三角形角度的计算专题
关于四年级角度的计算题

关于四年级角度的计算题一、基础计算类(1 - 10题)1. 已知一个直角三角形,其中一个锐角是30°,求另一个锐角的度数。
- 解析:直角三角形有一个角是90°,三角形内角和是180°。
所以另一个锐角的度数为180° - 90°-30° = 60°。
2. 一个平角减去120°,还剩多少度?- 解析:平角是180°,180° - 120° = 60°。
3. 计算35°+145°的和。
- 解析:35°+145° = 180°。
4. 160° - 70°等于多少度?- 解析:160° - 70° = 90°。
5. 一个三角形的三个内角分别是40°、60°、x°,求x的值。
- 解析:三角形内角和是180°,所以x = 180°-(40° + 60°)=80°。
6. 求25°角的补角是多少度?- 解析:两角之和为180°时互为补角,所以补角为180° - 25° = 155°。
- 解析:两角之和为90°时互为余角,90° - 110°不存在余角(在四年级范围内可简单说明这个角没有余角)。
8. 把一个周角平均分成8份,每份是多少度?- 解析:周角是360°,360°÷8 = 45°。
9. 一个角比45°大30°,这个角是多少度?- 解析:45°+30° = 75°。
10. 75°角与105°角的和是多少度?- 解析:75°+105° = 180°。
人教版初中八年级上册数学方法技巧专题练习:三角形中有关角度的计算

方法技巧专题:三角形中有关角度的计算——全方位求角度,一网搜罗◆类型一已知角的关系,直接利用内角和或结合方程思想求角度1.一个三角形三个内角的度数之比是2∶3∶5,则这个三角形一定是()A.直角三角形B.等腰三角形C.钝角三角形D.锐角三角形2.在△ABC中,∠A=2∠B=75°,则∠C=________.3.在△ABC中,∠A=3∠B,∠A-∠C=30°,则∠A=________°,∠C=________°.4.如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.◆类型二综合内、外角的性质求角度5.如图,∠B=20°,∠A=∠C=40°,则∠CDE的度数为()A.40°B.60°C.80°D.100°6.如图,在△ABC中,D是BC上的一点,∠1=∠2,∠3=∠4,∠B=40°,求∠BAC的度数.7.如图,AD平分∠BAC,∠EAD=∠EDA.(1)求证:∠EAC=∠B;(2)若∠B=50°,∠CAD∶∠E=1∶3,求∠E的度数.◆类型三在三角板或直尺中求角度8.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上,如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°第8题图第9题图9.(2016-2017·湘潭市期末)将一副三角板按如图所示摆放,图中∠α的度数是()A.75°B.90°C.105°D.120°10.(2016-2017·娄底市新化县期中)如图,将三角尺的直角顶点放在直线a上,a∥b,∠1=50°,∠2=60°,则∠3的度数为()A.50°B.60°C.70°D.80°11.(1)如图①,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C.在△ABC中,∠A=30°,则∠ABC+∠ACB=________,∠XBC+∠XCB=________;(2)如图②,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY,XZ仍然分别经过B,C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX 的大小.◆类型四与平行线结合求角度12.如图,已知AB∥CD,∠A=60°,∠C=25°,则∠E等于()A.60°B.25°C.35°D.45°第12题图第13题图13.(2016·丽水中考)如图,在△ABC中,∠A=63°,直线MN∥BC,且分别与AB,AC相交于点D,E,若∠AEN=133°,则∠B的度数为________.◆类型五与截取或折叠结合求角度14.如图,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=24°,则∠BDC等于()A.42°B.66°C.69°D.77°第14题图第15题图15.如图所示,一个含60°角的三角形纸片,剪去这个60°角后,得到一个四边形,那么∠1+∠2的度数为()A.120°B.180°C.240°D.300°16.★如图,把三角形纸片ABC沿DE折叠,使点A落在四边形BCDE的内部A′处,已知∠1+∠2=80°,则∠A的度数为________.【变式题】如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内部C′处,若∠1=20°,求∠2的度数.参考答案与解析1.A 2.67.5° 3.90604.解:设∠A=x,则∠C=∠ABC=2x.根据三角形内角和为180°知∠C+∠ABC+∠A=180°,即2x+2x+x=180°,∴x=36°,∴∠C=2x=72°.在△BDC中,∠DBC=180°-90°-∠C=18°.5.C6.解:∵∠1=∠2,∠B=40°,∴∠2=∠1=(180°-40°)÷2=70°.又∵∠2是△ADC的外角,∴∠2=∠3+∠4.∵∠3=∠4,∴∠2=2∠3,∴∠3=12∠2=35°,∴∠BAC=∠1+∠3=105°.7.(1)证明:∵AD平分∠BAC,∴∠BAD=∠CAD.又∵∠EAD=∠EDA,∴∠EAC=∠EAD -∠CAD=∠EDA-∠BAD=∠B.(2)解:设∠CAD=x°,则∠E=3x°.由(1)知∠EAC=∠B=50°,∴∠EAD=∠EDA=(x+50)°.在△EAD中,∠E+∠EAD+∠EDA=180°,即3x°+2(x+50)°=180°,解得x=16.∴∠E=48°.8.D9.C10.C11.解:(1)150°90°(2)不变化.因为∠A=30°,所以∠ABC+∠ACB=150°.因为∠X=90°,所以∠XBC+∠XCB=90°,所以∠ABX+∠ACX=(∠ABC-∠XBC)+(∠ACB-∠XCB)=(∠ABC+∠ACB)-(∠XBC+∠XCB)=150°-90°=60°.12.C13.70°14.C15.C解析:因为∠1=180°-∠AMN,∠2=180°-∠ANM,所以∠1+∠2=360°-(∠ANM +∠AMN).又因为∠ANM+∠AMN=180°-∠A=120°,所以∠1+∠2=240°.故选C.16.40°解析:由折叠的性质得∠AED=∠A′ED,∠ADE=∠A′DE.因为∠1+∠A′EA=180°,∠2+∠A′DA=180°,所以∠1+∠2+2∠AED+2∠ADE=360°,所以∠AED+∠ADE=140°,所以∠A=40°.【变式题】解:如图,因为∠A=65°,∠B=75°,所以∠CEF+∠CFE=∠A+∠B=140°,所以∠CEF +∠CFE+∠C′EF+∠C′FE=280°,所以∠2=360°-(∠CEF+∠CFE+∠C′EF+∠C′FE)-∠1=360°-280°-20°=60°.作者留言:非常感谢!您浏览到此文档。
三角形角度公式大全

三角形角度公式大全
在平面几何中,三角形是指由三条线段所构成的图形。
三角形具有一些特殊的属性和角度公式,下面列出了一些常见的三角形角度公式大全:
1. 内角和公式:三角形的三个内角之和总是等于180°,表示为:A + B + C = 180°,其中A、B、C分别表示三角形的三个内角。
2. 外角和公式:三角形的一个外角等于其不相邻两个内角的和,表示为:D = A + B 或 D = B +
C 或
D = A + C,其中D表示一个外角。
3. 直角三角形的角度公式:直角三角形的两个小角相加等于直角,表示为:A + B = 90°或 A +
C = 90°或 B + C = 90°,其中A、B、C分别表示三角形的三个内角。
4. 等边三角形的角度公式:等边三角形的三个内角都等于60°。
5. 等腰三角形的角度公式:等腰三角形的两个底角相等,表示为:A = B 或 A = C 或 B = C,
其中A、B、C分别表示三角形的三个内角。
6. 锐角三角形的角度公式:锐角三角形的三个内角都小于90°。
7. 钝角三角形的角度公式:钝角三角形的一个内角大于90°。
这些是一些常见的三角形角度公式大全,根据具体的三角形形状和条件,可以应用不同的公式进行角度计算。
专题训练(四) 与三角形有关的角度计算的四种方法-学习文档

专题训练(四)与三角形有关的角度计算的四种方法►方法一根据三角形的内角和定理及其推论直接计算角度1.如图4-ZT-1,在△ABC中,∠C=90°,∠B=40°,AD是角平分线,则∠ADC 的度数为()图4-ZT-1A.25°B.50°C.65°D.70°2.如图4-ZT-2,已知∠A=32°,∠B=45°,∠C=38°,则∠DFE的度数为()图4-ZT-2A.120°B.115°C.110°D.105°3.2019·枣庄如图4-ZT-3,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D等于()图4-ZT-3A.15°B.17.5°C.20°D.22.5°4.2019·岳西期中如图4-ZT-4,AB∥CD,∠C=65°,CE⊥BE,垂足为E,则∠B 的度数为________.图4-ZT-45.2019·安徽绩溪期中如图4-ZT-5,已知a∥b,∠1=70°,∠2=40°,则∠3=________°.图4-ZT-56.2019·安徽舒城月考如图4-ZT-6,直线l1∥l2,AB⊥CD,∠1=34°,那么∠2=________°.图4-ZT-67.2019·淅川县期末如图4-ZT-7,在△ABC中,D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=________°;(2)求∠EDF的度数.8.探索与发现:在△ABC中,AD是BC边上的高,AE是∠BAC的平分线.(1)在图4-ZT-8①中,若∠B=20°,∠C=50°,求∠EAD的度数;(2)在图②中,当∠ACB为钝角时,设∠B=α,∠ACB=β,请用含α,β的式子表示∠EAD,并说明理由.图4-ZT-8►方法二三角尺或直尺的组合放置中的角度计算9.将一副三角尺如图4-ZT-9放置,若∠AOD=20°,则∠BOC的度数为()A.140°B.160°C.170°D.150°图4-ZT-910.2019·营口如图4-ZT-10,将一副三角尺叠放在一起,使直角顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()图4-ZT-10A.85°B.70°C.75°D.60°11.将一把直尺与一块三角尺如图4-ZT-11放置.若∠1=40°,则∠2的度数为()图4-ZT-11A.125°B.120°C.140°D.130°12.2019·枣庄将一副三角尺和一张对边平行的纸条按图4-ZT-12所示方式摆放,两个三角尺的一直角边重合,含30°角的三角尺的斜边与纸条一边重合,含45°角的三角尺的一个顶点在纸条的另一边上,则∠1的度数是()图4-ZT-12A.15°B.22.5°C.30°D.45°►方法三与截取或折叠有关的角度计算13.