MD NF CO⋅⋅⋅ … ② 据①②,只要证=ND CHNF CT… ③ 注意CDH ∆∽AFH ∆,CTB ∆∽AHB ∆,NDC ∆∽NAF ∆,则 =,=CH CD AH AB AH AF CT CB ,相乘得==CH AB CD AB NCCT BC AF BC NF⋅⋅⋅ … ④ 由③④,只要证=ND ABNC BC… ⑤ 由于DCE ∆∽ACB ∆,且DC 平分NDE ∠,则=DN NCDE CE, 所以==ND DE AB NC CE BC,因此OH DG ⊥,即有OH MN ⊥.证二、(利用根轴性质)为证OB DF ⊥,只要证,2222=OD OF BD BF --, 据斯特瓦特定理,2222=+=CD BDOD R R CD BD R CD BD BC BC⋅⋅-⋅-⋅,同样有 22=OF R BF AF -⋅,据AFDC 共圆,又有=BF BA BD BC ⋅⋅,所以 22==()()OD OF BF AF BD CD BF AB BF BD BC BD -⋅-⋅--⋅-2222=()+()=BF BA BD BC BD BF BD BF ⋅-⋅--,因此OB DF ⊥,同理有OC DE ⊥.再证OH MN ⊥,据CF MA ⊥,得2222=MC MH AC AH -- … ①; 由BE NA ⊥得2222=NB NH AB AH -- … ②; 由DA BC ⊥得2222=BD CD BA AC -- … ③; 由OB DF ⊥得2222=BN BD ON OD -- … ④ 由OC DE ⊥得2222=CM CD OM OD -- … ⑤①+③+④ -②-⑤得2222=NH MH ON OM --,所以OH MN ⊥.证三、(面积与三角方法)(仅证OH MN ⊥.)如图,作DW ∥AN ,点W 在MN 上,在OBH ∆与NDW ∆中,因为OB ND ⊥, BE AN ⊥,即BH DW ⊥,于是=NDW OBH ∠∠;为证OH WN ⊥,只要证NDW ∆∽OBH ∆,即要证=DW BHDN BO… ① 因1cos ===2cos sin sin BH BD AB B B BO C R R C ⋅⋅,==DW DW EN MD EN DN EN DN ME DN ⋅⋅ … ②, 而sin sin 2==sin sin EN EDN A DN DEN B∠∠, sin cos sin cos sin 2=====sin sin cos sin sin 2MD AMD AM AD BAD AD B AB B B BME AME AM AE A AE A AB A A A∆⋅∠∆⋅. 故由②,sin 2sin 2===2cos sin 2sin DW MD EN B AB DN ME DN A B⋅⋅,因此①成立,故结论得证. 证四、(解析法)0(1)、取D 为原点,DA 为Y 轴,建立直角坐标系,设三顶点坐标为(0,),(,0),(,0)A a B b C c ,则重心为,33b c a G +⎛⎫⎪⎝⎭,于是AB 的方程为:1x y b a +=,AC 的方程为:1x y c a +=;再设垂心为(0,)H h ,则CH 的方程为:1x yc h+=; 由于CH AB ⊥,则1CH AB h a ahk k c b bc ⎛⎫⎛⎫-=⋅=-⋅-=⎪ ⎪⎝⎭⎝⎭, 因此,bc h a =-,于是CH 的方程为:1x ay c bc -=,且垂心坐标为0,bc H a ⎛⎫- ⎪⎝⎭同理得,BH 的方程为:1x ayb bc-=; 因,,O G H 共线(欧拉线),且点O 外分线段HG 为定比3-:3HOOG=-;记00(,)O x y , 则00(3)31(3)2b c b c x ++-+==+-,2(3)31(3)2bc aa bc a y a -+-+==+-,即2,22b c a bc O a ⎛⎫++ ⎪⎝⎭,故2232()02OHa bc bc a bc a a kbc a b c +⎛⎫-- ⎪+⎝⎭==++-,2202()2OB a bc a bc a k b c a c b b +-+==+--,2()OC a bc k a b c +=-, 因DF 过CH 与AB 的交点F ,故DF 的方程可表为:110x ay x y c bc b a λ⎛⎫⎛⎫--++-=⎪ ⎪⎝⎭⎝⎭,注意DF 过原点,得1λ=-,所以DF 的方程为:1110a x y c b a bc ⎛⎫⎛⎫--+=⎪ ⎪⎝⎭⎝⎭, 同理知,DE 的方程为:1110a x y c b a bc ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭; 