江苏省泰兴市西城中学2018届九年级数学下学期三模考试试题

合集下载

2018届九年级第三次模拟大联考(江苏卷)数学卷

2018届九年级第三次模拟大联考(江苏卷)数学卷

2018届九年级第三次模拟大联考【江苏卷】数 学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:中考全部内容。

第Ⅰ卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.–15的相反数是 A .5B .15C .–15D .–52.已知空气的单位体积质量是0.001239g/cm 3,则用科学记数法表示该数为 A .1.239×10–3g/cm 3 B .1.239×10–2g/cm 3 C .0.1239×10–2g/cm 3D .12.39×10–4g/cm 33.若代数式2x a y 3z c 与4212b x y z 是同类项,则 A .a =4,b =2,c =3 B .a =4,b =4,c =3C .a =4,b =3,c =2D .a =4,b =3,c =44.如图所示的四个图形为两个圆或相似的正多边形,其中位似图形的个数为A .1个B .2个C .3个D .4个5.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则»BC的长为A.103πB.109πC.59πD.518π6.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②244b aca>0;③ac–b+1=0;④OA•OB=–ca.其中正确结论的个数是A.4个B.3个C.2个D.1个第Ⅱ卷二、填空题(本大题共10小题,每小题2分,共20分)7的算术平方根是__________.8.计算:20180–|–2|=__________.9.因式分解:9a3b–ab=__________.10.如图,直线a∥b,∠P=75°,∠2=30°,则∠1=__________.11.一个多边形的每一个外角为30°,那么这个多边形的边数为__________.12.已知一组数据:3,3,4,5,5,则它的方差为__________.13.如图,A、B、C是⊙O上的三点,∠AOB=100°,则∠ACB=__________度.14.已知x 1,x 2是关于x 的方程x 2+ax –2b =0的两实数根,且x 1+x 2=–2,x 1•x 2=1,则b a 的值是__________. 15.在△ABC 中,∠ABC <20°,三边长分别为a ,b ,c ,将△ABC 沿直线BA 翻折,得到△ABC 1;然后将△ABC 1沿直线BC 1翻折,得到△A 1BC 1;再将△A 1BC 1沿直线A 1B 翻折,得到△A 1BC 2;…,翻折4次后,得到图形A 2BCAC 1A 1C 2的周长为a +c +5b ,则翻折11次后,所得图形的周长为__________(结果用含有a ,b ,c 的式子表示).16.如图,点A 是双曲线y =–3x在第二象限分支上的一个动点,连接AO 并延长交另一分支于点B ,以AB 为底作等腰△ABC ,且∠ACB =120°,随着点A 的运动,点C 的位置也不断变化,但点C 始终在双曲线y =kx上运动,则k =__________.三、解答题(本大题共11小题,共88分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分7分)计算:(m +2–52m -)•243m m--. 18.(本小题满分7分)解不等式组:315312x x x x -≤+⎧⎪⎨-<-⎪⎩并将解集在数轴上表示出来.19.(本小题满分7分)如图,在菱形ABCD 中,分别延长AB 、AD 到E 、F ,使得BE =DF ,连接EC 、FC .求证:EC =FC .20.(本小题满分8分)小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50分钟才乘上缆车,缆车的平均速度为180米/分钟.设小亮出发x分钟后行走的路程为y米.图中的折线表示小亮在整个行走过程中y随x的变化关系.(1)小亮行走的总路程是__________米,他途中休息了__________分钟.(2)分别求出小亮在休息前和休息后所走的路程段上的步行速度.(3)当小颖到达缆车终点时,小亮离缆车终点的路程是多少?21.(本小题满分8分)如图,在△ABC中,AC=12cm,BC=16cm,AB=20cm,∠CAB的平分线AD交BC于点D.(1)根据题意将图形补画完整(要求:尺规作图保留作图痕迹,不写作法);(2)求△ABD的面积.22.(本小题满分8分)如图,在等腰△ABC中,AB=BC,以BC为直径的⊙O与AC相交于点D,过点D作DE⊥AB交CB延长线于点E,垂足为点F.(1)判断DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径R=5,tan C=12,求EF的长.23.(本小题满分8分)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.24.(本小题满分8分)为了丰富同学们的课余生活,某校将举行“亲近大自然”户外活动.现随机抽取了部分学生进行主题为“你最想去的景点是”的问卷调查,要求学生只能从“A(绿博园),B (人民公园),C(湿地公园),D(森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.(1)本次共调查了多少名学生?(2)补全条形统计图;(3)若该校共有3600名学生,试估计该校最想去湿地公园的学生人数.25.(本小题满分8分)某条道路上通行车辆限速60千米/时,道路的AB段为监测区,监测点P到AB 的距离PH为50米(如图).已知点P在点A的北偏东45°方向上,且在点B的北偏西60°方向上,点B在点A的北偏东75°方向上,那么车辆通过AB段的时间在多少秒以内,可认定为超速?(参).26.(本小题满分8分)已知二次函数y=x2–(2k+1)x+k2+k(k>0).(1)当k=12时,求这个二次函数的顶点坐标;(2)求证:关于x 的一元二次方程x 2–(2k +1)x +k 2+k =0有两个不相等的实数根;(3)如图,该二次函数与x 轴交于A 、B 两点(A 点在B 点的左侧),与y 轴交于点C ,P 是y 轴负半轴上一点,且OP =1,直线AP 交BC 于点Q ,求证:222111OA AB AQ +=.27.(本小题满分11分)【问题发现】(1)如图(1),四边形ABCD 中,若AB =AD ,CB =CD ,则线段BD ,AC 的位置关系为__________; 【拓展探究】(2)如图(2),在Rt △ABC 中,点F 为斜边BC 的中点,分别以AB ,AC 为底边,在Rt △ABC 外部作等腰三角形ABD 和等腰三角形ACE ,连接FD ,FE ,分别交AB ,AC 于点M ,N .试猜想四边形FMAN 的形状,并说明理由; 【解决问题】(3)如图(3),在正方形ABCD 中,AB A 为旋转中心将正方形ABCD 旋转60°,得到正方形AB 'C 'D ',请直接写出BD '平方的值.。