如图4-ZT-13,小明将一张三角形纸片(△ABC)沿着DE折叠(点D,E分别在边AB,AC上),并使点A与点A′重合,若∠A=70°,则∠1+∠2的度数为()A .140°B .130°C .110°D .70°► 方法四 与平行线的性质或判定综合的角度计算14.如图4-ZT -14所示,已知AB ∥CD ,直线EF 交AB 于点E ,交CD 于点F ,且EG 平分∠FEB ,∠1=50°,则∠2等于( )图4-ZT -14A .50°B .60°C .70°D .80°15.2019·金华如图4-ZT -15,已知AB ∥CD ,BC ∥DE.若∠A =20°,∠C =120°,则∠AED 的度数是________.图4-ZT -1516.如图4-ZT -16,在△ABC 中,∠A =90°,点D 在AC 边上,DE ∥BC ,若∠ADE =155°,求∠B 的度数.图4-ZT -1617.已知:如图4-ZT -17,AB ∥CD ,∠1=∠2,求证:∠BEF =∠EFC.图4-ZT -17详解详析1.[解析] C ∵∠C =90°,∠B =40°,∴∠BAC =90°-∠B =90°-40°=50°.∵AD 是∠BAC 的平分线,∴∠BAD =12∠BAC =25°,∴∠ADC =∠B +∠BAD =40°+25°=65°.故选C.2.[解析] B ∠DFE =∠A +∠ADF =∠A +∠B +∠C =32°+45°+38°=115°.故选B.3.[解析] A ∵∠ABC 与∠ACE 的平分线相交于点D ,∴∠DBE =12∠ABC ,∠DCE =12∠ACE .又∵∠DCE -∠DBE =∠D ,∠ACE -∠ABC =∠A ,∴∠D =12∠A =12×30°=15°.故选A.4.25° 5.70 6.567.解:(1)∵△ABD 沿AD 折叠得到△AED ,∴∠BAD =∠DAF .∵∠B =50°,∠BAD =30°,∴∠AFC =∠B +∠BAD +∠DAF =110°.故答案为110.(2)∵∠B =50°,∠BAD =30°,∴∠ADB =180°-50°-30°=100°.∵△ABD 沿AD 折叠得到△AED ,∴∠ADE =∠ADB =100°,∴∠EDF =∠EDA +∠BDA -∠BDF =100°+100°-180°=20°.8.解:(1)∵∠B =20°,∠C =50°,∴∠BAC =180°-∠B -∠C =180°-20°-50°=110°.∵AE 平分∠BAC ,∴∠BAE =55°.又∵AD ⊥BC ,∴∠BAD =90°-∠B =90°-20°=70°.∴∠EAD =∠BAD -∠BAE =70°-55°=15°.(2)∠EAD =12β-12α.理由如下: ∵∠BAC =180°-α-β,AE 是∠BAC 的平分线,∴∠BAE =12(180°-α-β). ∵∠BAD =90°-α,∴∠EAD =∠BAD -∠BAE =(90°-α)-12(180°-α-β),即∠EAD =12β-12α. 9.[解析] B ∠BOC =∠AOB +∠COD -∠AOD =90°+90°-20°=160°.10.C11.[解析] D在Rt△ABC中,∵∠A=90°,∠1=40°,(已知)∴∠3=90°-∠1=50°,(三角形的内角和定理)∴∠4=180°-∠3=130°.(平角定义)∵EF∥MN,(已知)∴∠2=∠4=130°.(两直线平行,同位角相等)故选D.12.[解析] A如图,过点A作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°.∵∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.13.[解析] A∵△A′DE是由△ADE翻折而得,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=70°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°-70°=110°,∴∠1+∠2=360°-2×110°=140°.故选A.14.[解析] D∵EG平分∠FEB,∴∠FEB=2∠1=2×50°=100°.∵AB∥CD,∴∠2+∠FEB=180°,∴∠2=180°-∠FEB=180°-100°=80°.故选D.15.[答案] 80°[解析] 延长DE交AB于点F,∵AB∥CD,BC∥DE,∴∠AFE=∠B,∠B+∠C=180°. ∴∠AFE+∠C=180°. 又∵∠C=120°,∠A=20°,∴∠AFE=60°,∴∠AED=∠A+∠AFE =80°.16.解:∵∠ADE=155°,∴∠EDC=25°.∵DE∥BC,∴∠C=∠EDC=25°.在△ABC中,∠A=90°,∴∠B+∠C=90°,∴∠B=65°.17.证明:连接BC,如图.∵AB∥CD,∴∠ABC=∠DCB,(两直线平行,内错角相等)即∠1+∠EBC=∠2+∠FCB. 又∵∠1=∠2,∴∠EBC=∠FCB,∴BE∥FC,(内错角相等,两直线平行)∴∠BEF=∠EFC.(两直线平行,内错角相等)。
三角形的角度计算练习题

三角形的角度计算练习题1. 已知一个三角形的两个角分别为60度和80度,求第三个角的度数。
解析:根据三角形内角和为180度的性质,我们可以得到第三个角的度数为180度减去已知两个角的度数之和。
第三个角的度数 = 180度 - (60度 + 80度) = 40度2. 已知一个三角形的一个角为75度,另外两个角的度数互补,求这两个角各自的度数。
解析:由于两个角的度数互补,即它们的和为90度,则可设其中一个角的度数为x度,那么另一个角的度数为90度减去x度。
根据已知角度的信息,我们得到方程x + (90度 - x) = 75度,解这个方程可以得到第一个角的度数为45度,第二个角的度数为90度 - 45度 = 45度。
3. 已知一个三角形的两个角分别为55度和65度,求第三个角的度数。
解析:与第一题类似,我们可以利用三角形内角和为180度的性质,计算第三个角的度数。
第三个角的度数 = 180度 - (55度 + 65度) = 60度4. 已知一个三角形的一个角为30度,另外一个角为120度,求第三个角的度数。
解析:根据三角形内角和为180度的性质,我们可以得到第三个角的度数为180度减去已知两个角的度数之和。
第三个角的度数 = 180度 - (30度 + 120度) = 30度5. 已知一个三角形的两个角分别为45度和60度,求第三个角的度数。
解析:与第一题和第三题相似,我们可以利用三角形内角和为180度的性质,计算第三个角的度数。
第三个角的度数 = 180度 - (45度 + 60度) = 75度通过以上题目的解析,我们可以进一步加深对三角形角度计算的理解和应用。
三角形的角度计算是数学中的基础知识,掌握了角度计算的方法,对于解决与三角形相关的问题将会更加游刃有余。
通过不断练习解答类似的题目,我们可以提高解决问题的能力和角度计算的准确性。
总结:本篇文章通过五道三角形的角度计算练习题,介绍了解决该类问题的思路和方法。
专题训练七与三角形中内外角有关的计算全方位求角度讲课文档

度数是( B )
A.10°
B.15°
C.25°
D.30°
[解析] 因为∠B=45°,所以∠BAC=45°,所以∠EAF= 135°,所以∠AFD=135°+30°=165°,所以∠BFD=180°- ∠AFD=15°.故选 B.
图 7-ZT-1
第2页,共18页。
专题训练(七) 与三角形中内、外角有关的计算 ——全方位求角度
第15页,共18页。
专题训练(七) 与三角形中内、外角有关的计算
——全方位求角度
类型四 与截取或折叠有关的角度计算
14.如图 7-ZT-14,在△ABC 中,∠C=70°,若沿图中虚线截去 ∠C,则∠1+∠2 等于( B )
A.360° B.250° C.180° D.140°
图 7-ZT-14
第16页,共18页。
专题训练七与三角形中内外角有关的计算全方位求角度
第1页,共18页。
专题训练(七) 与三角形中内、外角有关的计算 ——全方位求角度
类型一 利用三角形内角和定理与外角定理求角度
1.一副分别含有 30°和 45°角的两个三角尺,拼成如图 7-ZT
-1 所示图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD 的
图 7-ZT-6
1
1
解:∠AEC=180°-(∠ECA+∠EAC)=180°-(2∠DAC+2∠ACF)
1
1
= 180 ° - 2 [(∠B + ∠BCA) + (∠B + ∠BAC)] = 180 ° - 2 (∠B + ∠BCA +
∠BБайду номын сангаасC+∠B)
=180°-12(180°+∠B)=70°.
第7页,共18页。
三角形中角度计算压轴小题精选30道(必考点分类集训)(人教版)(解析版)24-25学年八年级数学上册

三角形中角度计算压轴小题精选30道1.(2024春•沛县校级期末)如图,把△ABC沿EF翻折,叠合后的图形如图,若∠A=60°,∠1=95°,则∠2的度数是( )A.15°B.20°C.25°D.35°【分析】根据折叠的性质,再根据邻补角的定义运用合理的推理,结合三角形内角和定理即可求出答案.【解答】解:∵△ABC沿EF翻折,∴∠BEF=∠B'EF,∠CFE=∠C'FE,∴180°﹣∠AEF=∠1+∠AEF,180°﹣∠AFE=∠2+∠AFE,∵∠1=95°,∴∠AEF=12(180°﹣95°)=42.5°,∵∠A+∠AEF+∠AFE=180°,∴∠AFE=180°﹣60°﹣42.5°=77.5°,∴180°﹣77.5°=∠2+77.5°,∴∠2=25°,故选:C.2.(2024春•管城区校级期末)如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB 重合于线段EO,若∠CDO+∠CFO=104°,则∠C的度数为( )A.38B.39C.40D.41【分析】先根据折叠的性质得到∠ADE=∠ODE,∠AED=∠OED,∠OFE=∠BFE,∠BEF=∠OEF,则利用平角的定义得到∠AED+∠BEF=90°,∠ADE+∠BFE=128°,再利用三角形内角和定理得到∠A+∠ADE+∠AED+∠B+∠BFE+∠BEF=2×180°,则可计算出∠A+∠B=142°,然后根据三角形内角和定理可计算出∠C的度数.【解答】解:∵△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,∴∠ADE=∠ODE,∠AED=∠OED,∠OFE=∠BFE,∠BEF=∠OEF,∵∠AEO+∠BEO=180°,∴∠AED+∠BEF=90°,∵∠ADO+∠BFO=2×180°﹣∠CDO﹣∠CFO=360°﹣104°=256°,∴∠ADE+∠BFE=128°,∵∠A+∠ADE+∠AED+∠B+∠BFE+∠BEF=2×180°,即∠A+∠B+(∠ADE+∠BFE)+(∠AED+∠BEF)=2×180°,∴∠A+∠B+128°+90°=2×180°,∴∠A+∠B=142°,∴∠C=180°﹣(∠A+∠B)=180°﹣142°=38°.