所以2()DF a b c k a bc -=+,2()DEa cb k a bc-=+; 由于1,1OB DF OC DE k k k k ⋅=-⋅=-,所以,OB DF OC DE ⊥⊥;0(2)、先求MN 的方程:一方面,由于MN 过DF 与AC 的交点N ,故MN 的方程可表为:11110a x y x y c b a bc c a μ⎛⎫⎛⎫⎛⎫⎛⎫--+++-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,即:111a x y c b a bc μμμ+-⎛⎫⎛⎫--+= ⎪ ⎪⎝⎭⎝⎭,也即111a x y c b abc μμγγγμ+-⎛⎫⎛⎫--+= ⎪ ⎪⎝⎭⎝⎭ … ① 另一方面,由于MN 过DE 与AB 的交点M ,故MN 的方程可表为:11110a x y x y c b a bc b a γ⎛⎫⎛⎫⎛⎫⎛⎫-++++-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,即: 111a x y cb a bc γγγ-+⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,也即111a x y cb abc γγμμγμ-+⎛⎫⎛⎫-++= ⎪⎪⎝⎭⎝⎭ … ② 由于方程①和②表示同一条直线MN ,所以1111c b c b μγγμ+-⎛⎫⎛⎫-=-⎪ ⎪⎝⎭⎝⎭… ③, 11a a a bc a bc μγγμ-+⎛⎫⎛⎫-+=+ ⎪⎪⎝⎭⎝⎭ … ④ 由③得()()0c b γμγμ-+-=,显然有0,0c b ><,0c b ->,所以0γμγμ+-= …… ⑤ 由④得2()()0a bc μγ++=,(因2()DF a b c k a bc -=+,2()DE a c b k a bc-=+有意义,则20a bc +≠) 所以0μγ+= ……⑥,由⑤⑥得2,2γμ==-,于是MN 的方程为:1132a x y b c a bc ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,即2()(3)2a b c x bc a y abc +++=,因此,2()3MN a b c k a bc +=-+, 前已得到23()OH a bck a b c +=+,所以1OH MN k k ⋅=-,从而OH MN ⊥.例2、如图,以ABC ∆的一边BC 为直径作圆,分别交,AB AC 所在直线于,E F ,过,E F 分别作圆的切线交于一点P ,直线AP 与BF 交于一点D ;证明:,,D C E 三点共线.证:连,,EF EC CD ,则弦切角PEF PFE EBF ∠=∠=∠,由AF BF ⊥,得09090BAF EBF PEF ∠=-∠=-∠12EPF =∠,以P 为圆心,()PE PF =为半径作P ,交直线BA 于A ',则12EA F EPF BAF '∠=∠=∠, 故,A A '共点;所以PA PE =,090PAE ABC PEA PEC ∠+∠=∠+∠=,得BC AP ⊥,因此C 是ABD ∆的垂心.所以CD AB ⊥,又因CE AB ⊥,则,,D C E 三点共线.例3、如图,,M N 分别是ABC ∆的边,AB AC 上的点,且1BM CNMA NA+=; 求证:线段MN 过ABC ∆的重心.证:取AC 的中点E ,MN 截ABE ∆于,,M P N ,1EP BM ANPB MA NE⋅⋅=,则1BP BM AN CN AN PE MA NE NA NE ⎛⎫=⋅=- ⎪⎝⎭ 22NE ANAN NE =⋅=,因为P 在中线BE 上,所以P 是重心. 以上用到,()()NA CN NE EA CN NE EC CN -=+-=+- ()2NE CN NE CN NE =++-=.例4、12,O O 是ABC ∆的旁切圆,已知 1O 分别切,,AB BC CA 三边于,,D E F ;2O 分别切,,AB BC CA 三边于,,M N K ;1212, O O EF S O O MN T ==;MN EF P =;ED NK H =.证明:()1. ,,P A H 共线1l ,,,,E D H T 共线2l ,,,,N K H S 共线3l ;DB()1232. , , l BC l PN l PE ⊥⊥⊥.证:()1. 