2018年九年级数学第三次模拟考试三模试卷数学试题

2018年九年级数学第三次模拟考试三模试卷数学试题

2018年九年级数学第三次模拟考试三模试卷数学试题(本试卷满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分. 1.的相反数是2-( ) A .2 B . 21-C .21D . 1 2.下列图形中,既是轴对称图形又是中心对称图形的是 ( )3.已知实数0<a ,则下列事件中是必然事件的是( )A .03<+aB .03<-aC .03>aD .03>a4.如图,平行四边形ABCD 中,E 、F 是对角线BD 上的两点,如果添加一个条件使△ABE ≌△CDF ,则添加的条件不能是( )A .∠1=∠2B .BE =FDC .BF =DED . AE =CF 5.如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则∠A ′DB 的度数为( ) A .10° B .20° C .30° D .40°6.有一个正方体,六个面上分别写有数字1,2,3,4,5,6,有三个人从不同的角度观察的结果如图所示,如果记6的对面的数字为a ,2的对面的数字为b ,那么a +b 的值为( )A .3 B. 7 C. 8 D.11第4题 第6题 7.二次函数2()y a x m n =++的图象如图,则一次函数y mx n =+的图象经过( )象限 A .一、二、三 B .一、二、四 C .二、三、四 D .一、三、四 8.若不等式组⎩⎨⎧><1-m x 1x 恰有两个整数解,则m 的取值范围为 ( )A .0m 1-<≤ B. 0m 1-≤< C.0m 1-≤≤ D. 0m 1-<<9.如图,在平面直角坐标系中,四边形OABC 为菱形, 对角线OB,AC 相交于D 点,已知A 点的坐标为(10,0)双曲线)0(>=x xky 经过点D ,交BC 的延长线于E,且160=⋅AC OB (OB>AC)有下列四个结等腰三角形正五边形 圆平行四边形AB CD第5题图 A 'B D AC 415332146(第6题图)论:①双曲线的解析式为)0(32>=x x y ;②E 点的坐标是(5,8);③sin ∠COA=54;④AC+OB=512.其中正确的结论有( )A .1个B .2个C .3个D .4个10.如图,正方形ABCD 边长为2,点P 是线段CD 边上的动点(与点C ,D 不重合),︒=∠45PBQ ,过点A 作AE ∥BP ,交BQ 于点E ,则下列结论正确的是( )A .22=⋅BE BPB .24=⋅BE BPC .2=BPBED .223=BP BE第7题 第9题 第10题 二、填空题:本大题共8小题,每小题3分,共24分. 11.0.0028用科学计数法表示为________.12.因式分解:4162-x = _________ .13.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则根据题意可列方程为 . 14. 若βα,是方程x 2-3x-5=0的两个实数根,则_____22=+βα15.在关于x y 、的二元一次方程组321x y ax y +=⎧⎨-=⎩中,若(23)2a x y +=,则a = .16.如图,⊙O 的半径为2,AB 、CD 是互相垂直的两条直径,点P 是⊙O 上任意一点(P 与A 、B 、C 、D 不重合),过点P 作PM ⊥AB 于点M ,PN ⊥CD 于点N ,点Q 是MN 的中点,当点P 沿着圆周转过45°时,点Q 走过的路径长为_______.第16题 第17题 第18题17.如图,已知矩形ABCD ,AB=5,AD=8,E 是边AD 上一动点,连接BE ,沿BE 折叠矩形,使点A 的对应点M 落在矩形ABCD 内部,若△CDM 是以MC 为一腰的等腰三角形时,则AE 长为____________. 18.如图,AB 是半⊙O 的直径,点C 在半⊙O 上,AB =5 cm, AC =4 cm. D 是弧BC 上的一个动点(含端点B 、不含端点C ),连接AD ,过点C 作CE AD ⊥于E ,连接BE .在点D 移动的过程中,BE的取EQ PD CB A值范围为 .三、解答题:本大题共9小题,共96分. 19.(本题10分)(1) 计算:3o2-8-cos451-21-2-1+⎪⎭⎫ ⎝⎛+ (2)解不等式组:()⎪⎩⎪⎨⎧≥+--<--x x x x 323813120.(本题6分)解分式方程1333x 2-x =--+x21.(本小题满分8分)为了解八年级学生的课外阅读情况,我校语文组从八年级随机抽取了若干名学生,对他们的读书时间进行了调查并将收集的数据绘成了两幅不完整的统计图,请你依据图中提供的信息,解答下列问题:(频数分布图中每组含最小值不含最大值) (1)从八年级抽取了多少名学生? (2)填空(直接把答案填到横线上)①“2—2.5小时”的部分对应的扇形圆心角为__________度;②“1.5—2小时”这一组的人数为 ___________人;③课外阅读时间的中位数落在____________内。

最新江苏省泰州市泰兴市XX中学中考数学三模试卷(有配套答案)

最新江苏省泰州市泰兴市XX中学中考数学三模试卷(有配套答案)