故选:A.3.(2024春•仪征市期末)如图是可调躺椅示意图(数据如图),AE与BD的交点为C,且∠CAB、∠CBA、∠D∠E的大小,使∠EFD=110°,则图中∠E应( )A.增加10°B.减少10°C.增加20°D.减少20°【分析】延长EF,交CD于点G,依据三角形的内角和定理可求∠ACB,根据对顶角相等可得∠DCE,再由三角形内角和定理的推论得到∠DGF的度数;利用∠EFD=110°,和三角形的外角的性质可得∠D的度数,从而得出结论.【解答】解:延长EF,交CD于点G,如图:∵∠ACB=180°﹣50°﹣60°=70°,∴∠ECD=∠ACB=70°.∵∠DGF=∠DCE+∠E,∴∠DGF=70°+30°=100°.∵∠EFD=110°,∠EFD=∠DGF+∠D,∴∠D=10°.而图中∠D=20°,∴∠D应减少10°.故选:B.4.(2024春•内江期末)如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=( )A.120°B.130°C.150°D.180°【分析】根据三角形外角的性质把这七个角转化为一个三角形的内角,再根据三角形的内角和等于180°解答即可.【解答】解:如图,设BF与CG交于点O,AD与CG交于点P,CG与BE交于点M,AD与BE交于点N,∴∠PNM =∠A +∠E ,∠MPN =∠D +∠G ,∠BOM =∠C +∠F ,∠PMN =∠B +∠BOM .∵∠PNM +∠MPN +∠PMN =180°,∴∠PNM +∠MPN +∠PMN =∠A +∠E +∠D +∠G +∠B +∠BOM =∠A +∠E +∠D +∠G +∠B +∠C +∠F =180°.故选:D .5.(2024春•靖江市校级月考)如图,△ABC 中,∠ABC =3∠C ,点D ,E 分别在边BC ,AC 上,∠EDC =20°,∠ADE =3∠AED ,∠ABC 的平分线与∠ADE 的平分线交于点F ,则∠F 的度数是( )A .50°B .55°C .60°D .65°【分析】根据题意可知∠FBC =32∠C ,设∠C =x ,表示出∠ADE ,根据角平分线的定义,可得∠EDF 的度数,根据∠FDC =∠F +∠FBC 列方程,即可求出∠F 的度数.【解答】解:∵BF 平分∠ABC ,∴∠FBC =12∠ABC ,∵∠ABC =3∠C ,∴∠FBC =32∠C ,设∠C =x ,则∠FBC =32x ,∵∠EDC =20°,∴∠AED =∠C +∠EDC =x +20°,∵∠ADE =3∠AED ,∴∠ADE =3x +60°,∵DF 平分∠ADE ,∴∠EDF =32x +30°,∵∠FDC =∠F +∠FBC ,∴32x +30°+20°=∠F +32x ,∴∠F =50°.故选:A .6.(2024春•太康县期末)如图,将△ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分∠ABC,A'C 平分∠ACB,若∠BA'C=120°,则∠1+∠2的度数为( )A.90°B.100°C.110°D.120°【分析】连接A'A,先求出∠BAC,再证明∠1+∠2=2∠BAC即可解决问题.【解答】解:如图,连接AA',∵A'B平分∠ABC,A'C平分∠ACB,∴∠A'BC=12∠ABC,∠A'CB=12∠ACB,∵∠BA'C=120°,∴∠A'BC+∠A'CB=180°﹣120°=60°,∴∠ABC+∠ACB=120°,∴∠BAC=180°﹣120°=60°,∵沿DE折叠,∴∠DAA'=∠DA'A,∠EAA'=∠EA'A,∵∠1=∠DAA'+∠DA'A=2∠DAA',∠2=∠EAA'+∠EA'A=2∠EAA',∴∠1+∠2=2∠DAA'+2∠EAA'=2∠BAC=2×60°=120°,故选:D.7.(2024春•威海期末)如图,在△ABC中,AE平分∠BAC,AD⊥BC于点D.∠ABD的角平分线BF所在直线与射线AE相交于点G,若∠ABC=3∠C,且∠G=20°,则∠DFB的度数为( )A.50°B.55°C.60°D.65°【分析】由题意AE平分∠BAC,BF平分∠ABD,推出∠CAE=∠BAE,∠ABF=∠DBF,设∠CAE=∠BAE=x,设∠C=y,∠ABC=3y,想办法用含x和y的代数式表示∠ABF和∠DBF即可解决问题.【解答】解:如图:∵AE平分∠BAC,BF平分∠ABD,∴∠CAE=∠BAE,∠1=∠2,设∠CAE=∠BAE=x,∠C=y,∠ABC=3y,由外角的性质得:∠1=∠BAE+∠G=x+20,∠2=12∠ABD=12(2x+y)=x+12y,∴x+20=x+12y,解得y=40°,∴∠1=∠2=12(180°﹣∠ABC)=12×(180°﹣120°)=30°,∴∠DFB=60°.故选:C.8.(2024春•内丘县期末)如图,在△ABC中,∠B=∠C,D为边BC上的动点(不与点B,C重合),点E在边AC上,始终保持∠ADE=∠AED.当∠CDE的度数每增加1°时,∠BAD的度数( )A.增加3°B.减小3°C.增加2°D.减小2°【分析】因为ABD+∠BAD=∠ADE+∠CDE,∠AED=∠C+∠EDC,∠ADE=∠AED,所以∠ABD+∠BAD=∠C+2∠CDE,因为∠B=∠C,所以∠BAD=2∠CDE,可得当∠CDE的度数每增加1°时,∠BAD的度数变化.【解答】解:∵∠ABD+∠BAD=∠ADE+∠CDE,∠AED=∠C+∠EDC,∠ADE=∠AED,∴∠ABD+∠BAD=∠C+2∠CDE,∵∠B=∠C,∴∠BAD=2∠CDE,∴当∠CDE的度数每增加1°时,∠BAD的度数增加2°,故选:C.9.(2024春•成华区期末)如图,线段DG,EM,FN两两相交于B,C,A三点 则∠D+∠E+∠F+∠G+∠M+∠N的度数是( )A.180°B.360°C.540°D.720°【分析】根据三角形内角和定理,可得:∠G+∠F=∠ABC+∠BAC,∠M+∠N=∠ABC+∠ACB,∠D+∠E=∠ACB+∠BAC,再根据三角形的内角和定理,求出∠D+∠E+∠F+∠G+∠M+∠N的值即可.【解答】解:在△ABC和△CGF中,∵∠ACB=∠GCF,∴∠G+∠F=∠ABC+∠BAC;在△ABC和△ANM中,∵∠BAC=∠MAN,∴∠M+∠N=∠ABC+∠ACB;在△ABC和△BDE中,∵∠ABC=∠DBE,∴∠D+∠E=∠ACB+∠BAC,∴∠D+∠E+∠F+∠G+∠M+∠N=(∠ACB+∠BAC)+(∠ABC+∠BAC)+(∠ABC+∠ACB)=2(∠ABC+∠BAC+∠ACB)=2×180°=360°.故选:B.10.(2024春•裕华区期末)如图,∠A=100°,∠D=80°,则∠1+∠2等于( )A.100°B.200°C.180°D.210°【分析】根据三角形内角和定理,对顶角以及三角形外角的性质进行解答即可.【解答】解:如图,∵∠1=∠B+∠BMC,∠2=∠F+∠FNE,∴∠1+∠2=∠B+∠BMC+∠F+∠FNE,∵∠BMC=∠AMN,∠FNE=∠ANM,∠AMN+∠ANM=180°﹣∠A,∴∠1+∠2=∠B+∠F+∠AMN+∠ANM=(180°﹣∠D)+(180°﹣∠A)=360°﹣∠A﹣∠D=360°﹣100°﹣80°=180°.故选:C.11.(2023秋•新民市期末)如图,两面镜子AB,BC的夹角为∠α,当光线经过镜子后反射,∠1=∠2,∠3=∠4.若∠α=70°,则∠β的度数是( )A.30°B.35°C.40°D.45°【分析】由平角的定义可得∠5=180°﹣(∠1+∠2),∠6=180°﹣(∠3+∠4),再由三角形的内角和可得∠2+∠3=110°,再利用三角形的内角和即可求∠β.【解答】解:如图,由题意得:∠5=180°﹣(∠1+∠2)=180°﹣2∠2,∠6=180°﹣(∠3+∠4)=180°﹣2∠3,∵∠α=70°,∴∠2+∠3=180°﹣∠α=110°,∵∠β=180°﹣(∠5+∠6)∴∠β=180°﹣(180°﹣2∠2+180°﹣2∠3)=2(∠2+∠3)﹣180°=2×110°﹣180°=220°﹣180°=40°.故选:C.12.(2024春•南京期末)如图,△ABC的边BC在直线MN上,∠ABC与∠ACN的平分线交于点D,∠BAC 的平分线交BD于点E.若∠MBA=α,∠AEB=β,∠D=γ,则下列关系正确的是( )A.2α+2γ﹣β=180°B.2β+2γ﹣α=180°C.α﹣2γ+β=180°D.β﹣2γ+α=180°【分析】根据三角形外角的性质定理得出∠DCN=∠D+∠DBC,∠ACN=∠BAC+∠ABC,结合角平分线的定义证得2γ=∠BAC,由角平分线的定义得出∠BAC=2∠1,于是推出γ=∠1,在△ABE中根据三角形内角和定理得出β+γ+∠2=180°,变形为2β+2γ+2∠2=360°,根据邻补角的性质得出α+2∠2=180°,从而得出答案.【解答】解:∵∠DCN是△DBC的一个外角,∴∠DCN=∠D+∠DBC,∵∠ABC与∠ACN的平分线交于点D,∴∠DCN=12∠ACN,∠DBC=12∠ABC,∴12∠ACN=∠D+12∠ABC,即∠D=12∠ACN―12∠ABC,∴2γ=∠ACN﹣∠ABC,∵∠ACN是△ABC的一个外角,∴∠ACN=∠BAC+∠ABC,即∠ACN﹣∠ABC=∠BAC,∴2γ=∠BAC,如图,∵∠BAC的平分线交BD于点E,∴∠BAC=2∠1,∴2γ=∠1,∴γ=∠1,在△ABE中,∠AEB+∠1+∠2=180°,∴β+γ+∠2=180°,即2β+2γ+2∠2=360°,∵BD平分∠ABC,∴∠ABC=2∠2,∵∠MBA+∠ABC=180°,∴α+2∠2=180°,即2∠2=180°﹣α,∴2β+2γ+180°﹣α=360°,∴2β+2γ﹣α=180°,故选:B.13.(2024春•沙坪坝区校级期中)如图,在△ABC中,∠ABC与∠ACB的平分线交于点D,且∠EBC=1 3∠ABC,∠ECB=13∠ACB,则∠D与∠E的数量关系可表示为( )A.3∠E﹣2∠D=180°B.3∠D﹣2∠E=180°C.3∠E﹣2∠D=90°D.3∠D﹣2∠E=90°【分析】根据角平分线的性质可得,∠DBC =12∠ABC ,∠DCB =12∠ACB ,由∠EBC =13∠ABC ,∠ECB =13∠ACB ,可得∠DBC =32∠EBC ,∠DCB =32∠ECB ,由三角形内角和定理可得∠D +∠DBC +∠DCB =180°,由三角形外角的性质可得∠E +∠EBC +∠ECB =180°,从而可求得∠D 与∠E 的数量关系.【解答】解:∵∠ABC 与∠ACB 的平分线交于点D ,∴∠DBC =12∠ABC ,∠DCB =12∠ACB ∵∠EBC =13∠ABC ,∠ECB =13∠ACB ,∴∠DBC =32∠EBC ,∠DCB =32∠ECB ,∵∠D +∠DBC +∠DCB =180°,∴∠D +32∠EBC +32∠ECB =180°,∵∠E +∠EBC +∠ECB =180°,∴∠EBC +∠ECB =180°﹣∠E ,∴∠D +32(180°―∠E)=180°,整理得3∠E ﹣2∠D =180°,故选:A .14.