作AQ BC ⊥于Q ,设1QANM P =,12,O O 的半径分别记为12,r r , 则222costan22sin tan 22B A AM AT AMT B B TO MTO r ∆===∆ 同理,1tan 2tan 2AAS CSO = ,因为1P A ∥2O N ,则122P A AT r TO =,故12tan 2tan2A P A rB =⋅. 又设2QA EF P =,则 21tan2tan2A P A r C =⋅ ,为证12P A P A =,只要证, 21cot cot 22B Cr r =,即BN CE =,连21, BO CO ,因122, O B BO MN BO ⊥⊥,故1O B ∥MN ,同理,21O C O C ⊥,于是21BCO O 共圆,得212CBO CO O ∠=,12212212cotcot cos 22O C B CBN r r CO O r O C CE O C ==∠===,所以 12P A P A =. 即,,EF MN AQ 三线共点.()2.因, 222B BBED ENM BMN π∠=∠=∠=-,所以 ED MN ⊥,因 2tan 2tan 2A AT B TO =,而11tan 2tan 2A r AD AD BDB r DB =⋅=, 所以,2AT AD TO DB =,因此 DT ∥2BO ,而 2BO MN ⊥,所以DT MN ⊥,且,,E D T 共线.即,,E D T 所共直线为PEN ∆的一条高线;同理可得,,,N K S 共线,且其所共直线也构成PEN ∆的一条高线,因此ED 与NK 的交点H 为PEN ∆的垂心,故在另一条高线PAQ 上,因此结论得证.例5、如图, ABC ∆中,AB AC =,AB AC ⊥,,E F 是BC 上的点,且045EAF ∠=;AEF ∆的外接圆分别交,AB AC 于,M N .求证:BM CN MN +=.证:如右图,设,,,,BM x CN y BE b CF c EF a =====,则AB AC ===,将ABE ∆绕A 反时针旋转090至ACP ∆, 则090PCF PCA ACF ∠=∠+∠=,所以PCF ∆为直角三角形; 又显然045PAF EAF ∠==∠,所以PAF EAF ∆∆≌, 故由222PF PC FC =+,得222a b c =+ 记圆的半径为r ,则直径2MN r =,a EF ==,由圆幂定理,BM BA BE BF ⋅=⋅,CN CA CF CE ⋅=⋅,即()x b a b =+,()y c a c =+;所以222[()][()]2x y b c a b c a a b c r a b c a b c+=+++=++==++++,即BM CN MN +=.例6、过ABC ∆的外心O 任作一直线,分别交边,AB AC 于,M N ,F E ,分别是,BN CM 的中点.证明:EOF A ∠=∠.证:我们证明以上结论对任何三角形都成立.分三种情况考虑,对于直角三角形ABC ,结论是显然的,事实上,如图一中左图,若ABC ∠为直角,则外心O 是斜边AC 的中点,过O 的直线交,AB AC 于,M N ,则,O N 共点,由于F 是CM 的中点,故中位线OF ∥AM ,所以EOF OBA OAB A ∠=∠=∠=∠;P以下考虑ABC ∆为锐角三角形或钝角三角形的情况,(如图一中右边两图所示) (图一)先证引理:如右图,过O 的直径KL 上的两点,A B 分别作弦,CD EF ,连,CE DF ,分别交,K L 于,M N ,若OA OB =,则MA NB =. 引理证明:设CDEF P =,直线,CE DF 分别截PAB ∆,据梅涅劳斯定理,1AC PE BM CP EB MA ⋅⋅=,1BF PD ANFP DA NB ⋅⋅=; 则MA AC AD PE PF BM NB BE BF PC PD AN⋅⋅⋅⋅=⋅⋅⋅⋅ … ① 而由相交弦,得PC PD PE PF ⋅=⋅ … ② 若O 的半径为R ,OA OB a ==,则22AC AD AK AL R a BK BL BE BF ⋅=⋅=-=⋅=⋅ …③,据①②③得,MA MB NB NA =,即1MA MA AB ABNB NB AB AB+===+.因此MA NB =.引理得证.回到本题,如下图(两图都适用),延长MN 得直径1KK ,在直径上取点1M ,使1OM OM =,设11CM O A =,连1A B 交1KK 于1N ,由引理,11MN M N =,(右图中则是11M N MN =)因此,O 是1NN 的中点,故,OE OF 分别是1NBN ∆及1MCM ∆的中位线,于是得1EOF BA C A ∠=∠=∠.11F E M (N)C B AO例7、锐角三角形ABC 的三边互不相等,其垂心为H ,D 是BC 的中点,直线, BHAC E CHAB F ==,AH BC T =,BDE 交CDF 于G ,直线AG 与, BDE CDF 分别交于,M N .