江苏省泰州市泰兴市XX中学中考数学三模试卷一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)的相反数是()A.﹣B.3 C.﹣3 D.2.(3分)下列运算中,正确的是()A.2x+2y=2xy B.(xy)2÷=(xy)3C.(x2y3)2=x4y5D.2xy﹣3yx=xy3.(3分)一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱4.(3分)口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是()A.随机摸出1个球,是白球B.随机摸出1个球,是红球C.随机摸出1个球,是红球或黄球D.随机摸出2个球,都是黄球5.(3分)如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移36.(3分)如果多项式p=a2+2b2+2a+4b+5,则p的最小值是()A.1 B.2 C.3 D.4二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相应位置上)7.(3分)9的平方根是.8.(3分)若∠α=32°22′,则∠α的余角的度数为.9.(3分)化简:﹣3的结果是.10.(3分)一组数据2、﹣2、4、1、0的方差是.11.(3分)若关于x的一元二次方程ax2﹣bx+2=0(a≠0)的一个解是x=1,则3﹣a+b的值是.12.(3分)如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2= .13.(3分)圆锥的母线长为6cm,底面圆半径为4cm,则这个圆锥的侧面积为 cm2.14.(3分)如图,⊙O的内接四边形ABCD中,∠A=105°,则∠BOD等于.15.(3分)如图,Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,若AD=BC,则sin∠A= .16.(3分)抛物线y=mx2﹣2mx+m﹣3(m>0)在﹣1<x<0位于x轴下方,在3<x<4位于x 轴上方,则m的值为.三、解答题(本大题共有10小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)计算或解方程(1)(﹣)﹣2+|3tan30°﹣1|﹣(π﹣3)°;(2)=﹣3.18.(8分)近年来,学校对“在初中数学教学时总使用计算器是否直接影响学生计算能力的发展”这一问题密切关注,为此,某校随机调查了n名学生对此问题的看法(看法分为三种:没有影响,影响不大,影响很大),并将调查结果绘制成如下不完整的统计表和扇形统计图,根据统计图表提供的信息,解答下列问题:n名学生对这一问题的看法人数统计表看法没有影响影响不大影响很大学生人数(人)4060m(1)求n的值;(2)统计表中的m= ;(3)估计该校1800名学生中认为“影响很大”的学生人数.19.(8分)在一个不透明袋子中有1个红球和3个白球,这些球除颜色外都相同.(1)从袋中任意摸出2个球,用树状图或列表求摸出的2个球颜色不同的概率;(2)在袋子中再放入x个白球后,进行如下实验:从袋中随机摸出1个球,记录下颜色后放回袋子中并搅匀.经大量试验,发现摸到白球的频率稳定在0.95左右,求x的值.20.(8分)学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.21.(10分)写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两条边相等,那么两条边所对的角也相等(简称:“等边对等角”.)已知:.求证:.证明:22.(10分)如图,物理实验室有一单摆在左右摆动,摆动过程中选取了两个瞬时状态,从C 处测得E、F两点的俯角分别为∠ACE=60°,∠BCF=45°,这时点F相对于点E升高了4cm.求该摆绳CD的长度.(精确到0.1cm,参考数据:≈1.41,≈1.73)23.(10分)如图,隧道的截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线的最高点到路面的距离为6米.(1)按如图所示建立平面直角坐标系,求表示该抛物线的函数表达式;(2)一辆货运卡车高为4m,宽为2m,如果该隧道内设双向车道,那么这辆货车能否安全通过?24.(10分)如图,在等边△ABC中,M是边BC延长线上一点,连接AM交△ABC的外接圆于点D,延长BD至N,使得BN=AM,连接CN、MN,(1)求证:△CMN是等边三角形;(2)判断CN与⊙O的位置关系,并说明理由;(3)若AD:AB=3:4,BN=4,求等边△ABC的边长.25.(12分)如图1,矩形ABCD中,P是AB边上的一点(不与A,B重合),PE平分∠APC交射线AD于E,过E作EM⊥PE交直线CP于M,交直线CD于N.(1)求证:CM=CN;(2)若AB:BC=4:3,①当= 时,E恰好是AD的中点;②如图2,当△PEM与△PBC相似时,求的值.26.(14分)如图1,已知一次函数y=ax+2与x轴、y轴分别交于点A、B,反比例函数y=经过点M.(1)若M是线段AB上的一个动点(不与点A、B重合).当a=﹣3时,设点M的横坐标为m,求k与m之间的函数关系式.(2)当一次函数y=ax+2的图象与反比例函数y=的图象有唯一公共点M,且OM=,求a的值.(3)当a=﹣2时,将Rt△AOB在第一象限内沿直线y=x平移个单位长度得到Rt△A′O′B′,如图2,M是Rt△A′O′B′斜边上的一个动点,求k的取值范围.江苏省泰州市泰兴市XX中学中考数学三模试卷参考答案与试题解析一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)的相反数是()A.﹣B.3 C.﹣3 D.【解答】解:根据相反数的定义,得的相反数是﹣.故选A.2.(3分)下列运算中,正确的是()A.2x+2y=2xy B.(xy)2÷=(xy)3C.(x2y3)2=x4y5D.2xy﹣3yx=xy【解答】解:(A)2x与2y不是同类项,故A错误;(C)原式=x4y6,故C错误;(D)原式=﹣xy,故D错误;故选(B)3.(3分)一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱【解答】解:如图所示:这个几何体是四棱锥.故选:A.4.(3分)口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是()A.随机摸出1个球,是白球B.随机摸出1个球,是红球C.随机摸出1个球,是红球或黄球D.随机摸出2个球,都是黄球【解答】解:A、随机摸出1个球,是白球是不可能事件,选项不符合题意;B、随机摸出1个球,是红球是随机事件,选项符合题意;C、随机摸出1个球,是红球或黄球是必然事件,选项不符合题意;D、随机摸出2个球,都是黄球是不可能事件,选项不符合题意.故选B.5.(3分)如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移3【解答】解:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.故选:A.6.(3分)如果多项式p=a2+2b2+2a+4b+5,则p的最小值是()A.1 B.2 C.3 D.4【解答】解:p=a2+2b2+2a+4b+5=(a+1)2+2(b+1)2+2≥2,故选B.二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相应位置上)7.(3分)9的平方根是±3 .【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.8.(3分)若∠α=32°22′,则∠α的余角的度数为57°38' .【解答】解:90°﹣∠α=90°﹣32°22′=57°38'.故答案为:57°38'.9.(3分)化简:﹣3的结果是.【解答】解:原式=2﹣=.故答案为:.10.(3分)一组数据2、﹣2、4、1、0的方差是 4 .【解答】解:这组数据的平均数是:(2﹣2+4+1+0)÷5=1,则方差= [(2﹣1)2+(﹣2﹣1)2+(4﹣1)2+(1﹣1)2+(0﹣1)2]=4.故答案为:4.11.(3分)若关于x的一元二次方程ax2﹣bx+2=0(a≠0)的一个解是x=1,则3﹣a+b的值是5 .【解答】解:∵关于x的一元二次方程ax2﹣bx+2=0(a≠0)的一个解是x=1,∴a﹣b+2=0,∴a﹣b=﹣2,∴3﹣a+b=3﹣(a﹣b)=3+2=5.故答案是:5.12.(3分)如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2= 140°.【解答】解:如图,∵l1∥l2,∴∠3=∠1=40°,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣40°=140°.故答案为140°.13.(3分)圆锥的母线长为6cm,底面圆半径为4cm,则这个圆锥的侧面积为24π cm2.【解答】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,∴圆锥的侧面积=•8π•6=24π(cm2).故答案为:24π.14.(3分)如图,⊙O的内接四边形ABCD中,∠A=105°,则∠BOD等于150°.【解答】解:∵⊙O的内接四边形ABCD中,∠A=105°,∴∠C=75°,∴∠BOD=150°.