(2024春•沙坪坝区期中)如图,在△ABC 中,∠B =∠C =45°,点D 在BC 上,点E 在AC 上,连接AD ,DE ,∠ADE =∠AED ,若∠BAD =m °,则∠CDE 等于( )A .45°+12m°B .45°―12m°C .90°―12m°D .12m°【分析】利用三角形内角和定理,可求出∠ADB 及∠BAC 的度数,结合∠BAD =m °,可求出∠CAD 的度数,在△ADE 中,利用三角形内角和定理,可求出∠ADE 的度数,再结合∠CDE =180°﹣∠ADB ﹣∠ADE ,即可求出∠CDE =12m °.【解答】解:在△ABD 中,∠B =45°,∠BAD =m °,∴∠ADB =180°﹣∠B ﹣∠BAD =180°﹣45°﹣m °=135°﹣m °.在△ABC 中,∠B =∠C =45°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣45°﹣45°=90°,∴∠CAD=∠BAC﹣∠BAD=90°﹣m°.在△ADE中,∠DAE=90°﹣m°,∠ADE=∠AED,∴∠ADE=12[180°﹣(90°﹣m°)]=45°+12m°,∴∠CDE=180°﹣∠ADB﹣∠ADE=180°﹣(135°﹣m°)﹣(45°+12m°)=12m°.故选:D.15.(2024•凉州区三模)如图,△ABC中,∠A=20°,沿BE将此三角形对折,又沿BA′再一次对折,点C 落在BE上的C′处,此时∠C′DB=74°,则原三角形的∠C的度数为( )A.27°B.59°C.69°D.79°【分析】先根据折叠的性质得∠1=∠2,∠2=∠3,∠CDB=∠C′DB=74°,则∠1=∠2=∠3,即∠ABC=3∠3,根据三角形内角和定理得∠3+∠C=106°,在△ABC中,利用三角形内角和定理得∠A+∠ABC+∠C=180°,则20°+2∠3+106°=180°,可计算出∠3=27°,即可得出结果.【解答】解如图,∵△ABC沿BE BA′再一次对折,点C落在BE上的C′处,∴∠1=∠2,∠2=∠3,∠CDB=∠C′DB=74°,∴∠1=∠2=∠3,∴∠ABC=3∠3,在△BCD中,∠3+∠C+∠CDB=180°,∴∠3+∠C=180°﹣74°=106°,在△ABC中,∵∠A+∠ABC+∠C=180°,∴20°+2∠3+(∠3+∠C)=180°,即20°+2∠3+106°=180°,∴∠3=27°,∴∠C=106°﹣27°=79°,故选:D.16.(2023秋•忻州期末)如图,在△CEF中,∠E=78°,∠F=47°,AB∥CF,AD∥CE,连接BC,CD,则∠A的度数是( )A.45°B.47°C.55°D.78°【分析】延长EC交AB于点H,由三角形的内角和可求得∠ECF=60°,再由平行线的性质可得∠BHE=∠ECF=60°,∠BHE=∠A,从而可得解.【解答】解:延长EC交AB于点H,如图所示:∵∠E=78°,∠F=47°,∴∠ECF=180°﹣∠E﹣∠F=55°,∵AB∥CF,AD∥CE,∴∠BHE=∠ECF=55°,∠BHE=∠A,∴∠A=55°.故选:C.17.(2023秋•宝安区期末)如图,三角形纸片ABC中,点D、E、F分别在边BC,AB,AC上,连接DE,DF,将△BDE、△CDF分别沿DE、DF对折,使点B、C落在点B'、C'处,若B'D恰好平分∠EDC',且∠EDF=99.5°,则∠EDC'的度数为( )A.37°B.38°C.39°D.40°【分析】设∠BDE=x,∠CDF=y,则∠B′DE=∠BDE=2x,∠FDC′=∠CDF=y,根据B'D恰好平分∠EDC'可知∠B′DE=∠B′DC′=x,根据∠EDF=99.5°及平角的定义得出关于x,y的方程组,求出x的值,进而可得出结论.【解答】解:设∠BDE=x,∠CDF=y,∵△B′DE由△BDE翻折而成,△C′DF由△CDF翻折而成,∴∠B′DE=∠BDE=2x,∠FDC′=∠CDF=y,∵B'D恰好平分∠EDC',∴∠B′DE=∠B′DC′=x,∵∠EDF=99.5°,∠BDE+∠B′DE+∠B′DC′+∠C′DF+∠CDF=180°,∴2x+y=99.5°3x+2y=180°,解得x=19°,∴∠EDC'=2x=38°.故选:B.18.(2024春•盐城期末)如图,在△ABC中,∠F=16°,BD、CD分别平分∠ABC,∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE分别平分∠MBC,∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠A= 52° .【分析】根据三角形外角的性质和角平分线的性质可求出∠E,利用三角形内角和定理求出∠5+∠6+∠1,得到∠MBC+∠NCB,从而求出∠DBC+∠DCB,再次利用角平分线的性质与三角形内角和定理即可求解.∵BF,CF分别平分∠EBC,∠ECQ,∴∠5=∠6,∠2=∠3+∠4,∵∠3+∠4=∠5+∠F,2∠2=2∠5+∠E,∴2∠F=∠E=32°,∵BE,CE分别平分∠MBC,∠BCN,∴∠5+∠6=12∠MBC,∠1=12∠NCB,∴∠5+∠6+∠1=12(∠MBC+∠NCB),∵∠E=180°﹣(∠5+∠6+∠1)=32°,∴∠5+∠6+∠1=148°,∴∠MBC+∠NCB=2(∠5+∠6+∠1)=296°,∵BD,CD分别平分∠ABC,ACB,∴∠DBC=12∠ABC,∠DCB=12∠ACB,∴∠DBC+∠DCB=180°﹣∠MBC+180°﹣∠NCB=360°﹣(∠MBC+∠NCB)=64°,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣2(∠DBC+∠DCB)=52°,故答案为:52°.19.(2024春•成武县期末)如图,∠A+∠B+∠C+∠D+∠E的度数是 180° .【分析】本题运用三角形的一个外角等于和它不相邻的两个内角和,将已知角转化在同一个三角形中,再根据三角形内角和定理求解.∵∠1=∠B+∠E,∠2=∠1+∠C,∠A+∠2+∠D=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故答案为:180°.20.(2024•凉州区校级三模)如图,AP,BP分别平分△ABC内角∠CAB和外角∠CBD,连接CP,若∠ACP =130°,则∠APB= 40° .【分析】过P点分别作PE⊥AC,PF⊥BC,PG⊥AD,分别交AC的延长线于E,交BC于点F,交AD于点G,由角平分线的性质及判定可得CP平分∠BCE,进而可求解∠ACB的度数,根据三角形外角的性质可推知∠ACB=2∠APB,进而可求解.【解答】解:过P点分别作AC,PF⊥BC,PG⊥AD,分别交AC的延长线于E,交BC于点F,交AD于点G,∵AP平分∠BAC,∴PE=PG,∠BAC=2∠BAP,∵BP平分∠CBD,∴PF=PG,∠CBD=2∠DBP,∴PE=PF,∴CP平分∠BCE,∴∠BCP=∠PCE,∵∠ACP=130°,∴∠PCE=180°﹣∠ACP=50°,∴∠BCP=50°,∴∠ACB=∠ACP﹣∠BCP=130°﹣50°=80°,∵∠DBC=∠BAC+∠ACB,∠DBP=∠BAP+∠APB,∴∠ACB=2∠APB,∴∠APB=40°.故答案为40°.21.(2024•陆丰市一模)如图,∠ADC=130°,∠BCD=140°,∠DAB和∠CBE的平分线交于点F,则∠AFB = 45° .【分析】先根据角平分线的性质得出∠FBE=12∠CBE,∠FAB=12∠DAB,再由四边形内角和定理得出∠DAB+∠ABC的度数,再由三角形外角的性质即可得出结论.【解答】解:∵BF平分∠CBE,AF平分∠DAB,∴∠FBE=12∠CBE,∠FAB=12∠DAB.∵∠D+∠DCB+∠DAB+∠ABC=360°,∴∠DAB+∠ABC=360°﹣∠D﹣∠DCB=360°﹣130°﹣140°=90°.又∵∠AFB+∠FAB=∠FBE,∴∠F=∠FBE﹣∠FAB=12∠CBE―12∠DAB=12(∠CBE﹣∠DAB)=12(180°﹣∠ABC﹣∠DAB)=12×(180°﹣90°)=45°.故答案为:45°.22.(2024春•香坊区校级期中)如图,在△ABC中,∠ACB=90°,点E是BC上的点,ED⊥AB于点D,∠CED的平分线交AC于点F,连接BF交ED于点H,∠AFB的角平分线交ED的延长线于点P,若∠CFH=∠EHF,∠ABF=12∠CFE,则∠P= .【分析】设∠ABF=α,则∠CFE=2α,由四边形内角和定理得180°﹣4α+2(90°﹣α)+90°=360°,求得α=15°.进一步计算即可求解.【解答】解:设∠ABF=α,则∠CFE=2α,∵ED⊥AB,∴∠HDB=90°,∴∠BHD=90°﹣α,∴∠EHF=90°﹣α,∵∠CFH=∠EHF,∴∠CFH=90°﹣α,∵∠ACB=90°,∴∠CEF=90°﹣∠CFE=90°﹣2α,∵EF平分∠CED,∴∠CEH=2∠CEF=180°﹣4α,由四边形内角和定理得180°﹣4α+2(90°﹣α)+90°=360°,解得α=15°.∴∠CFH=∠EHF=90°﹣α=75°,∴∠EFH=75°﹣2α=45°,∠CEF=60°=∠FEP,∠AFB=180°﹣∠CFH=105°,∵PF平分∠AFB,∴∠HFP=12∠AFB=52.5°,∴∠P=180°﹣60°﹣45°﹣52.5°=22.5°,故答案为:22.5°.23.(2024春•南岗区校级期中)在△ABC中,∠ABC=∠ACB,点D是△ABC外的一点,连接AD、CD、BD,∠ACD=∠ADC,∠ABD=∠ADB,若∠BDC=36°,则∠ACB= 度.【分析】运用方程思路联立等式,设∠ABC=∠ACB=x,∠ACD=∠ADC=y,再根据三角形内角和性质列式计算,进行解答即可.【解答】解:如图:依题意,设∠ABC=∠ACB=x,∠ACD=∠ADC=y∵∠BDC=36°∴∠ABD=∠ADB=y﹣36°则∠CBD=∠ABC﹣∠ABD=x﹣(y﹣36°)∵在△BCD中,∠BCD+x+y+∠BDC=180°∴x﹣(y﹣36°)+x+y+36°=180°则2x+72°=180°解得x=54°则∠ACB=54°故答案为:54.24.(2024春•吴江区校级期中)如图,在△ABC中,点D在BC上,点E、F在AB上,点G在DF的延长线上,且∠B=∠DFB,∠G=∠DEG,若∠BEG=29°,则∠BDE的度数为 .【分析】设∠BED=x,则∠G=∠DEG=x+29°,再根据三角形的内角和定理可得∠EDG=122°﹣2x,根据三角形的外角性质可得∠B=∠DFB=122°﹣x,然后在△BDE中,根据三角形的内角和定理即可得.【解答】解:设∠BED=x,∵∠BEG=29°,∴∠G=∠DEG=∠BED+∠BEG=x+29°,∴∠EDG=180°﹣∠G﹣∠DEG=122°﹣2x,∴∠B=∠DFB=∠BED+∠EDG=122°﹣x,∴∠BDE=180°﹣(∠BED+∠B)=180°﹣(x+122°﹣x)=58°,故答案为:58°.25.(2023秋•新民市期末)有一张三角形纸片ABC,已知∠B=30°,∠C=50°,点D在边AB上,请在边BC上找一点E,将纸片沿直线DE折叠,点B落在点F处,若EF与三角形纸片ABC的边AC平行,则∠BED的度数为 .【分析】分两种情况:①当点F在AB的上方时,②当点F在BC的下方时,根据折叠性质、平行线的性质即可解决问题.