证明:()1、AH 平分MTN ∠;()2、, , ME NF AH 三线共点.证:如图,连,,,DE DF MB NC ,因BCEF 共圆,D 为圆心,则DE DF DB DC ===, 连,,GD GE GF ,由BDEG 共圆,得DGE DBE TAC ∠=∠=∠;又由CDFG 共圆,得DGF DCF TAB ∠=∠=∠,相加得,EGF EAF ∠=∠,故EGAF 共圆,又因EAFH 共圆,即有AGEHF 五点共圆,所以HGE HAE TAC DGE ∠=∠=∠=∠,即,,D H G 共线;五点圆AGEHF 的直径为AH ,设圆心为P (P 为AH 的中点),由090AGH AEH ∠=∠=,即DG MN ⊥,故MD 为BDE 的直径,从而MB BC ⊥,进而由090DGN ∠=,知DN 为CDF 的直径,所以NC BC ⊥,MB ∥AT ∥NC ,因直径MD 过BDE 的中点D ,故MD 垂直且平分弦BE ;同理,CDF 的直径DN CF ⊥,又由, BE AC CF AB ⊥⊥,所以 MD ∥AC ,ND ∥AB ,则 Rt ABT ∆∽Rt NCD ∆,则 BT AT DC NC=……○1; 由MD ∥AC ,得 Rt MDB ∆∽Rt ACT ∆, BD MBTC AT=……○2. ○1、○2相乘,并注意 BD CD =, 有BT MBTC NC=,所以 MBT ∆∽NCT ∆, 由此,TN TC ANTM TB AM==,故AT 平分MTN ∠. 为证 , , ME NF AH 三线共点,只要证 , ME NF 皆过点P ,据五点圆AGEHF 的圆心角22HPE HAE HBC EDC BME ∠=∠=∠=∠=∠,所以PE ∥ME ,因此,,M P E 共线;同理可得,,,N P F 共线,因此, , ME NF AH 三线共点.例8、锐角三角形ABC 中,, , BC a AC b AB c ===,在边,,BC CA AB 上分别有动点,,D E F ,试确定,当222DE EF FD ++取得最小值时DEF ∆的面积.解:对于任一个内接DEF ∆,暂将EF 固定,而让D 在BC 上移动,设EF 的中点为M ,则由中线长公式,222222EF DE DF DM +=+⋅,因此在EF 固定后,欲使222DE EF FD ++取得最小值,当使DM 达最小,但是M 为EF 上的定点,则当DM BC ⊥时,DM 达最小,再对,E F 作同样的讨论,可知,当222DE EF FD ++取得最小值时,DEF ∆的三条中线必定垂直于三角形ABC 的相应边;今设DEF ∆重心为G ,面积为0S ,ABC ∆的面积为S ,则3GDE GEF GFD S S S S ∆∆∆===……○1 由于,,GDCE GEAF GFBD 分别共圆,则, , DGE C EGF A FGD B πππ∠=-∠=-∠=-,故由○1,sin sin sin GD GE C GE GF A GF GD B ⋅⋅=⋅⋅=⋅⋅,同除以2S ,得GD GE GE GF GD GFa b b c a c⋅⋅⋅==⋅⋅⋅,所以 GD GE GFa b cλ===, … ②,又由 2GD a GE b GF c S ⋅+⋅+⋅=,即()2222a b c S λ++=,所以2222Sa b cλ=++,因而 220113sin 3sin 322S GD GE C ab C S λλ=⋅⋅=⋅=()3222212S a b c =++. (其中2a b c S p ++==) 例9、如图,△PAB 中,,E F 分别是边,PA PB 上的点,在,AP BP 的延长线上分别取点,C D ,使 , PC AE PD BF ==;点,M N 分别是△PCD ,△PEF 的垂心.证明:MN AB ⊥.证:如图,设线段,,DE CF PF 的中点分别为,,G H K ,则K也是BD 的中点,据中位线知,在△BDE 中,KG ∥BE ,12KG BE =; 在△PCF 中,KH ∥PC ,12KH PC =,即 KH ∥AE ,12KH AE =,所以△KHG △EAB , 且HG ∥AB ,12HG AB =.为证MN AB ⊥,只要证MN HG ⊥.