故答案为:150°.15.(3分)如图,Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,若AD=BC,则sin∠A= .【解答】解:设AD=BC=x,∵∠ACB=90°,CD⊥AB,∴∠A+∠ACD=∠ACD+∠BCD=90°,∴∠A=∠BCD,∴△ABC∽△CBD,∴,即,∴BD=x,∴sin∠A=sin∠BCD===,故答案为:.16.(3分)抛物线y=mx2﹣2mx+m﹣3(m>0)在﹣1<x<0位于x轴下方,在3<x<4位于x 轴上方,则m的值为.【解答】解:∵抛物线y=mx2﹣2mx+m﹣3(m>0)的对称轴为直线x=1,而在3<x<4位于x轴上方,∴抛物线在﹣2<x<﹣1这一段位于x轴的上方,∵在﹣1<x<0位于x轴下方,∴抛物线过点(﹣1,0),把(﹣1,0)代入y=mx2﹣2mx+m﹣3得m+2m+m﹣3=0,解得m=,故答案为:.三、解答题(本大题共有10小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)计算或解方程(1)(﹣)﹣2+|3tan30°﹣1|﹣(π﹣3)°;(2)=﹣3.【解答】解:(1)原式=4+﹣1﹣1=2+;(2)去分母得:1=x﹣1﹣3x+6,解得:x=2,经检验x=2是增根,分式方程无解.18.(8分)近年来,学校对“在初中数学教学时总使用计算器是否直接影响学生计算能力的发展”这一问题密切关注,为此,某校随机调查了n名学生对此问题的看法(看法分为三种:没有影响,影响不大,影响很大),并将调查结果绘制成如下不完整的统计表和扇形统计图,根据统计图表提供的信息,解答下列问题:n名学生对这一问题的看法人数统计表看法没有影响影响不大影响很大学生人数(人)4060m(1)求n的值;(2)统计表中的m= 100 ;(3)估计该校1800名学生中认为“影响很大”的学生人数.【解答】解:(1)n=40÷20%=200(人).答:n的值为200;(2)m=200﹣40﹣60=100;(3)1800×=900(人).答:该校1800名学生中认为“影响很大”的学生人数约为900人.故答案为:(2)100.19.(8分)在一个不透明袋子中有1个红球和3个白球,这些球除颜色外都相同.(1)从袋中任意摸出2个球,用树状图或列表求摸出的2个球颜色不同的概率;(2)在袋子中再放入x个白球后,进行如下实验:从袋中随机摸出1个球,记录下颜色后放回袋子中并搅匀.经大量试验,发现摸到白球的频率稳定在0.95左右,求x的值.【解答】解:(1)树状图如下所示:由树形图可知所有可能情况共12种,其中2个球颜色不同的数目有6种,所以2个球颜色不同的概率==;(2)由题意可得: =0.95,解得:x=16,经检验x=16是原方程的解,所有x的值为16.20.(8分)学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.【解答】解:设每套课桌椅的成本x元.则:60×(100﹣x)=72×(100﹣3﹣x).解之得:x=82.答:每套课桌椅成本82元.21.(10分)写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两条边相等,那么两条边所对的角也相等(简称:“等边对等角”.)已知:在△ABC中,AB=AC .求证:∠B=∠C .证明:【解答】解:已知:在△ABC中,AB=AC,求证:∠B=∠C,证明:过点A作AD⊥BC于D,∴∠ADB=∠ADC=90°,在Rt△ABD和Rt△ACD中,∵∴Rt△ABD≌Rt△ACD(HL),∴∠B=∠C.22.(10分)如图,物理实验室有一单摆在左右摆动,摆动过程中选取了两个瞬时状态,从C 处测得E、F两点的俯角分别为∠ACE=60°,∠BCF=45°,这时点F相对于点E升高了4cm.求该摆绳CD的长度.(精确到0.1cm,参考数据:≈1.41,≈1.73)【解答】解:分别过点E、F作EG⊥CD,FH⊥CD,垂足分别为G、H,设摆绳CD的长度为xcm.则CE=CF=xcm.由题意知:HG=4,∠CEG=60°,∠CFH=45°.在Rt△CEG中,sin∠CEG=,∴CG=CE•sin∠CEG=x•sin60°,在Rt△CFH中,sin∠CFH=,∴CH=CF•sin∠CFH=x•sin45°.∵HG=CG﹣CH,∴x•sin60°﹣x•sin45°=4,解得x=8(+)≈25.1.答:摆绳CD的长度为25.1cm.23.(10分)如图,隧道的截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线的最高点到路面的距离为6米.(1)按如图所示建立平面直角坐标系,求表示该抛物线的函数表达式;(2)一辆货运卡车高为4m,宽为2m,如果该隧道内设双向车道,那么这辆货车能否安全通过?【解答】解:(1)如图1,由题意得:最高点C(4,6),B(8,2),设抛物线的函数表达式:y=a(x﹣4)2+6,把(8,2)代入得:a(8﹣4)2+6=2,a=﹣,∴y=﹣(x﹣4)2+6;(2)如图2,当DE=2时,AD=AE﹣DE=4﹣2=2,当x=2时,y=﹣(2﹣4)2+6=5>4,∴这辆货车能安全通过.24.(10分)如图,在等边△ABC中,M是边BC延长线上一点,连接AM交△ABC的外接圆于点D,延长BD至N,使得BN=AM,连接CN、MN,(1)求证:△CMN是等边三角形;(2)判断CN与⊙O的位置关系,并说明理由;(3)若AD:AB=3:4,BN=4,求等边△ABC的边长.【解答】解:(1)△CMN是等边三角形,理由:在△BCN与△ACM中,,∴△BCN≌△ACM,∴CN=CM,∠BCN=∠ACM,∴∠BCN﹣∠ACN=∠ACM﹣∠ACN,即∠MCN=∠ACB=60°,∴△CMN是等边三角形;(2)连接OA.OB.OC,在△BOC与△AOC中,,∴△BOC≌△AOC,∴∠ACO=∠BCO=ACB=30°,∵∠ACB=∠MCN=60°,∴∠ACN=60°,∴∠OCN=90°,∴OC⊥CN,∴CN是⊙O的切线;(3)∵∠ADB=∠ACB=60°,∴∠ADB=∠ABC,∵∠BAD=∠MAB,∴△ABD∽△AMB,∴=,∵AM=BN=4,∴AB=3.∴等边△ABC的边长是3.25.(12分)如图1,矩形ABCD中,P是AB边上的一点(不与A,B重合),PE平分∠APC交射线AD于E,过E作EM⊥PE交直线CP于M,交直线CD于N.(1)求证:CM=CN;(2)若AB:BC=4:3,①当= 时,E恰好是AD的中点;②如图2,当△PEM与△PBC相似时,求的值.【解答】(1)证明:延长PE交CD的延长线于F,如图1所示:∵四边形ABCD是矩形,∴AB∥CD,∠A=∠ADC=∠EDF═90°,AB=CD,AD=BC,∴∠APE+∠AEP=90°,∴∠F=∠APE,∵EM⊥EN,∴∠PEN=∠FEN=90°,∴∠CPE+∠PME=90°,∠F+∠N=90°,∵PE平分∠APC,∴∠APE=∠MPE,又∵∠PME=∠CMN,∴∠CMN=∠N,∴CM=CN;(2)解:①若E是AD的中点,则M、N、C三点重合,∵E为AD的中点,∴AE=DE,在△APE和△DFE中,,∴△APE≌△DFE(ASA),∴AP=DF,PE=FE,∵EM⊥EN,∴PC=FC,∵FC=CD+DF,∴AP+CD=PC,设AD=3a,AB=4a,过P作PF⊥CD于F,如图2所示:设AP=DE=x,则PB=CF=4﹣x,PC=4+x,PF=3,由勾股定理得:(4﹣x)2+32=(4+x)2,解得:x=a,4﹣x=a,∴;②分两种情况:1.若△PEM∽△CCBP,则∠EPM=∠BCP,∴PE∥BC,不成立;2.若△PEM∽△PBC,则∠APE=∠EPM=∠BPC=60°,设AB=4a,BC=AD=3a,则PB=a,AP=(4﹣)a,AE=(4﹣3)a,设PE与CD交于点F,如图3所示:∵AB∥CD,∴∠EFN=∠BFC=∠APE=60°,∴∠N=∠M=90°﹣60°=30°,∵EM⊥PE,∴∠NEF=∠PEM=90°,∴△PEM∽△FEN,∴,∵AB∥CD,∴,∴===.26.(14分)如图1,已知一次函数y=ax+2与x轴、y轴分别交于点A、B,反比例函数y=经过点M.(1)若M是线段AB上的一个动点(不与点A、B重合).当a=﹣3时,设点M的横坐标为m,求k与m之间的函数关系式.(2)当一次函数y=ax+2的图象与反比例函数y=的图象有唯一公共点M,且OM=,求a的值.(3)当a=﹣2时,将Rt△AOB在第一象限内沿直线y=x平移个单位长度得到Rt△A′O′B′,如图2,M是Rt△A′O′B′斜边上的一个动点,求k的取值范围.【解答】解:(1)当a=﹣3时,y=﹣3x+2,当y=0时,﹣3x+2=0,x=,∵点M的横坐标为m,且M是线段AB上的一个动点(不与点A、B重合),∴0<m<,则,﹣3x+2=,当x=m时,﹣3m+2=,∴k=﹣3m2+2m(0<m<);(2)由题意得:,ax+2=,ax2+2x﹣k=0,∵直线y=ax+2(a≠0)与双曲线y=有唯一公共点M时,∴△=4+4ak=0,ak=﹣1,∴k=﹣,则,解得:,∵OM=,∴12+(﹣)2=()2,a=±;(3)当a=﹣2时,y=﹣2x+2,∴点A的坐标为(1,0),点B的坐标为(0,2),∵将Rt△AOB在第一象限内沿直线y=x平移个单位得到Rt△A′O′B′,∴A′(2,1),B′(1,3),点M是Rt△A′O′B′斜边上一动点,当点M′与A′重合时,k=2,当点M′与B′重合时,k=3,..... ∴k的取值范围是2≤k≤3......。