【解答】解:①当点F在AB的上方时,如图:∵AC∥EF,∠C=50°,∴∠BEF=∠C=50°,∴∠BED=∠FED=12∠BEF=12×50°=25°;②当点F在BC的下方时,如图:∵AC∥EF,∠C=50°,∴∠CEF=∠C=50°,∵∠F=∠B=30°,∴∠BGD=50°+30°=80°,∴∠BDG=180°﹣80°﹣30°=70°,∴∠BDE=12∠BDG=12×70°=35°;∴∠BED=180°﹣∠B﹣∠BDE=180°﹣30°﹣35°=115°综上所述,∠BDE的度数为25°或115°.故答案为:25°或115°.26.(2023秋•宝丰县期末)如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=n•90°,则n= .【分析】连接BE,GE,FG,根据三角形内角与外角的性质可得,∠1=∠A+∠D,∠1+∠G=∠2,再根据四边形及三角形内角和定理解答即可.【解答】解:连接BE,GE,FG,∵∠1是△ADH的外角,∴∠1=∠A+∠D,∵∠2是△JHG的外角,∴∠1+∠G=∠2,∴在四边形BEFJ中,∠EBJ+∠BJF+∠EFJ+∠BEF=360°…①,在△BCE中,∠EBC+∠C+∠BEC=180°…②,①+②得,∠BEG+∠BGF+∠F+∠BEF+∠EBC+∠C+∠BEC=360°+180°=540°,即∠A+∠B+∠C+∠D+∠E+∠F+∠G=540°,∴n =540°90°=6.∴n =6.故答案为:6.27.(2023秋•蓬江区校级月考)如图,∠ACD 是△ABC 的外角,∠ABC 的平分线与∠ACD 的平分线交于点A 1,∠A 1BC 的平分线与∠A 1CD 的平分线交于点A 2,…∠A 3BC 的平行线与∠A 3CD 的平分线交于点A 4,设∠A =θ,则∠A 4= .【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD =∠A +∠ABC ,∠A 1CD =∠A 1+∠A 1BC ,根据角平分线的定义可得∠A 1BC =12∠ABC ,∠A 1CD =12∠ACD ,然后整理得到∠A 1=12∠A ,同理可得∠A 2=12∠A 1,从而判断出后一个角是前一个角的12,然后表示出∠A n ,即可得到∠A .【解答】解:由三角形的外角性质得,∠ACD =∠A +∠ABC ,∠A 1CD =∠A 1+∠A 1BC ,∵∠ABC 的平分线与∠ACD 的平分线交于点A 1,∴∠A 1BC =12∠ABC ,∠A 1CD =12∠ACD ,∴∠A 1+∠A 1BC =12(∠A +∠ABC )=12∠A +∠A 1BC ,∴∠A 1=12∠A ,同理可得∠A 2=12∠A 1=θ4=θ22,…,∠A n =θ2n .∴∠A 4=θ24.故答案为:θ24.28.(2023春•汉源县校级期中)如图,BE是∠ABD的平分线,CF是∠ACD的平分线,BE与CF交于G,如果∠BDC=120°,∠BGC=100°,则∠A= .【分析】连接BC,根据三角形内角和定理求出∠DBC+∠DCB=60°,∠GBC+∠GCB=80°,所以∠GBD+∠GCD =20°,再根据角平分线的定义求出∠ABG+∠ACG=∠GBD+∠GCD=20°,然后根据三角形内角和定理即可求出答案.【解答】解:连接BC,∵∠BDC=120°,∴∠DBC+∠DCB=180°﹣120°=60°,∵∠BGC=100°,∴∠GBC+∠GCB=180°﹣100°=80°,∴∠GBD+∠GCD=80°﹣60°=20°,∵BE是∠ABD的平分线,CF是∠ACD的平分线,∴∠ABG+∠ACG=∠GBD+∠GCD=20°,在△ABC中,∠A=180°﹣60°﹣20°﹣20°=80°.故答案为:80°.29.(2023春•栖霞市期中)如图,E,F是△ABC的边AB、AC上的点,D是点A上方的一点,若∠B+∠C=64°,∠D=70°,则∠1+∠2的度数为 .【分析】连接EF,利用三角形的内角和定理结合整体思想即可解决问题.【解答】解:连接EF,∵∠B+∠C=64°,∴∠A=180°﹣(∠B+∠C)=116°,∴∠AEF+∠AFE=180°﹣∠A=64°.∵∠D=70°,∴∠DEF+∠DFE=180°﹣∠D=110°.∵∠1+∠AEF=∠DEF,∠2+∠AFE=∠DFE,∴∠1+∠2=∠DEF+∠DFE﹣(∠AEF+∠AFE)=110°﹣64°=46°.故答案为:46°.30.(2024秋•颍州区期末)如图1,AD,AE分别是△ABC的角平分线和高.(1)若∠B=45°,∠C=75°,则∠EAD的度数为 .(2)如图2,AD平分∠BAC,点P是AD延长线上一点,过点P作PF⊥BC于点F,则∠P与∠B,∠C的数量关系是 .【分析】(1)根据三角形内角和定理求出∠BAC的度数,再根据角平分线的定义求出∠BAD的度数,再根据直角三角形两锐角互余求出∠BAE的度数,即可求出∠EAD的度数;(2)在△PFD中,由三角形内角和定理得出∠P+∠PFD+∠PDF=180°,在△ABD中,由三角形内角和定理得出∠B+∠BAD+∠ADB=180°,再根据对顶角相等得出∠PDF=∠ADB,即可得出∠P+∠PFD=∠B+1 2∠BAC,在△ABC中,由三角形内角和定理得出∠BAC=180°﹣∠B﹣∠C,由此计算即可.【解答】解:(1)在△ABC中,∠B=45°,∠C=75°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣45°﹣75°=60°,∵AD是△ABC的角平分线,∴∠BAD=12∠BAC=12×60°=30°,∵AE是△ABC的高,∴∠BEA=90°,∴∠BAE=90°﹣∠B=90°﹣45°=45°,∴∠EAD=∠BAE﹣∠BAD=45°﹣30°=15°;(2)∵PF⊥BC,∴∠PFD=90°,在△PFD中,∠P+∠PFD+∠PDF=180°,在△ABD中,∠B+∠BAD+∠ADB=180°,∵AD平分∠BAC,∴∠BAD=12∠BAC,即∠B+12∠BAC+∠ADB=180°,∵∠PDF=∠ADB,∴∠P+∠PFD=∠B+12∠BAC,∴∠P+90°=∠B+12(180°―∠B―∠C),∴∠P+90°=∠B+90°―12∠B―12∠C,∴∠P=12∠B―12∠C,故答案为:∠P=12∠B―12∠C.。
角度计算的综合大题专项训练(30道)(含答案)

专题11.7 角度计算的综合大题专项训练(30道)考卷信息:本套训练卷共30题,培优篇15题,拔尖篇15题,题型针对性较高,覆盖面广,选题有深度,渗透角度计算由一般到特殊的思想!1.(2021春•平顶山期末)如图,已知△ABC,AD平分∠BAC交BC于点D,AE⊥BC于点E,∠B<∠C.(1)若∠B=44°,∠C=72°,求∠DAE的度数;(2)若∠B=27°,当∠DAE=21度时,∠ADC=∠C.【解题思路】(1)利用三角形的内角和求出∠BAC,再利用内角与外角的关系先求出∠ADC,再求出∠DAE;(2)利用三角形的内角和定理及推论,用含∠C的代数式表示出∠BAC、∠ADC,根据∠C=∠ADC得到关于∠C的方程,先求出∠C,再求出∠DAE的度数.【解答过程】解:∵AD平分∠BAC交BC于点D,AE⊥BC于点E,∴∠BAD=∠CAD=12∠BAC,∠AED=90°.(1)∵∠B=44°,∠C=72°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣44°﹣72°=64°.∴∠BAD=12×64°=32°.∵∠ADC=∠B+∠BAD =44°+32°=76°,∴∠DAE=90°﹣∠ADC=90°﹣76°=24°.(2))∵∠B=27°,∠C=∠ADC,∴∠BAC=180°﹣∠B﹣∠C=180°﹣27°﹣∠C=153°﹣∠C.∴∠BAD=12×(153°﹣∠C)=76.5°−12∠C.∴∠ADC=∠B+∠BAD=27°+76.5°−12∠C=103.5°−12∠C.∵∠ADC=∠C,∴103.5°−12∠C=∠C.∴∠ADC=∠C=69°.∴∠DAE=∠AED﹣∠ADC=90°﹣69°=21°.故答案为:21.2.(2021春•长春期末)如图,点A、B分别在射线OM、ON上运动(不与点O重合),AC、BC分别是∠BAO和∠ABO的角平分线,BC延长线交OM于点G.解决问题:(1)若∠OBA=80°,∠OAB=40°,则∠ACG=60°;(直接写出答案)(2)若∠MON=100°,求出∠ACG的度数.【解题思路】(1)由角平分线的定义可求出∠CBA和∠CAB的度数,再根据三角形外角的性质求出∠ACG的度数即可;(2)先根据三角形内角和定理求出∠OBA+∠OAB的度数,然后再根据角平分线的定义求出∠CBA+∠CAB的度数,最后根据三角形外角的性质求出结果即可.【解答过程】解:(1)∵AC、BC分别是∠BAO和∠ABO的角平分线,∴∠CBA=12∠ABO,∠CAB=12∠BAO,∵∠OBA=80°,∠OAB=40°,∴∠CBA=40°,∠CAB=20°,∴∠ACG=∠CBA+∠CAB=60°.故答案为:60°.(2)∵∠MON=100°,∴∠BAO+∠ABO=180°﹣100°=80°,∵AC、BC分别是∠BAO和∠ABO的角平分线,∴∠CBA=12∠ABO,∠CAB=12∠BAO,∴∠CBA+∠CAB=12(∠ABO+∠BAO)=12×80°=40°,∴∠ACG=∠CBA+∠CAB=40°.3.(2021春•兴化市期末)如图,在△ABC中,∠ACB=90°,AE平分∠CAB,CD⊥AB,AE、CD相交于点F.(1)若∠DCB=50°,求∠CEF的度数;(2)求证:∠CEF=∠CFE.【解题思路】(1)根据直角三角形的性质得到∠DCB+∠B=90°,∠CAB+∠B=90°,进而得到∠CAB =∠DCB,根据角平分线的定义计算即可;(2)根据角平分线的定义得到∠BAE=∠CAE,根据直角三角形的性质得到∠CEF=∠AFD,根据对顶角相等证明结论.【解答过程】(1)解:∵CD⊥AB,∴∠DCB+∠B=90°,∵∠ACB=90°,∴∠CAB+∠B=90°,∴∠CAB=∠DCB=50°,∵AE平分∠CAB,∴∠CAE=12∠CAB=25°,∴∠CEF=90°﹣∠CAE=65°;(2)证明:∵AE平分∠CAB,∴∠BAE=∠CAE,∵∠CAE+∠CEF=90°,∠BAE+∠AFD=90°,∴∠CEF=∠AFD,∵∠CFE=∠AFD,∴∠CEF=∠CFE.4.(2021春•海陵区期末)如图,CD是△ABC的角平分线,DE∥BC,交AB于点E.(1)若∠A=45°,∠BDC=70°,求∠CED的度数;(2)若∠A﹣∠ACD=34°,∠EDB=97°,求∠A的度数.【解题思路】(1)利用三角形内角和定理求出∠ACB,再求出∠ECD,∠EDC,可得结论.(2)设∠A=x,则∠ACD=x﹣34°,根据∠EDB=∠A+∠AED,构建方程求解即可.【解答过程】解:(1)∵∠CDB=∠A+∠ACD,∴∠ACD=70°﹣45°=25°,∵CD平分∠ACB,∴∠DCB=∠ACB=25°,∵DE∥CB,∴∠EDC=∠BCD=25°,∴∠DEC=180°﹣25°﹣25°=130°.(2)设∠A=x,则∠ACD=x﹣34°,∵CD平分∠ACB,∴∠ACB=2x﹣68°,∵DE∥CB,∴∠AED=∠ACB=2x+68°,∵∠EDB=∠A+∠AED,∴97°=x+2x﹣68°,∴x=55°,∴∠A=55°.5.