以G 为圆心,DE 为直径作G ,其半径记为R ;以H 为圆心,CF 为直径作H ,其半径记为r ,设直线AC 交MD 于Q ,MC 交BD 于W ,由于点M 是△PCD 的垂心, 则MD PQ ⊥,MC PD ⊥,所以DWCQ 共圆,故有MQ MD MC MW ⋅=⋅ … … ①另一方面,由于90, 90,EQD FWC ︒︒∠=∠=可知,Q 在G 上,W 在H 上,从而2222, MQ MD MG R MC MW MH r ⋅=-⋅=-,因此○1化为2222MG R MH r -=-,即 2222MG MH R r -=- … …②又设直线NF 交AC 于S ,NE 交BD 于T ,由于点N 是△PEF 的垂心,,则NS PE ⊥, NE PF ⊥,所以ETFS 共圆,故有 NT NE NF NS ⋅=⋅ … … ③ 再由 90, 90,DTE CSF ︒︒∠=∠=可知,T 在G 上,S 在H 上,从而2222, NT NE NG R NF NS NH r ⋅=-⋅=-,因此③化为2222NG R NH r -=-,即 2222NG NH R r -=- … ④ 据②、④得,2222MG MH NG NH -=-, 故 MN GH ⊥,而HG ∥AB ,所以MN AB ⊥.例10、在ABC ∆中,3a c b +=,内心为I ,内切圆在,AB BC 边上的切点分别为,D E , 设K 是D 关于点I 的对称点,L 是E 关于点I 的对称点.求证:,,,A C K L 四点共圆.证:设直线BI 交ABC ∆的外接圆于点P ,易知P 是AC 的中点,记AC 的中点为M ,则PM AC ⊥.设点P 在直线DI 上的射影为N , 由于3,a c b +=则半周长22a b cp b ++==, 于是2BD BE p b b AC CM ==-===, 又0,90ABP ACP BDI CMP ∠=∠∠=∠=所以DBI ∆∽MCP ∆,且相似比为2,熟知;PI PC PA ==。
三角形的重心、外心、垂心、内心和旁心(五心定理).doc

三角形五心定理(三角形的重心,外心,垂心,内心和旁心称Z为三角形的五心)三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理, 旁心定理的总称。
、三角形重心定理三角形的三条边的中线交于一点。
该点叫做三角形的重心。
三中线交于一点可用燕尾定理证明,十分简单。
(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点, 重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离Z比为2 : 1o2、重心和三角形3个顶点组成的3个三角形面积相等。
即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其重心坐标为((X1 +X2+X3)/3, (Y1 +Y2+Y3)/3o二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心。
外心的性质:仁三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。
2、若0是ZXABC的外心,则ZB0C=2ZA ( ZA为锐角或宜角)或Z BOC=360°-2ZA (ZA 为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时, 外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
4、计算外心的坐标应先计算下列临时变量:d1, d2, d3分别是三角形三个顶点连向另外两个顶点向量的点乘od=d2d3, c2=d1d3, c3=d1d2; c=c1+c2+c3o 重心坐标:((c2+c3)/2c, (c1+c3)/2c, (c1+c2)/2c )o5、外心到三顶点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:1>三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
2、三角形外心O、重心G和垂心H三点共线,且0G : GH=1 : 2。
三角形五心及其性质(一)2024

三角形五心及其性质(一)引言概述:三角形是几何学中研究最为广泛的基本图形之一,而三角形的五心则是三角形内外有关角点的特殊点。
在本文中,我们将重点介绍三角形的五心及其性质。
通过深入研究五心的定义、位置以及与三角形关键元素的关系,我们可以进一步了解三角形的几何特性和运算规律。
正文:Ⅰ. 内心及其性质1. 定义:内心是指三角形内部到三边距离之和最短的点,通常用I表示。