最新江苏省泰州市中考数学三模试卷附解析

最新江苏省泰州市中考数学三模试卷附解析

江苏省泰州市中考数学三模试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.若正比例函数2y x =-与反比例函数k y x =的图象交于点A ,且A 点的横坐标是1-,则此反比例函数的解析式为( )A .12y x =B .12y x =-C .2y x =D .2y x =-2.甲,乙,丙,丁四位同学拿尺子检测一个窗框是否为矩形.他们各自做了如下检测后都说窗框是矩形,你认为正确的是( )A .甲量得窗框两组对边分别相等B .乙测得窗框的对角线长相等C .丙测得窗框的一组邻边相等D .丁测得窗框的两组对边分别相等且两条对角线也相等3.平行四边形中一边的长为10cm ,那么它的两条对角线的长度可能是( )A .4cm 和6cmB .20cm 和30cmC .6cm 和8cmD .8cm 和12cm 4.一组数据共40个,分成5组,第1~4组的频数分别是10,5,7,6,第5组的频率是( )A .0.15B .0.20C .0.25D .0.305.下列命题中是真命题的是 ( )A .对角线互相垂直的四边形是平行四边形B .对角线相等的四边形是平行四边形c .对角线互相垂直且相等的四边形是平行四边形D .对角线互相平分的四边形是平行四边形6.观察重庆市统计局公布的“十五”时期重庆市农村居民人均收入每年相对于上一年的增长率的统计图,下列说法正确的是( )A .2003年农村居民人均收入低于2002年B .农村居民人均收入相对于上年增长率低于9%的有2年C .农村居民人均收入最多是2004年D .农村居民人均收入每年相对于上一年的增长率有大有小,但农村居民人均收入在持续增加7.观察下面图案,在 A.B、C、D四幅图案中,能通过图1平移得到的是()图1 A. B. C. D.8.当2x=-时,分式11x+的值为()A.1 B.-1 C.2 D.-29.+8 比 -5 大()A.13 B.-13 C.8 D.5.二、填空题10.如图,在方格纸上有一个顶点都在格点上的△ABC,则这个三角形是________三角形.11.任何实数的绝对值都是数.12.如图,几何体有m个面,n个顶点,l条棱,则m n l+-= .13.如图,在ΔABC中,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=2cm,BD=3cm,线段BC= .14.钟表上的分针绕其轴心旋转,经过15分钟后,分针转过的角度是;分针从12出发,转过150度,则它指的数字是.15.如图,曾被哈佛大学选为入学考试的试题.请在下列一组图形符号中找出它们所蕴含的内在规律,然后在横线上填上恰当的图形.16.、+ =1x. 17.比一8 大3 的数是 . 18.数据x ,0,x ,4,6,1中,中位数恰好是2,则整数x 可能的值是 .19.如图,C 、D 分别是一个湖的南、北两端A 和B 正东方向的两个村庄,CD= 6 km ,且D 位于C 的北偏东30°方向上,则AB =__________km .20. 化简:1180= . 21.若矩形一个角的平分线分一边为4 cm 和3 cm 两部分,则矩形的周长为 .22.12y y y =+,若 y l 与x 成正比例,y 2 与x 成反比例,当x=1 时,y= 一5,且它的图象经过点 (2,一4),则 y 关于x 的函数解析式为 .23.函数7y x=-的图象在第每一象限内,y 的值随x 的增大而_____________. 24.矩形面积为26cm ,长为cm x ,那么这个矩形的宽(cm)y 与长(cm)x 的函数关系为 .25.若θ=60°,则cos θ= .26.分解因式3()4()a b c b c +-+= .三、解答题27.如图,在△ABC 中,AB = AC ,∠BAC =28°,分别以AB 、,AC 为边作等腰直角三角形ABD 和等腰直角三角形 ACE ,使∠BAD= ∠CAE =90°.(1)求∠DBC 的度数;(2)分别连按BE 、CD. 试说明CD=BE.28. 如图,现有正方形甲 1张,正方形乙 2张,长方形丙 3张,请你将它们拼成一个大长方形(画出图示),并运用面积之间的关系,将多项式2232a ab b ++分解因式.29.据测算,我国每天因土地沙漠化造成的经济损失为 1.5亿元,若一年按365天计算,用科学记数法表示我国一年土地沙漠化造成的经济损失为多少元.30.芜湖供电公司分时电价执行时段分为平、谷两个时段,平段为8:00~22:00,14小时,谷段为22:00~次日8:00,10小时.平段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮0.25元,小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费42.73元.(1)问小明该月支付的平段、谷段电价每千瓦时各为多少元?(2)如不使用分时电价结算, 5月份小明家将多支付电费多少元?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.D3.B4.D5.D6.D7.C8.B9.A二、填空题10.等腰11.非负12.213.5cm14.90度;515.略16.x 1,0或x 2,x1-或……(答案不唯一) 17.-518.1,2,3,419.33 20.. 22或20 cm22.4y x x=--23. 增大24.6(0)y x x=> 25. 1226. ()(34)b c a +-三、解答题27.(1)在△ABC 中,AB=AC ,∠BAC=28°,∴∠ABC=12×(180°-28°)=76°. ∵△ADB 为等腰直角三角形,∴AD=AB ,∠DBA=45°,∴∠DBC=∠DBA+∠ABC=45°+76°=121°.(2)∵△ABD 和△ACE 都是等腰直角三角形,AB=AD ,AC=AE ,∠BAD=∠CAE=90°, ∴∠BAD+∠BAC=∠CAE+∠BAC ,即∠CAD=∠BAE .又∵AB=AC ,∴AD=AB=AC=AE ,∴△CAD ≌△BAE ,∴CD=BE . 28.图略,2232()(2)a ab b a b a b ++=++ 29.8101.510365 5.47510⨯⨯=⨯(元)答:我同一年土地沙漠化造成的经济损失为105.47510⨯元30.解:(1)设原销售电价为每千瓦时x 元,根据题意得:40(0.03)60(0.25)42.73x x ⨯++⨯-=,40 1.2601542.73x x ++-=10042.7313.8x =+,0.5653x =.∴当0.5653x =时,0.030.5953x +=;0.250.3153x -=.答:小明家该月支付平段电价为每千瓦时0.5953元、谷段电价每千瓦时0.3153元.(2) 1000.565342.7313.8⨯-=(元)答::如不使用分时电价结算,小明家5月份将多支付13.8元.。

2018年九年级第三次模拟考试数学试卷(含答案)

2018年九年级第三次模拟考试数学试卷(含答案)