(2021春•宽城区期末)如图,在△ABC中,点E是边AC上一点,∠AEB=∠ABC.(1)如图1,作∠BAC的平分线交CB、BE于D、F两点.求证:∠EFD=∠ADC.(2)如图2,作△ABC的外角∠BAG的平分线,交CB的延长线于点D,延长BE、DA交于点F,试探究(1)中的结论是否成立?请说明理由.【解题思路】(1)首先根据角平分线的性质可得∠BAD=∠DAC,再根据内角与外角的性质可得∠EFD =∠DAC+∠AEB,∠ADC=∠ABC+∠BAD,进而得到∠EFD=∠ADC;(2)首先根据角平分线的性质可得∠BAD=∠DAG,再根据等量代换可得∠F AE=∠BAD,然后再根据内角与外角的性质可得∠EFD=∠AEB﹣∠F AE,∠ADC=∠ABC﹣∠BAD,进而得∠EFD=∠ADC.【解答过程】解:(1)∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠EFD=∠DAC+∠AEB,∠ADC=∠ABC+∠BAD,又∵∠AEB=∠ABC,∴∠EFD=∠ADC;(2)探究(1)中结论仍成立;理由:∵AD平分∠BAG,∴∠BAD=∠GAD,∵∠F AE=∠GAD,∴∠F AE=∠BAD,∵∠EFD=∠AEB﹣∠F AE,∠ADC=∠ABC﹣∠BAD,又∵∠AEB=∠ABC,∴∠EFD=∠ADC.6.(2021春•镇江期中)如图,将一张三角形纸片ABC的一角折叠,使得点A落在四边形BCDE的外部A'的位置,且A'与点C在直线AB的异侧,折痕为DE,已知∠C=90°,∠A=30°.(1)求∠1﹣∠2的度数;(2)若保持△A′DE的一边与BC平行,求∠ADE的度数.【解题思路】(1)先求出∠B的度数,在根据四边形内角和求出∠1+∠BFD的度数,由∠BFD=∠A′FE和∠A’的度数可求出答案.(2)分EA'∥BC和DA'∥BC两种情况讨论.当DA'∥BC时,先求出∠A′DA=90°,再根据折叠可得出∠ADE=45°;当EA'∥BC时,根据平行线的性质求出∠2=∠ABC=60°,由(1)得出∠1=120°,再根据折叠可求出∠ADE的度数.【解答过程】解:(1)由折叠可知,∠A′=∠A=30°,在△A′EF中,∠A′+∠2+∠A′FE=180°,∴∠2=180°﹣∠A′﹣∠A′FE=150°﹣∠A′FE,在△ABC中,∠B=180°﹣∠C﹣∠A=60°,在四边形BCDF中,∠1+∠C+∠B+∠BFD=360°,∴∠1=360°﹣∠C﹣∠B﹣∠BFD=210°﹣∠BFD,∵∠BFD=∠A′FE,∴∠1﹣∠2=210°﹣150°=60°;(2)当DA'∥BC时,如图,∠A′DA=∠ACB=90°,∵△ADE沿DE折叠到△A′DE,∴∠ADE=∠A′DE=12∠ADA′=45°,当EA'∥BC时,如图,∠2=∠ABC=60°.由(1)知,∠1﹣∠2=60°,∴∠1=∠2+60°=120°,∵△ADE沿DE折叠到△A′DE,∴∠ADE=∠A′DE=12∠ADA′=(180°﹣∠1)=30°.综上所述∠ADE的度数为:45°或30°.7.(2021春•常熟市期中)已知△ABC中,AD⊥BC于点D,AE平分∠BAC,过点A作直线GH∥BC,且∠GAB=60°,∠C=40°.(1)求△ABC的外角∠CAF的度数;(2)求∠DAE的度数.【解题思路】(1)根据平行线的性质、对顶角相等计算即可;(2)根据角平分线的定义得到∠BAE=40°,根据平行线的性质求出∠GAD=90°,结合图形计算,得到答案.【解答过程】解:(1)∵GH∥BC,∠C=40°,∴∠HAC=∠C=40°,∵∠F AH=∠GAB=60°,∴∠CAF=∠HAC+∠F AH=100°;(2)∵∠HAC=40°,∠GAB=60°,∴∠BAC=80°,∵AE平分∠BAC,∴∠BAE=40°,∵GH∥BC,AD⊥BC,∴∠GAD=90°,∴∠BAD=90°﹣60°=30°,∴∠DAE=∠BAE﹣∠BAD=10°.8.(2020秋•红桥区期末)如图,在△ABC中,AD是高,角平分线AE,BF相交于点O,∠BAC=50°,∠C=70°,求∠DAC和∠BOA的大小.【解题思路】根据三角形高线可得∠ADC=90°,利用三角形的内角和定理可求解∠DAC的度数;由三角形的内角和可求解∠B的度数,再根据角平分线的定义可求出∠BAO和∠ABO的度数,再利用三角形的内角和定理可求解.【解答过程】解:∵AD是△ABC的高线,∴∠ADC=90°,∵∠ADC+∠C+∠CAD=180°,∠C=70°,∴∠CAD=180°﹣90°﹣70°=20°;∵∠ABC+∠C+∠CAB=180°,∠C=70°,∠BAC=50°,∴∠ABC=180°﹣70°﹣50°=60°,∵AE,BF分别平分∠BAC,∠ABC,AE,BF相交于点O,∴∠BAO=12∠BAC=25°,∠ABO=12∠ABC=30°,∵∠ABO+∠BAO+∠AOB=180°,∴∠AOB=180°﹣25°﹣30°=125°.9.(2020秋•涪城区期末)如图,在△ABC中,∠1=∠2=∠3.(1)证明:∠BAC=∠DEF;(2)∠BAC=70°,∠DFE=50°,求∠ABC的度数.【解题思路】(1)利用三角形的外角的性质解决问题即可.(2)利用三角形的外角的性质解决问题即可.【解答过程】(1)证明:∵∠BAC=∠1+∠CAE,∠DEF=∠3+∠CAE,∠1=∠3,∴∠BAC=∠DEF.(2)∵∠ABC=∠2+∠ABD,∠1=∠2,∴∠ABC=∠1+∠ABD=∠EDF,由(1)可知∠DEF=∠BAC=70°,∴∠ABC=∠1+∠ABD=∠EDF=180°﹣∠DEF﹣∠DFE=180°﹣70°﹣50°=60°,∴∠ABC=60°.10.(2021春•苏州期末)如图,△ABC中,D为BC上一点,∠C=∠BAD,△ABC的角平分线BE交AD 于点F.(1)求证:∠AEF=∠AFE;(2)G为BC上一点,当FE平分∠AFG且∠C=30°时,求∠CGF的度数.【解题思路】(1)由角平分线定义得∠ABE=∠CBE,再根据三角形的外角性质得∠AEF=∠AFE;(2)由角平分线定义得∠AFE=∠GFE,进而得∠AEF=∠GFE,由平行线的判定得FG∥AC,再根据平行线的性质求得结果.【解答过程】解:(1)证明:∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABF+∠BAD=∠CBE+∠C,∵∠AFE=∠ABF+∠BAD,∠AEF=∠CBE+∠C,∴∠AEF=∠AFE;(2)∵FE平分∠AFG,∴∠AFE=∠GFE,∵∠AEF=∠AFE,∴∠AEF=∠GFE,∴FG∥AC,∵∠C=30°,∴∠CGF=180°﹣∠C=150°.11.(2020秋•恩施市期末)已知:如图,△ABC中,∠BAD=∠EBC,AD交BE于F.(1)试说明:∠ABC=∠BFD;(2)若∠ABC=35°,EG∥AD,EH⊥BE,求∠HEG的度数.【解题思路】(1)根据三角形的外角性质即可得出结论;(2)根据三角形内角和和互余进行分析解答即可.【解答过程】解:(1)∵∠BFD=∠ABF+∠BAD,∠ABC=∠ABF+∠FBC,∵∠BAD=∠EBC,∴∠ABC=∠BFD;(2)∵∠BFD=∠ABC=35°,∵EG∥AD,∴∠BEG=∠BFD=35°,∵EH⊥BE,∴∠BEH=90°,∴∠HEG=∠BEH﹣∠BEG=55°.12.(2020秋•白银期末)(1)探究:如图1,求证:∠BOC=∠A+∠B+∠C.(2)应用:如图2,∠ABC=100°,∠DEF=130°,求∠A+∠C+∠D+∠F的度数.【解题思路】(1)作射线OA,由三角形外角的性质可知∠1+∠B=∠3,∠2+∠C=∠4,两式相加即可得出结论;(2)连接AD,由(1)的结论可知∠F+∠2+∠3=∠DEF,∠1+∠4+∠C=∠ABC,两式相加即可得出结论.【解答过程】解:(1)作射线OA,∵∠3是△ABO的外角,∴∠1+∠B=∠3,①∵∠4是△AOC的外角,∴∠2+∠C=∠4,②①+②得,∠1+∠B+∠2+∠C=∠3+∠4,即∠BOC=∠A+∠B+∠C;(2)连接AD,同(1)可得,∠F+∠2+∠3=∠DEF③,∠1+∠4+∠C=∠ABC④,③+④得,∠F+∠2+∠3+∠1+∠4+∠C=∠DEF+∠ABC=130°+100°=230°,即∠A+∠C+∠D+∠F=230°.13.(2021春•新蔡县期末)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB =50°,∠C=60°,求∠DAE和∠BOA的度数.【解题思路】先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,可得∠DAE的度数;然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.【解答过程】解:∵∠CAB=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.14.(2020春•香坊区校级月考)如图,在△ABC中,∠C=40°,AE、BF分别为△ABC的角平分线,它们相交于点O.(1)求∠EOF的度数.(2)AD是△ABC的高,∠AFB=80°时,求∠DAE的度数.【解题思路】(1)先根据三角形内角和定理得∠C=180°﹣(∠BAC+∠ABC)的度数,由角平分线的定义和三角形内角和定理可得结论;(2)先根据垂直的定义及三角形内角和可得到∠CAD的度数,再求出∠1的度数,最后根据三角形内角和即可求解.【解答过程】解:(1)∵∠CAB+∠ABC=180°﹣∠C,∵AE、BF是角平分线,∴∠EAB=12∠BAC,∠FBA=12∠ABC,∴∠EAB+∠FBA=12(∠BAC+∠ABC)=12(180°﹣∠C)=90°−12∠C,∴∠AOB=180°﹣(90°−12∠C)=90°+12∠C,∵∠C=40°,∴∠AOB=110°,∴∠EOF=∠AOB=110°.(2)∵AD⊥BC,∠C=40°,∴∠CAD=50°,∵∠AFB=80°,∴∠1=180°﹣50°﹣80°=50°,∴∠DAE=180°﹣∠1﹣∠AOB=180°﹣50°﹣110°=20°.15.(2021春•海陵区校级月考)如图1,△ABC中,AD平分∠BAC交BC于点D,AE⊥BC,垂足为E,CF∥AD.(1)如图1,∠B=30°,∠ACB=70°,求∠CFE的度数;(2)若(1)中的∠B=α,∠ACB=β(α<β),则∠CFE=12β−12α;(用α、β表示)(3)如图2,(2)中的结论还成立么?请说明理由.【解题思路】(1)求∠CFE的度数,求出∠DAE的度数即可,只要求出∠BAE﹣∠BAD的度数,由平分和垂直易得∠BAE和∠BAD的度数即可;(2)由(1)类推得出答案即可;(3)类比以上思路,把问题转换为∠CFE=90°﹣∠ECF即可解决问题.【解答过程】解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°﹣∠B﹣∠ACB=80°,∵AD平分∠BAC,∴∠BAD=40°,∵AE⊥BC,∴∠AEB=90°∴∠BAE=60°∴∠DAE=∠BAE﹣∠BAD=60°﹣40°=20°,∵CF∥AD,∠B=α,∠ACB=β,∴∠CFE=∠DAE=20°;(2)∵∠BAE=90°﹣∠B,∠BAD=12∠BAC=12(180°﹣∠B﹣∠ACB),∵CF ∥AD ,∴∠CFE =∠DAE =∠BAE ﹣∠BAD =90°﹣∠B −12(180°﹣∠B ﹣∠BCA )=12(∠ACB ﹣∠B )=12β−12α, 故答案为:12β−12α; (3)(2)中的结论成立.