2. 位置:内心位于角平分线的交点,即三角形三条角的平分线的交点。
3. 性质:a. 内心到三角形各顶点的距离相等。
b. 内心到三角形三边的距离之和等于内心到三角形周长的距离。
Ⅱ. 重心及其性质1. 定义:重心是指三角形三个顶点和重心的连线交于一点的点,通常用G表示。
2. 位置:重心位于三角形三条中线的交点,即三角形边中点的连线交点。
3. 性质:a. 重心到三角形各顶点的距离相等。
b. 重心离每条边的距离比例为2:1。
c. 重心将三角形的每条中线按照比例2:1的分点。
Ⅲ. 外心及其性质1. 定义:外心是指三角形三个顶点围成的圆的圆心,通常用O表示。
2. 位置:外心位于三角形外接圆的圆心。
3. 性质:a. 外心到三个顶点的距离相等。
b. 外心到三边的距离相等。
Ⅳ. 垂心及其性质1. 定义:垂心是指三角形三条高线的交点,通常用H表示。
2. 位置:垂心位于三角形各顶点到对边垂线的交点。
3. 性质:a. 垂心到三个顶点的距离相等。
b. 垂心到三边的距离之和最短。
Ⅴ. 内心及其性质1. 定义:外心是指三角形三个顶点相应的三个三角形外切圆的圆心,通常用Ia, Ib, Ic表示。
2. 位置:内切圆位于角均分线与三角形内边的交点。
3. 性质:a. 内切圆与三条角平分线有公共点。
b. 三角形的内切圆切三边于三个不同点,凸多边形内一定有且不超过三个内切圆。
总结:通过对三角形五心的概念、位置和性质的介绍,我们可以进一步了解三角形的几何特性和运算规律。
内心、重心、外心、垂心和垂心是三角形内外有关角点的特殊点,它们在三角形的定位、对称性质以及角平分线等方面起到了重要的作用。
三角形五心讲课教学内容

此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
相等
等
锐角△在 锐角△在____,
_内__部__,钝角 △在__外__部__ 直角△在
内钝部角△在 ____外_,部直角
△在___斜__边_。中点
直__角__顶__点
必在△的 _内__部___
重心:
证明三条中线交于同一点重心分中 线的比为2:1
证法1图
证法2图
外心: 证明三条垂直平分线交于同一点
三角形的主要线段——中线、高、内角平分 线及各边的垂直平分线各交于一点
“四心”不要混淆,中线是“重心”(“中” 与“重”谐音),高线是垂心(高与垂直有 关),外接圆圆心是外心,因它到三角形三顶 点距离相等,故必是三边垂直平分线的交点。 内切圆圆心是内心,因它到三角形三边距离相 等,所以它必在三内角的平分线上。
三角形四心的复习
重心
垂心
外心
内心
定义
△三条中___线_的
交点(即内切圆圆心).
△三条_高__线__ 的交点
△三条中__垂__的线
交点(即外接圆圆心).
△的三交条点_角分__平线_
图形
性质 位置
重心分中线 比为_2_:_1___
必在△的 _内__部___
△外心到 △内心到
_顶__点__距离 _三__边__距离相
例2 证明三角形的任一顶点到 垂心的距离,等于外心到对边 的距离的二倍.
练一练:
已知三角形三边长分别为5、12、13心的距离是 ,
垂心到最大边的距离是 ,
三角形的五心(教学课件201911)

与 BG 切于 G,CG 的延长线交圆于 D,
求证: AG2 GC GD .
思考练习 1:已知 G 是△ABC 的重心,过 A、G 的圆 与 BG 切于 G,CG 的延长线交圆于 D, 求证: AG2 GC GD .
思考练习 2: AD,BE,CF 是△ ABC 的 三条中线, P 是任意一点.证明:在△ PAD,△ PBE,△ PCF 中, 其中一个面积等于另外两个面积的和. (第 26 届莫 斯科数学奥林匹克)
外心:三角形外接圆的圆心(三边垂直平分线的交点). △ABC 的外心一般用字母 O 表示,它具有如下性质:
(1)外心到三顶点等距,即 OA=OB=OC.
(2)∠A= 1 BOC,B 1 AOC,C 1 AOB .
2
2
2
如果已知外心或通过分析“挖掘”出外心,与外心
重心:三角形三条中线的交点.△ABC 的重心一般用字 母 G 表示,它有如下的性质:
(1)顶点与重心 G 的连线(中线)必平分对边.中线 长的计算.
(2)重心定理:三角形重心与顶点的距离等于它与 对边中点的距离的 2 倍.
(3) SBGC
SCGA
SAGB
1 3
SABC
.
思考练习 1:已知 G 是△ABC 的重心,过 A、G 的圆
三角形的五心
问题举例
三角形的五心
三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心.