学校 班级 姓名 考号密 封 线 内 不 要 答 题2018年中考模拟试卷(三)(答案)科目 数学满分:120分 考试时间:120分钟一、单项选择题:本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填入题后的括号内. 1.B ;2.B ;3.B ;4.A ;5.C ;6.C ;7.C ;8.A ;9.B ;10.A ;1.﹣23的相反数是( )A .﹣8B .8C .﹣6D .62.近日,记者从潍坊市统计局获悉,2016年第一季度潍坊全市实现生产总值1256.77亿元,将1256.77亿用科学记数法可表示为(精确到百亿位)( ) A .1.2×1011 B .1.3×1011 C .1.26×1011D .0.13×10123.如图,将一块直角三角板的直角顶点放在直尺的一边上. 如果∠1=50°,那么∠2的度数是( ) A .30° B .40° C .50° D .60°4.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中数字表示该位置小正方体的个数,则该几何体的左视图是( )A .B .C .D .5.菱形具有、矩形却不具有的性质是( )A .两组对边分别平行B .对角线互相平分C .对角线互相垂直D .对角线相等6.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③2000名考生是总体的一个样本;④样本容量是2000. 其中说法正确的有( )A .4个B .3个C .2个D .1个7.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( ) A .100×80﹣100x ﹣80x=7644 B.(100﹣x )(80﹣x )+x 2=7644 C .(100﹣x )(80﹣x )=7644 D .100x +80x=3568.如图,在⊙O 中,若点C 是的中点,∠A=50°,则∠BOC=( )A .40°B .45°C .50°D .60°第7题图 第8题图 第9题图 第10题图9.如图,抛物线y=ax 2+bx +c (a ≠0)的对称轴为直线x=1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac <b 2; ②方程ax 2+bx +c=0的两个根是x 1=﹣1,x 2=3;③3a +c >0 ④当y>0时,x 的取值范围是﹣1≤x <3⑤当x <0时,y 随x 增大而增大 其中结论正确的个数是( )A .4个B .3个C .2个D .1个10.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min )成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y (℃)和时间(min )的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的密 封 线 内 不 要 答 题水,则接通电源的时间可以是当天上午的( ) A .7:20B .7:30C .7:45D .7:50二、填空题(本大题共8小题,每小题3分,共24分.把答案写在答题卡中的横线上.) 11.;12.x ≤3; 13.; 14.y=﹣x 2+6x ﹣11;15.8; 16.75; 17.9; 18.;11.在实数范围内分解因式:m 4﹣25= . 12.若=3﹣x ,则x 的取值范围是 .13.如右图,半圆O 的直径AB=2,弦CD ∥AB ,∠COD=90°,则图中 阴影部分的面积为 .第15题图 第16题图 第18题图14.将抛物线y=﹣x 2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为 . 15.如图,铁路口栏杆短臂长1米,长臂长16米,当短臂端点下降0.5米时,长臂端点升高 米. 16.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为 度.17.一个小组有若干名同学,新年互送一张贺年卡片,已知全组共送贺年卡片72张,那么这个小组共有 名同学.18.如图,折叠矩形纸片ABCD ,使点B 落在边AD 上,折痕EF 的两端分别在AB 、BC 上(含端点),且AB=6cm ,BC=10cm .则折痕EF 的最大值是 cm .三、解答题(一):本大题共5小题,共26分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.(4分)计算:(π﹣3)0+﹣2sin45°﹣()﹣1.解:原式=1+3﹣2×﹣8=2﹣7.20.(4分)解不等式组:解:,解①得x <2, 解②得x ≥﹣1,则不等式组的解集是﹣1≤x <2.21.(6分)如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A 、B 的坐标分别是A (4,3)、B (4,1),把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C . (1)画出△A 1B 1C ,直接写出点A 1、B 1的坐标;(2)求在旋转过程中,△ABC 所扫过的面积.解:(1)所求作△A 1B 1C 如图所示:由A (4,3)、B (4,1)可建立如图所示坐标系, 则点A 1的坐标为(﹣1,4),点B 1的坐标为(1,4); (2)∵AC===,∠ACA 1=90°∴在旋转过程中,△ABC 所扫过的面积为: S 扇形CAA1+S △ABC =+×3×2=+3.学校 班级 姓名 考号密 封 线 内 不 要 答 题22.(6分)如图1,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A 处,测得河的北岸边点B 在其北偏东45°方向,然后向西走60m 到达C 点,测得点B 在点C 的北偏东60°方向,如图2. (1)求∠CBA 的度数.(2)求出这段河的宽(结果精确到1m ,备用数据≈1.41,≈1.73).解:(1)由题意得,∠BAD=45°,∠BCA=30°,∴∠CBA=∠BAD ﹣∠BCA=15°; (2)作BD ⊥CA 交CA 的延长线于D , 设BD=xm , ∵∠BCA=30°, ∴CD==x ,∵∠BAD=45°, ∴AD=BD=x , 则x ﹣x=60,解得x=≈82,答:这段河的宽约为82m .23.(6分)十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措.二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(生男生女机会均等,且与顺序有关).(1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好是1男1女的概率; (2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中至少有1个女孩的概率.解:(1)画树状图如下:由树状图可知,生育两胎共有4种等可能结果,而这两个小孩恰好是1男1女的有2中可能,∴P (恰好是1男1女的)=. (2)画树状图如下:由树状图可知,生育两胎共有8种等可能结果,这三个小孩中至少有1个女孩的有7种结果,∴P (这三个小孩中至少有1个女孩)=.四、解答题(二):本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.24.(7分)为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如图统计图表:频数分布表(1)填空:a= ,b= ; (2)补全频数分布直方图;密 封 线 内 不 要 答 题(3)该校九年级共有600名学生,估计身高不低于165cm 的学生大约有多少人?解:(1)由表格可得, 调查的总人数为:5÷10%=50, ∴a=50×20%=10, b=14÷50×100%=28%, 故答案为:10,28%;(2)补全的频数分布直方图如下图所示, (3)600×(28%+12%)=600×40%=240(人)即该校九年级共有600名学生,身高不低于165cm 的学生大约有240人.25.(7分)如图,一次函数y=x +m 的图象与反比例函数y=的图象交于A ,B 两点,且与x 轴交于点C ,点A 的坐标为(2,1). (1)求m 及k 的值;(2)求点C 的坐标,并结合图象写出不等式组0<x +m ≤的解集.解:(1)由题意可得:点A (2,1)在函数y=x +m 的图象上, ∴2+m=1即m=﹣1, ∵A (2,1)在反比例函数的图象上,∴,∴k=2;(2)∵一次函数解析式为y=x ﹣1,令y=0,得x=1, ∴点C 的坐标是(1,0),由图象可知不等式组0<x +m ≤的解集为1<x ≤2.26.(8分)如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD . (1)求证:四边形OCED 是菱形;(2)若AB=3,BC=4,求四边形OCED 的面积.解:(1)∵CE ∥BD ,DE ∥AC , ∴四边形CODE 是平行四边形, ∵四边形ABCD 是矩形, ∴AC=BD ,OA=OC ,OB=OD , ∴OD=OC ,∴四边形CODE 是菱形; (2)∵AB=3,BC=4,∴矩形ABCD 的面积=3×4=12, ∵S △ODC =S 矩形ABCD =3,∴四边形OCED 的面积=2S △ODC =6.27.(8分)如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作半圆⊙O 交AC 与点D ,点E 为BC 的中点,连接DE .(1)求证:DE 是半圆⊙O 的切线.(2)若∠BAC=30°,DE=2,求AD 的长.学校 班级 姓名 考号密 封 线 内 不 要 答 题(1)证明:连接OD ,OE ,BD , ∵AB 为圆O 的直径, ∴∠ADB=∠BDC=90°,在Rt △BDC 中,E 为斜边BC 的中点, ∴DE=BE ,在△OBE 和△ODE 中,,∴△OBE ≌△ODE (SSS ), ∴∠ODE=∠ABC=90°, 则DE 为圆O 的切线;(2)在Rt △ABC中,∠BAC=30°, ∴BC=AC ,∵BC=2DE=4, ∴AC=8,又∵∠C=60°,DE=CE ,∴△DEC 为等边三角形,即DC=DE=2, 则AD=AC ﹣DC=6.28.(10分)如图,抛物线经过A (﹣1,0),B (5,0),C (0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P ,使PA +PC 的值最小,求点P 的坐标;(3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,求点N 的坐标;若不存在,请说明理由.解:(1)设抛物线的解析式为y=ax 2+bx +c (a ≠0),∵A (﹣1,0),B (5,0),C (0,)三点在抛物线上,∴,解得.∴抛物线的解析式为:y=x 2﹣2x ﹣;(2)∵抛物线的解析式为:y=x 2﹣2x ﹣, ∴其对称轴为直线x=﹣=﹣=2,连接BC ,如图1所示, ∵B (5,0),C (0,﹣),∴设直线BC 的解析式为y=kx +b (k ≠0),密 封 线 内 不 要 答 题∴,解得,∴直线BC 的解析式为y=x ﹣, 当x=2时,y=1﹣=﹣, ∴P (2,﹣);(3)存在.如图2所示,①当点N 在x 轴下方时,∵抛物线的对称轴为直线x=2,C (0,﹣), ∴N 1(4,﹣); ②当点N 在x 轴上方时,如图,过点N 2作N 2D ⊥x 轴于点D , 在△AN 2D 与△M 2CO 中,∴△AN 2D ≌△M 2CO (ASA ), ∴N 2D=OC=,即N 2点的纵坐标为.∴x 2﹣2x ﹣=, 解得x=2+或x=2﹣,∴N 2(2+,),N 3(2﹣,).综上所述,符合条件的点N 的坐标为(4,﹣),(2+,)或(2﹣,).。