∵∠B =α,∠ACB =β,∴∠BAC =180°﹣α﹣β,∵AD 平分∠BAC ,∴∠DAC =12∠BAC =90°−12α−12β,∵CF ∥AD ,∴∠ACF =∠DAC =90°−12α−12β,∴∠BCF =β+90°−12α−12β=90°−12α+12β,∴∠ECF =180°﹣∠BCF =90°+12α−12β,∵AE ⊥BC ,∴∠FEC =90°,∴∠CFE =90°﹣∠ECF =12β−12α.16.(2021春•市北区期末)阅读并填空将三角尺(△MPN ,∠MPN =90°)放置在△ABC 上(点P 在△ABC 内),如图1所示,三角尺的两边PM 、PN 恰好经过点B 和点C .我们来探究:∠ABP 与∠ACP 是否存在某种数量关系.(1)特例探索:若∠A =50°,则∠PBC +∠PCB = 90 度;∠ABP +∠ACP = 40 度;(2)类比探索:∠ABP、∠ACP、∠A的关系是∠ABP+∠ACP=90°﹣∠A;(3)变式探索:如图2所示,改变三角尺的位置,使点P在△ABC外,三角尺的两边PM、PN仍恰好经过点B和点C,则∠ABP、∠ACP、∠A的关系是∠ACP﹣∠ABP=90°﹣∠A.【解题思路】(1)利用三角形内角和定理即可解决问题.(2)结论:∠ABP+∠ACP=90°﹣∠A.利用三角形内角和定理即可证明.(3)不成立;存在结论:∠ACP﹣∠ABP=90°﹣∠A.利用三角形内角和定理即可解决问题.【解答过程】解:(1)∵∠A=50°,∴∠ABC+∠ACB=130°,∵∠P=90°,∴∠PBC+∠PCB=90°,∴∠ABP+∠ACP=130°﹣90°=40°,故答案为:90,40;(2)结论:∠ABP+∠ACP=90°﹣∠A.证明:∵(∠PBC+∠PCB)+(∠ABP+∠ACP)+∠A=180°,∴90°+(∠ABP+∠ACP)+∠A=180°,∴∠ABP+∠ACP+∠A=90°,∴∠ABP+∠ACP=90°﹣∠A.故答案为:∠ABP+∠ACP=90°﹣∠A;(3)结论:∠ACP﹣∠ABP=90°﹣∠A,理由是:设AB交PC于O,如图2:∵∠AOC=∠POB,∴∠ACO+∠A=∠P+∠PBO,即∠ACP+∠A=90°+∠ABP,∴∠ACP﹣∠ABP=90°﹣∠A,故答案为:∠ACP﹣∠ABP=90°﹣∠A.17.(2021春•东海县期末)如图1.△ABC的外角平分线BF、CF交于点F.(1)若∠A=50°.则∠F的度数为65°;(2)如图2,过点F作直线MN∥BC,交AB,AC延长线于点M、N.若设∠MFB=α,∠NFC=β,则∠A与a+β满足的数量关系是α+β−12∠A=90°;(3)在(2)的条件下,将直线MN绕点F转动.①如图3,当直线MN与线段BC没有交点时,试探索∠A与α,β之间满足的数量关系,并说明理由;②当直线MN与线段BC有交点时,试问①中∠A与α,β之间的数量关系是否仍然成立?若成立,请说明理由;若不成立,请直接写出三者之间满足的数量关系.【解题思路】(1)根据三角形内角和定理以及角平分线的定义,即可得到∠F的度数;(2)根据三角形内角和定理以及角平分线的定义,即可得到∠BFC的度数,再根据平行线的性质,即可得到∠A与α+β的数量关系;(3)①根据(2)中的结论∠BFC=90°﹣∠A,以及平角的定义,即可得到∠A与α,β之间的数量关系;②分两种情况进行讨论,根据(2)中的结论∠BFC=90°﹣∠A,以及平角的定义,即可得到∠A与α,β之间的数量关系.【解答过程】解:(1)如图1,∵∠A=50°,∴∠ABC+∠ACB=130°,∴∠DBC﹣∠ECB=360°﹣130°=230°,又∵△ABC的外角平分线交于点F,∴∠FBC+∠FCB=12(∠DBC+∠ECD)=12×230°=115°,∴△BCF中∠F=180°﹣115°=65°,故答案为65°;(2)如图2,∵∠ABC+∠ACB=180°﹣∠A,∴∠DBC+∠ECB=360°﹣(180°﹣∠A)=180°+∠A,又∵△ABC的外角平分线交于点F,∴∠FBC+∠FCB=12(∠DBC+∠ECB)=12×(180°+∠A)=90°+12∠A,∴△BCF中,∠BFC=180°﹣(90°+12∠A)=90°−12∠A,又∵∠MFB=α,∠NFC=β,MN∥BC,∴∠FBC=α,∠FCB=β,∵△BCF中,∠FBC+∠FCB+∠BFC=180°,∴α+β+90°−12∠A=180°,即α+β−12∠A=90°,故答案为:α+β−12∠A=90°;(3)①α+β−12∠A=90°,理由如下:如图3,由(2)可得,∠BFC=90°−12∠A,∵∠MFB+∠NFC+∠BFC=180°,∴α+β+90°−12∠A=180°,即α+β−12∠A=90°,②当直线MN与线段BC有交点时,①中∠A与α,β之间的数量关系不成立,分两种情况:如图4,当M在线段AB上,N在AC延长线上时,由(2)可得,∠BFC=90°−12∠A,∵∠BFC﹣∠MFB+∠NFC=180°,∴90°−12∠A﹣α+β=180°,即β﹣α−12∠A=90°;如图5,当M在AB的延长线上,N在线段AC上时,由(2)可得,∠BFC=90°−12∠A,∴∠BFC﹣∠NFC+∠MFB=180°,∴90°−12∠A﹣β+α=180°,即α﹣β−12∠A=90°;综上所述,∠A与α,β之间的数量关系为β﹣α−12∠A=90°或α﹣β−12∠A=90°.18.(2021春•宽城区期末)在△ABC中,∠ACB=90°,点D、E分别是边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)如图1,点P在斜边AB上运动.①若∠α=70°,则∠1+∠2=160度.②写出∠α、∠1、∠2之间的关系,并说明理由.(2)如图2,点P在斜边AB的延长线上运动(CE<CD),BE、PD交于点F,试说明∠1﹣∠2=90°+∠α.(3)如图3,点P在△ABC外运动(只需研究图③的情形),直接写出∠α、∠1、∠2之间的关系.【解题思路】(1)①求出∠CEP+∠CDP,可得结论.②结论:∠1+∠2=90°+∠α.连接PC,利用三角形的外角的性质解决问题即可.(2)利用三角形的外角的性质以及三角形内角和定理证明即可.(3)利用基本结论∠C+∠3=∠P+∠4,构建关系式,可得结论.【解答过程】解:(1)①∵∠C=90°,α=70°,∴∠CEP+∠CDP=360°﹣(90°+70°)=200°,∴∠1+∠2=360°﹣200°=160°,故答案为:160.②结论:∠1+∠2=90°+∠α.理由:如图1中,连结CP.∵∠1=∠DCP+∠CPD,∠2=∠ECP+∠CPE,∴∠1+∠2=∠DCP+∠CPD+∠ECP+∠CPE,∵∠DCP+∠ECP=∠ACB=90°,∠CPD+∠CPE=∠DPE=∠α,∴∠1+∠2=90°+∠α.(2)如图2中,∵∠1=∠ACB+∠CFD,∠CFD=∠2+∠α,∴∠1=∠ACB+∠2+∠α.∵∠ACB=90°,∴∠1=90°+∠2+∠α.∴∠1﹣∠2=90°+∠α.(3)结论:∠2﹣∠1=90°﹣∠α.理由:如图3中,∵∠C+∠3=∠P+∠4,∠C=90°,∠P=α,∴90°+(180°﹣∠2)=α+(180°﹣∠1),∴∠2﹣∠1=90°﹣∠α.19.(2021春•延庆区期末)在三角形ABC中,点D在线段AC上,ED∥BC交AB于点E,点F在线段AB上(点F不与点A,E,B重合),连接DF,过点F作FG⊥FD交射线CB于点G.(1)如图1,点F在线段BE上,用等式表示∠EDF与∠BGF的数量关系,并证明;(2)如图2,点F在线段BE上,求证:∠ABC+∠BFG﹣∠EDF=90°;(3)当点F在线段AE上时,依题意,在图3中补全图形,请直接用等式表示∠EDF与∠BGF的数量关系,不需证明.【解题思路】(1)结论:∠EDF+∠BGF=90°.如图1中,过点F作FH∥BC交AC于点H.利用平行线的性质求解即可.(2)如图2中,过点F作FH∥BC交AC于点H.利用平行线的性质求解即可.(3)作出图形,利用平行线的性质求解即可.【解答过程】(1)解:结论:∠EDF+∠BGF=90°.理由:如图1中,过点F作FH∥BC交AC于点H.∵ED∥BC,∴ED∥FH.∴∠EDF=∠1.∵FH∥BC,∴∠BGF=∠2.∵FG⊥FD,∴∠DFG=90°.∴∠1+∠2=90°.∴∠EDF+∠BGF=90°.(2)证明:如图2中,过点F作FH∥BC交AC于点H.∴∠ABC=∠AFH.∴∠ABC=∠1+∠3.∴∠3=∠ABC﹣∠1.∵∠EDF=∠1,∴∠3=∠ABC﹣∠EDF.∵FG⊥FD,∴∠DFG=90°.∴∠BFG+∠3=90°.∴∠3=90°﹣∠BFG.∴90°﹣∠BFG=∠ABC﹣∠EDF.∴∠ABC+∠BFG﹣∠EDF=90°.(3)解:结论:∠BGF﹣∠EDF=90°.理由:设DE 交FG 于J .∵DE ∥BC ,∴∠BGF =∠FJE ,∵∠FJE =∠DEJ +∠EDF ,∠DEJ =90°,∴∠BGF ﹣∠EDF =90°20.(2021春•中山市期末)同学们以“一块直角三角板和一把直尺”开展数学活动,提出了很多数学问题,请你解答:(1)如图1,∠α和∠β具有怎样的数量关系?请说明理由;(2)如图2,∠DFC 的平分线与∠EGC 的平分线相交于点Q ,求∠FQG 的大小;(3)如图3,点P 是线段AD 上的动点(不与A ,D 重合),连接PF 、PG ,∠DFP+∠FPG ∠EGP 的值是否变化?如果不变,请求出比值;如果变化,请说明理由.【解题思路】(1)如图1,延长AM 交EG 于M .由题意知:DF ∥EG ,∠ACB =90°,故∠α=∠GMC ,∠ACB =∠GMC +∠CGM =90°.进而推断出∠β+∠α=90°.(2)如图2,延长AC 交EG 于N .由题意知:DF ∥EN ,∠ACB =90°,得∠1=∠GNC ,∠CGN +∠GNC =90°,故∠1+∠CGN =90°.因为∠DFC 的平分线与∠EGC 的平分线相交于点Q ,所以∠QFC =12∠DFC =12(180°−∠1)=90°−12∠1,∠GQC =90°−12∠CGN .那么,∠FQG =360°﹣∠QFC ﹣∠QGC﹣∠ACB =135°.(3)由题意知:DF ∥EG ,得∠FOG =∠EGO ,故∠DFP+∠FPG ∠EGP =∠GOF ∠EGP =1.【解答过程】解:(1)如图1,延长AM 交EG 于M .∠β+∠α=90°,理由如下:由题意知:DF ∥EG ,∠ACB =90°.∴∠α=∠GMC ,∠ACB =∠GMC +∠CGM =90°.∵∠EGB 和∠CGM 是 对顶角,∴∠β=∠CGM .∴∠β+∠α=90°.(2)如图2,延长AC 交EG 于N .由题意知:DF ∥EN ,∠ACB =90°.∴∠1=∠GNC ,∠CGN +∠GNC =90°.∴∠1+∠CGN =90°.∵QF 平分∠DFC ,∴∠QFC =12∠DFC =12(180°−∠1)=90°−12∠1.同理可得:∠GQC =90°−12∠CGN .∵四边形QFCG 的内角和等于360°.