关于三角形的五心,主要掌握三个方面的问题: 一.这五心是怎么来的?你能证明下面几个结论吗?
练习 1.证明:三角形的三条中线交于一点. 练习 2.证明:三角形的三条角平分线交于一点. 练习 3.证明:锐角三角形的三条高交于一点.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中几何三角形五心定律及性质
三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。
三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称
重心定理
三角形的三条边的中线交于一点。
该点叫做三角形的重心。
三中线交于一点可用燕尾定理证明,十分简单。
(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。
即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。
5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。
外心定理
三角形外接圆的圆心,叫做三角形的外心。
外心的性质:
1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或
∠BOC=360°-2∠A(∠A为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
5、外心到三顶点的距离相等
垂心定理
图1 图2
三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:
1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。
(此直线称为三角形的欧拉线(Euler line))
3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。
4、垂心分每条高线的两部分乘积相等。
推论:
1. 若D 、E 、F 分别是△ABC 三边的高的垂足,则∠1 = ∠2 。
(图1)
2. 三角形的垂心是其垂足三角形的内心。
(图1)
3. 若D 、E 、F 分别是△ABC 三边的高的垂足,则∠1 = ∠2 。
(图2)
定理证明
已知:ΔABC中,AD、BE是两条高,AD、BE相交于点O,连接CO并延长交AB于点F ,求证:CF⊥AB
证明:
连接DE
∵∠ADB=∠AEB=90度
∴A、B、D、E四点共圆
∴∠ADE=∠ABE
又∵∠ODC=∠OEC=90度
∴O、D、C、E四点共圆
∴∠ACF=∠ADE=∠ABE
又∵∠ABE+∠BAC=90度
∴∠ACF+∠BAC=90度
∴CF⊥AB
因此,垂心定理成立
内心定理
三角形内切圆的圆心,叫做三角形的内心。
内心的性质:
1、三角形的三条内角平分线交于一点。
该点即为三角形的内心。
2、直角三角形的内心到边的距离等于两直角边的和与斜边的差的二分之一。
3、P为ΔABC所在空间中任意一点,点0是ΔABC内心的充要条件是:向量P0=(a×向量PA+b×向量PB+c×向量PC)/(a+b+c).
4、O为三角形的内心,A、B、C分别为三角形的三个顶点,延长AO交BC 边于N,则有AO:ON=AB:BN=AC:CN=(AB+AC):BC
5、(欧拉定理)⊿ABC中,R和r分别为外接圆为和内切圆的半径,O和I分别为其外心和内心,则OI^2=R^2-2Rr.
6、(内角平分线分三边长度关系)
△ABC中,0为内心,∠A 、∠B、∠C的内角平分线分别交BC、AC、AB 于Q、P、R,则BQ/QC=c/b, CP/PA=a/c, BR/RA=a/b.
7、内心到三角形三边距离相等。
旁心定理
三角形的旁切圆(与三角形的一边和其他两边的延长线相切的圆)的圆心,叫做三角形的旁心。
旁心的性质:
1、三角形一内角平分线和另外两顶点处的外角平分线交于一点,该点即为三角形的旁心。
旁心一定在三角形外。
2、任何三角形都存在三个旁切圆、三个旁心。
3、旁心到三角形三边的距离相等。
如图,点M就是△ABC的一个旁心。
三角形任意两角的外角平分线和第三个角的内角平分线的交点。
一个三角形有三个旁心,而且一定在三角形外。
附:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。
巧记诗歌
三角形五心歌(重外垂内旁)
三角形有五颗心,重外垂内和旁心,五心性质很重要,认真掌握莫记混.重心
三条中线定相交,交点位置真奇巧,交点命名为“重心”,重心性质要明了,重心分割中线段,数段之比听分晓;长短之比二比一,灵活运用掌握好.外心
三角形有六元素,三个内角有三边.作三边的中垂线,三线相交共一点.此点定义为外心,用它可作外接圆.内心外心莫记混,内切外接是关键.垂心
三角形上作三高,三高必于垂心交.高线分割三角形,出现直角三对整,直角三角形有十二,构成六对相似形,四点共圆图中有,细心分析可找清.
内心
三角对应三顶点,角角都有平分线,三线相交定共点,叫做“内心”有根源;
点至三边均等距,可作三角形内切圆,此圆圆心称“内心”,如此定义理当然.。