2018年江苏省泰兴市届九年级数学下学期第二次模拟试题

2018年江苏省泰兴市届九年级数学下学期第二次模拟试题

江苏省泰兴市2018届九年级数学中考模拟试题(考试时间:120分钟 满分:150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效. 3.作图必须用2B 铅笔,并请加黑加粗.第一部分 选择题(共18分)一、选择题(本大题共有6小,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡...相应..位置..上) 1.-2017的倒数是A .-12017 B . 12017C . 2017D .2017± 2.下列计算正确的是A .134=-a aB .236a a a =÷C .3222a a a =⋅D .ab b a 523=+ 3.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是ABCD4.下面四个几何体中,主视图与其它几何体的主视图不同的是5.在学校举办的“中华诗词大赛”中,有11名选手进入决赛,他们的决赛成绩各不相同,其中一名参赛选手想知道自己是否能进入前6名,他需要了解这11名学生成绩的 A .中位数B .平均数C .众数D .方差6.甲、乙两个机器人在直线跑道上同起点、同终点、同方向匀速运(第3题图)ABCD(第6题图)(第16题图)HF C(第15题图) 动600米,先到终点的机器人在终点处休息.已知甲先出发2秒. 在运动过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间 的关系如图所示,则下列结论正确的是A .b =200,c =150B .b =192,c =150C .b =200,c =148D .b =192,c =148第二部分 非选择题(共132分)二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相应.....位置..上) 7.若分式21-+x x 有意义,则x 的取值范围是 ▲ . 8.分解因式:a 3﹣4a = ▲ .9.共享单车为人们带来了极大便利,有效缓解了出行“最后一公里”问题,而且经济环保.2016年全国共享单车用户数量达18860 000,将18860 000用科学记数法表示应为 ▲ .10.一个多边形的内角和是外角和的2倍,则这个多边形的边数为 ▲ . 11.若12=-n m ,则多项式1105+-m n 的值是 ▲ .12.某工厂甲、乙两名工人参加操作技能培训,现分别从他们在培训期间参加若干次测试成绩中随机抽取8次,计算得两人的平均成绩都是85分,方差分别是415.3522==乙甲,S S ,从操作技能稳定的角度考虑,选派 ▲ 参加比赛.13.圆锥的底面直径为6 cm ,高为4 cm ,则圆锥的侧面积为 ▲ cm 2. 14.已知反比例函数ky x=(k 是常数,k ≠0)的图象在第二、四象限,点A (x 1,y 1)和点B (x 2,y 2)在函数的图象上,当x 1<x 2<0时,可得y 1 ▲ y 2.(填“>”、“=”、“<”).15.如图,点G 是△ABC 的重心,连结AG 并延长交BC 于点D ,过点G 作EF ∥AB 交BC 与E ,交AC 与F ,若AB =12,那么EF = ▲ .16.如图,边长为4的正方形ABCD 中,点E 、F 分别在线段AB 、CD 上,AE =CF =1,O 为EF 的中点,动点G 、H 分别在线段AD 、BC 上,EF 与GH 的交点P 在O 、F 之间(与O 、F 不重合),且∠GPE =45°.设AG =m ,则m 的取值范围为 ▲ .三、解答题(本大题共有10题,计102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本题满分12分):(1) 计算:︒+-+--30cos 2|32|)1(2; (2) 先化简,再求值:2211x+1x 1⎛⎫-÷ ⎪-⎝⎭ ,其中13+=x .18.(本题满分8分) 小亮与小明做投骰子(质地均匀的正方体)的实验与游戏. (1) 在实验中他们共做了50次试验,试验结果如下:10①填空:此次实验中,“1点朝上”的频率是 ▲ ;②小亮说:“根据实验,出现1点朝上的概率最大.”他的说法正确吗?为什么? (2) 在游戏时两人约定:每次同时掷两枚骰子,如果两枚骰子的点数之和超过6,则小亮获胜,否则小明获胜.则小亮与小明谁获胜的可能性大?试说明理由.19.(本题满分8分) )某市初中全体学生积极参加了校团委组织的“献爱心捐款”活动,为了解捐款情况,随机抽取了部分学生并对他们的捐款情况作了统计: 绘制了两幅不完整的统计图(统计图中每组含最小值...,不含最大值...). 请依据图中信息解答下列问题:(1) 求随机抽取的部分学生的人数.(2) 填空:(直接填答案) ①“20元~25元”部分对应的 圆心角度数为______° ②捐款的中位数落在_______ (填金额范围)捐款人数扇形统计图金额捐款人数条形统计图6 10 15 20 25 30(3) 若该校共有学生3500人,请估算全校捐款不少于20元的人数.21.(本题满分8分) 为了加强公民的节水意识,某市采用价格调控手段来引导市民节约用水:每户居民每月用水不超过6立方米时,每立方米按基本价格收费;每月用水超过6立方米时,超过的部分要加价收费.该市某户居民今年4、5月份的用水量和水费如右表所示:求该市居民用水的两种收费价格.21.(本题满分10分)已知,如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.(1) 求证:△AFD≌△CEB(2) 四边形ABCD是平行四边形吗?请说明理由.22.(本题满分10分)某校兴趣小组想测量一座大楼AB的高度.如图,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米) (参考数据:sin37°≈0.60,cos37°≈0.80,tan)(第22题图)(第21题图)FED CBA23.(本题满分10分) 如图,在平面直角坐标系中,直线AB 与y 轴相交于点A (0,-2),与反比例函数在第一象限内的图象相交于点B (m ,2),△AOB 的面积为4.(1) 求该反比例函数和直线AB 的函数关系式; (2) 求sin∠OBA 的值。

初中数学泰兴市西城中学中考模拟第三次模拟考试数学考试题含答案 .docx

初中数学泰兴市西城中学中考模拟第三次模拟考试数学考试题含答案 .docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:等于A.5 B.C.-5 D.试题2:下列计算正确的是A. B.C.D.试题3:连续四次抛掷一枚硬币都是正面朝上,则“第五次抛掷正面朝上”是A.必然事件 B.不可能事件 C.随机事件 D.概率为1的事件试题4:下列几何体的三视图中,左视图是圆的是A.① B.② C.③ D.④评卷人得分试题5:如图,在平面直角坐标系中,点B、C、E在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移3试题6:如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC能作出A.2个 B.3个 C.4个 D.6个试题7:-3的绝对值是.试题8:分解因式:=.试题9:八边形的内角和为°试题10:一组数据2,2,4,1,0中位数.试题11:若关于x的一元二次方程ax2+bx+5=0(a≠0)的一个解是x=1,则2016﹣a﹣b的值是.试题12:圆锥的母线长为6cm,底面圆半径为4cm,则这个圆锥的侧面积为.试题13:如图,AB是⊙O的直径,CD是弦,若BC=1,AC=3,则sin∠ADC的值为.试题14:如图,在△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于D,点E为AC中点,连结DE,则△CDE的周长为.试题15:已知△ABC中,∠ABC=30°,AB=2,BC=,分别以AC、AB为边在△ABC外作等边△ACD和等边△ABE,连接BD、CE,则BD的长为.试题16:将正方形纸片ABCD按如图所示对折,使边AD与BC重合,折痕为EF,连接AE,将AE折叠到AB上,折痕为AH,则的值是.试题17:计算:试题18:解方程组:试题19:先化简,再求值:,其中a满足a2﹣a﹣2=0.试题20:校园手机”现象越来越受到社会的关注。

初三第三次模拟考试(数学)试题含答案

初三第三次模拟考试(数学)试题含答案

初三第三次模拟考试(数学)(考试总分:120 分)一、单选题(本题共计12小题,总分36分)1.(3分)23的倒数是()A.−23B.32C.23D.±322.(3分)如图,直线a,b相交于点O,则∠1与∠2是()A.互为余角B.对顶角C.同旁内角D.邻补角3.(3分)下列调查中,最适合采用全面调查(普查)方式的是()A.对某校九年级(1)班学生视力情况的调查B.对全市空气质量情况的调查C.对某批次手机屏使用寿命的调查D.对全省中学生每天体育锻炼所用时间的调查4.(3分)下列图形既是轴对称图形又是中心对称图形的是()A.AB.BC.CD.D5.(3分)下列运算正确的是( )A.a2+a2=a4B.a2⋅a3=a6C.(a3)2=a6D.(ab)2=ab26.(3分)2021年5月11日,第七次全国人口普查发布,数据显示,全国人口共14.1178亿人,将数据14.1178亿用科学计数法表示为()A.1.4178×109B.1.4178×108C.14.178×108D.14178×1047.(3分)把x3−4x2y+4xy2分解因式,结果正确的是()A.x(x+2y)2B.x(x−y)2C.x(x2−4xy+4y2)D.(x−2y)28.(3分)如图,这是每个面上都有一个汉字的正方体的一种表面展开图,那么在这个正方体的表面,与“美”字相对的面上的汉字是()A.建B.设C.乡D.村和一次函数y=kx+2的图象大致是()9.(3分)当k<0时,反比例函数y=kxA.AB.BC.CD.D10.(3分)如图,将圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120∘,则此圆锥的高OC的长度是()A.2√3B.3√2C.4√2D.511.(3分)已知二次函数y=ax2+bx+c的图象如图所示,下列结论:∠b2−4ac>0∠b2a<0;∠4a−2b+c<0;∠abc>0其中正确的个数是()A.∠∠∠B.∠∠∠C.∠∠∠D.∠∠∠12.(3分)古希腊数学家把数1,3, 6, 10, 15, 21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数, 依此类推,那么第50个三角形数是()A.1326B.1275C.1225D.1176二、填空题(本题共计6小题,总分18分)13.(3分)若分式x2−1x−1的值等于0,则x的值为_____.14.(3分)已知关于x的一元一次方程2(x−1)+3a=0的解为4,则a的值是_____.15.(3分)如图所示,是某校对学生到校方式的情况统计图.若该校骑自行车到校的学生有200人,则步行到校的学生数是_____.16.(3分)如果a2−b2=14,a−b=12,则a+b的值是_____.17.(3分)如图,△ABC是⊙O的内接三角形,若∠ACB=60∘,则∠ABO=_____.18.(3分)如图,在矩形ABCD中,AB=2,AD=3,E是AB边的中点,F是线段BC边上的动点,将ΔEBF沿EF所在直线折叠得到ΔEB′F,连接B′D,则B′D的最小值是_____.三、解答题(本题共计8小题,总分66分)19.(6分)计算:−12021+|−4|−(12)−2+√3sin⁡60∘.20.(6分)解不等式组{x+12≤1①1−2x<5②,并把解集在数轴上表示出来21.(8分)小张和小王做猜拳游戏,规定每人每次至少要出一只手指,两人出拳的手指数之和为偶数时小张获胜,否则就是小王获胜。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
(第6题图)
A
B
C
D
E F G
(第16题图)
2017~2018年度九年级数学第三次模拟考试试题
(考试时间:120分钟 满分:150分)
请注意:1.本试卷分选择题和非选择题两个部分.
2.所有试题的答案均填写在答题卡上,答案写在试卷上无效. 3.作图必须用2B 铅笔,并请加黑加粗.
第一部分 选择题(共18分)
一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合
题目要求的,请将正确选项的字母代号填涂在答题卡...相应位置....上) 1.-3的绝对值是
A .-3
B .3
C .1
3
-
D .13
2.下列运算正确的是
A .a 3•a 3=2a 6
B .a 3+a 3=2a 6
C .(a 3)2=a 6
D .a 6
÷a 2
=a 3

3.一组数据﹣2、1、3、5的极差是
A .6
B .3
C .
7 D .5 4.如果m m 的取值范围是
A .3<m <4
B .4<m <5
C .5<m <6
D .6<m <7 5.由一个圆柱体与一个长方体组成的几何体如图所示,这个几何体的左视图是
6.已知ABC ∆中,点D 、E 分别是AB 、AC 边上的点,BC DE //,点F 是BC 边上一点,连接AF 交
DE 于点G .下列结论一定正确的是
A .AG FG GD EG =
B .AD AE
GD EG = C .BF CF GD EG = D .GF
AG
GD EG = 第二部分 非选择题(共132分)
二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相应位置.......
上) 7.当x ▲ 时,式子
8.2018年第一季度,泰州市共完成工业投资31500 000 000元,31500 000 000这个数可用科学记数法表示为 ▲ .
9.若m =2n +1,则m 2﹣4mn +4n 2
的值是 ▲ .
10.“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出2个小球,它们的标号之
积为“6”,这个事件是 ▲ .(填“必然事件”、“不可能事件”或“随机事件”) 11.如图,AD 、AE 分别是△ABC 的高和角平分线,∠B =20º,∠C =50º,则∠EAD = ▲ . 12.如图,AB 是⊙O 的弦,OC ⊥AB ,∠AOC =42°,那么∠CDB 的度数为 ▲ .
2
13.底面周长为8πcm ,母线长为5cm
的圆锥的全面积为 ▲ cm 2

14.如图,一次函数的图象与x 轴交于点A (2,0),它与x 轴所成的锐角为α,且tan α=3
2
,则此一次函
数关系式为 ▲ .
15.如图,△OAB 与△OCD 是以点O 为位似中心的位似图形,△OAB 与△OCD 位似比为1:2,点A 、C 均在第
四象限内,∠OCD =90°,CO =2CD ,若B (1,0),则点C 的坐标为 ▲ .
16.二次函数y =x 2+bx 的图象如图所示,对称轴为x =2,若关于x 的一元二次方程x 2
+bx ﹣t =0(t 为实数)
在﹣2<x <3的范围内无解,则t 的取值范围是 ▲ .
三、解答题(本大题共有10小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、
证明过程或演算步骤) 17.(本题满分12分)计算或先化简再求值
(1)1
01(2018)2π-⎛⎫
-︒ ⎪⎝⎭;
(2)
35
(2)242
a a a a -÷+---,其中23a ≤≤且a 为整数.
18.(本题满分8分)
我市生物和地理会考实施改革,考试结果以等级形式呈现,分A 、B 、C 、D 四个等级.D 等级为不
合格.某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图.
(1)这次抽样调查共抽取了 ▲ 名学生的生物成绩.扇形统计图中,D 等级所对应的扇形圆心角度数为 ▲ °;
(2)将条形统计图补充完整;
(3)如果该校八年级共有600名学生,请估计这次模拟考试有多少名学生的生物成绩不合格?
(第14题图) (第15题图) (第12题图)
3
A
B
C
D E
F
19.(本题满分8分)
小明登陆泰微课学习页面后,发现推荐的数学微课有四个,其中有两个等级为A ,另外两个等级为B ,如果小明点击微课学习是随机的,且每个微课只点击学习一次. (1)求小明第一次点击学习的微课等级为A 的概率;
(2)如果小明第一次点击的微课等级为A ,小明继续点击学习两次,求三次点击学习中有两个等级为A 的概率.
20.(本题满分8分)
某商店经销一批小商品,每件商品的成本为8元.据市场分析,销售单价定为10元时,每天能
售出200件;现采用提高商品售价,减少销售量的办法增加利润,若销售单价每涨1元,每天的销售量就减少20件.
设销售单价定为x 元.据此规律,请回答:
(1)商店日销售量减少 ▲ 件,每件商品盈利 ▲ 元(用含x 的代数式表示);
(2)针对这种小商品的销售情况,该商店要保证每天盈利640元,同时又要使顾客得到实惠,那么销售单价应定为多少元?
21.(本题满分10分)
如图,在□ABCD 中,∠ABD 的平分线BE 交AD 于点E ,
∠CDB 的平分线DF 交BC 于点F ,连接BD . (1)求证:△ABE ≌△CDF ;
(2)若AB =DB ,求证:四边形DFBE 是矩形.
22.(本题满分10分)
如图,CD 是一高为4米的平台,AB 是与CD 底部相 平的一棵树,在平台顶C 点测得树顶A 点的仰角α=30°, 从平台底部向树的方向水平前进3米到达点E ,在点E 处 测得树顶A 点的仰角β=60°,求树高AB .(结果保留根号)
23.(本题满分10分)
如图,□AOBC 的顶点A 、B 、C 在⊙O 上,过点C
作DE ∥AB 交OA 延长线于D 点,交OB 延长线于点E . (1)求证:CE 是⊙O 的切线; (2)若OA =1,求阴影部分面积.
24.(本题满分10分)
已知二次函数y =ax 2
+bx +3经过点A (﹣1,0)、B (3,0)且与y 轴交于点C .
(1)求a 、b 的值及该二次函数的顶点坐标;
(2)将该二次函数的图象向下平移3个单位长度,再向右移动n (n >0)个单位长度,使得移动后的图象顶点在△ABC 内部(不包括边界),试求n 的取值范围.
4
25.(本题满分12分)
阅读理解:
如图1,在线段AC 上有一点P ,若△ABP 与△CDP 相似,则称点P 为△ABP 与△CDP 的相似点. 例如:如图2,△ABP 1∽△CDP 1,△AP 2B ∽△CDP 2,则点P 1、P 2为△ABP 与△CDP 的两个相似点.
如图3,矩形ABCD 中,AB =4,BC =m (m
>1),点E 是AD 边上一定点,且AE =1. (1)当m =3时,线段AB 上存在点F 为△AEF 与△BCF 的相似点,求AF 的长度; (2)当m =3.5时,线段AB 上△AEF 与△BCF 的相似点F 有几个?请说明理由;
(3)随着m 的变化,线段AB 上△AEF 与△BCF 的相似点F 的个数有哪些变化?请直接写出相对应的m 的值或取值范围.
26.(本题满分14分)
如图,在平面直角坐标系xOy 中,已知点A 的坐标为(a ,0)(其中a >0),作AB ∥y 轴交反比例
函数y k
x
=
(k >0,x >0)的图象于点B . (1)当△OAB 的面积为2时,
①求k 的值;
②过A 点作AC ∥OB 交反比例函数y k
x
=(k >0,x >0)图象于点C ,求AC :OB 的值; (2)若D 为射线AB 上一点,连接OD 交反比例函数图象于点E ,DF ∥x 轴交反比例函数y k
x
=(k >0,
x >0)的图象于点F ,连接EF 、EB ,试猜想:DEF BDE S S 的值是否随a 的变化而变化?如果不变,求出DEF
BDE
S
S 的值;如果变化,请说明理由.
12
① A
B
C
D E
A
B C D E
(图1) (图2)
(图
3) (备用图)
5
6
7
8
9
10
11。

相关文档
最新文档