∴∠FQG =360°﹣∠QFC ﹣∠QGC ﹣∠ACB =360°﹣(90°−12∠1)﹣(90°−12∠CGN )﹣90°. ∴∠FQG =135°.(3)如图3,由题意知:DF ∥EG .∴∠FOG =∠EGO .∴∠DFP+∠FPG ∠EGP =∠GOF ∠EGP =1. ∴∠DFP+∠FPG ∠EGP 的值不变.21.(2021春•禅城区期末)△ABC 中,AD 是∠BAC 的角平分线,AE 是△ABC 的高.(1)如图1,若∠B =40°,∠C =60°,求∠DAE 的度数;(2)如图2(∠B <∠C ),试说明∠DAE 与∠B 、∠C 的数量关系;(3)拓展:如图3,四边形ABDC 中,AE 是∠BAC 的角平分线,DA 是∠BDC 的角平分线,猜想:∠DAE 与∠B 、∠C 的数量关系是否改变.说明理由.【解题思路】(1)根据三角形的内角和定理可求得∠BAC =80°,由角平分线的定义可得∠CAD 的度数,利用三角形的高线可求∠CAE 得度数,进而求解即可得出结论;(2)根据(1)的推理方法可求解∠DAE、∠B、∠C的数量关系;(3)连接BC交AD于F,过点A作AM⊥BC于M,过点D作DN⊥BC于N,根据角平分线的定义得到∠EAM=12(∠ACB﹣∠ABC),同理,∠ADN=12(∠BCD﹣∠CBD),求得∠MAD=∠ADN,根据角的和差即可得到结论.【解答过程】解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD=12∠BAC=40°,∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣∠B﹣∠C,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD=12∠BAC,∵AE是△ABC的高,∴∠AEC=90°,∴∠CAE=90°﹣∠C,∴∠DAE=∠CAD﹣∠CAE=12∠BAC﹣(90°﹣∠C)=12(180°﹣∠B﹣∠C)﹣90°+∠C=12∠C−12∠B,即∠DAE=12∠C−12∠B;(3)不变,理由:连接BC交AD于F,过点A作AM⊥BC于M,过点D作DN⊥BC于N,∵AE是∠BAC的角平分线,AM是高,∴∠EAM=12(∠ACB﹣∠ABC),同理,∠ADN=12(∠BCD﹣∠CBD),∵∠AFM=∠DFN,∠AMF=∠DNF=90°,∴∠MAD=∠ADN,∴∠DAE=∠EAM+∠MAD=∠EAM+∠ADN=12(∠ACB﹣∠ABC)+12(∠BCD﹣∠CBD)=12(∠ACD﹣∠ABD).22.(2021春•侯马市期末)(1)已知:如图①的图形我们把它称为“8字形”,试说明:∠A+∠B=∠C+∠D.(2)如图②,AP,CP分别平分∠BAD,∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数.(3)如图(3),直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是∠P=90°+12(∠B+∠D);(4)如图(4),直线AP平分∠BAD的外角∠F AD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是∠P=180°−12(∠B+∠D).【解题思路】(1)根据三角形的内角和等于180°列式整理即可得证;(2)根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据(1)的结论列出整理即可得解;(3)表示出∠P AD和∠PCD,再根据(1)的结论列出等式并整理即可得解;(4)根据四边形的内角和等于360°可得(180°﹣∠1)+∠P+∠4+∠B=360°,∠2+∠P+(180°﹣∠3)+∠D=360°,然后整理即可得解.【解答过程】解:(1)∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180°,∴∠A+∠B+∠AOB=∠C+∠D+∠COD.∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D.(2)∵AP,CP分别平分∠BAD,∠BCD,∴∠BAP=∠P AD,∠BCP=∠PCD,由(1)的结论得,∠P+∠BCP=∠ABC+∠BAP,①,∠P+∠P AD=∠ADC+∠PCD②,①+②得,2∠P+∠BCP+∠P AD=∠BAP+∠PCD+∠ABC+∠ADC,∴2∠P=∠ABC+∠ADC,∵∠ABC=36°,∠ADC=16°,∴∠P=26°.(3)∵直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠P AB=∠P AD,∠PCB=∠PCE,∴2∠P AB+∠B=180°﹣2∠PCB+∠D,∴180°﹣2(∠P AB+∠PCB)+∠D=∠B,∵∠P+∠P AD=∠PCB+∠AOC=∠PCB+∠B+2∠P AD,∴∠P=∠P AD+∠B+∠PCB=∠P AB+∠B+∠PCB,∴∠P AB+∠PCB=∠P﹣∠B,∴180°﹣2(∠P﹣∠B)+∠D=∠B,即∠P=90°+12(∠B+∠D).故答案为:∠P=90°+12(∠B+∠D).(4)∵直线AP平分∠BAD的外角∠F AD,CP平分∠BCD的外角∠BCE,∴∠F AP=∠P AO,∠PCE=∠PCB,在四边形APCB中,(180°﹣∠F AP)+∠P+∠PCB+∠B=360°①,在四边形APCD中,∠P AD+∠P+(180°﹣∠PCE)+∠D=360°②,①+②得:2∠P+∠B+∠D=360°,∴∠P=180°−12(∠B+∠D).故答案为:∠P=180°−12(∠B+∠D).23.(2020春•西城区校级期末)在△ABC中,BD,CE是它的两条角平分线,且BD,CE相交于点M,MN⊥BC于点N.将∠MBN记为∠1,∠MCN记为∠2,∠CMN记为∠3.(1)如图1,若∠A=110°,∠BEC=130°,则∠2=20°,∠3﹣∠1=55°;(2)如图2,猜想∠3﹣∠1与∠A的数量关系,并证明你的结论;(3)若∠BEC=α,∠BDC=β,用含α和β的代数式表示∠3﹣∠1的度数.(直接写出结果即可)解:(2)∠3﹣∠1与∠A的数量关系是:∠3﹣∠1=12∠A.(3)∠3﹣∠1=α+β3−30°.【解题思路】(1)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACE=∠BEC﹣∠A,再根据角平分线的定义可得∠2=∠ACE;根据角平分线的定义求出∠ACB,再根据三角形的内角和定理求出∠ABC,然后求出∠1,根据直角三角形两锐角互余求出∠3,然后相减即可得解;(2)根据角平分线的定义可得∠1=12∠ABC,∠2=12∠ACB,再根据直角三角形两锐角互余表示出∠3,然后表示出∠3﹣∠1=90°−12∠ACB−12∠ABC,再根据三角形的内角和定理可得∠ACB+∠ABC=180°﹣∠A,然后代入整理即可得解;(3)在△BCE和△BCD中,根据三角形内角和定理列式整理得到∠1+∠2,再根据三角形的内角和定理和角平分线的定义用∠A表示出∠1+∠2,然后根据∠3﹣∠1=12∠A整理即可得解.【解答过程】(1)解:在△ACE中,∠ACE=∠BEC﹣∠A=130°﹣110°=20°,∵CE平分∠ACE,∴∠2=∠ACE=20°,∴∠ACB=2∠2=2×20°=40°,在△ABC中,∠ABC=180°﹣∠A﹣∠ACB=180°﹣110°﹣40°=30°,∵BD平分∠ABC,∴∠1=12∠ABC=12×30°=15°,∵MN⊥BC,∴∠3=90°﹣∠2=90°﹣20°=70°,∴∠3﹣∠1=70°﹣15°=55°,故答案为:20,55;(2)∠3﹣∠1与∠A的数量关系是:∠3﹣∠1=12∠A.证明:在△ABC中,BD,CE是它的两条角平分线,∴∠1=12∠ABC,∠2=12∠ACB,∵MN⊥BC于点N,∴∠MNC=90°,在△MNC中,∠3=90°﹣∠2,∴∠3﹣∠1=90°﹣∠2﹣∠1,=90°−12∠ACB−12∠ABC,=90°−12(∠ACB+∠ABC),∵在△ABC中,∠ACB+∠ABC=180°﹣∠A,∴∠3﹣∠1=90°−12(180°﹣∠A)=12∠A;故答案为:∠3﹣∠1=12∠A ;(3)∵BD ,CE 是△ABC 的两条角平分线, ∴∠ABC =2∠1,∠ACB =2∠2,在△BCE 和△BCD 中,∠1+2∠2+β=180°, ∠2+2∠1+α=180°, ∴∠1+∠2=120°−α+β3,∵∠1+∠2=12(∠ACB +∠ABC )=12(180°﹣∠A ), ∴120°−α+β3=12(180°﹣∠A ), 整理得,12∠A =α+β3−30°,∴∠3﹣∠1=α+β3−30°. 故答案为:α+β3−30°.24.(2020春•福山区期中)直线在同一平面内有平行和相交两种位置关系,线段首尾连接可以变换出很多不同的图形,这些不同的角又有很多不同关系,今天我们就来探究一下这些奇妙的图形吧! 【问题探究】(1)如图1,请直接写出∠A +∠B +∠C +∠D +∠E = 180° ;(2)将图1变形为图2,∠A +∠DBE +∠C +∠D +∠E 的结果如何?请写出证明过程; (3)将图1变形为图3,则∠A +∠B +∠C +∠D +∠E 的结果如何?请写出证明过程. 【变式拓展】(4)将图3变形为图4,已知∠BGF =160°,那么∠A +∠B +∠C +∠D +∠E +∠F 的度数是 320° .【解题思路】(1)根据三角形外角的性质,得到∠2=∠C+∠E,∠1=∠A+∠2,根据三角形内角和等于180°即可求解.(2)根据三角形外角的性质,得到∠ABE=∠C+∠E,∠DBC=∠A+∠D,即可证明此结论.(3)根据三角形外角的性质,得到∠DFG=∠B+∠E,∠FGD=∠A+∠C,即可证明此结论;(4)根据三角形外角的性质,得到∠BGF=∠B+∠2=160°,∠2=∠D+∠F,∠BGF=∠1+∠E=160°,∠1=∠A+∠C,即可得到结论.【解答过程】(1)解:如图1,∵∠2=∠C+∠E,∠1=∠A+∠2,∴∠A+∠B+∠C+∠D+∠E=∠1+∠B+∠D=180°,故答案为:180°;(2)证明:∵∠ABE=∠C+∠E,∠DBC=∠A+∠D,∠ABE+∠DBE+∠DBC=180°,∴∠A+∠DBE+∠C+∠D+∠E=180°∴将图①变形成图②∠A+∠DBE+∠C+∠D+∠E仍然为180°;(3)证明:∵在△FGD中,∠DFG+∠FGD+∠D=180°,∠DFG=∠B+∠E,∠FGD=∠A+∠C,∴∠A+∠B+∠C+∠D+∠E=180°,∴将图①变形成图③,则∠A+∠B+∠C+∠D+∠E还为180°;(4)解:∵∠BGF=∠B+∠2=160°,∠2=∠D+∠F,∴∠B+∠D+∠F=160°,∵∠BGF=∠1+∠E=160°,∠1=∠A+∠C,∴∠A+∠C+∠E=160°,∴∠A+∠B+∠C+∠D+∠E+∠F=320°,故答案为:320°.25.(2020春•蓬溪县期末)某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC=122°;(2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC 与∠A的数量关系,并说明理由.(4)如图4,△ABC外角∠CBM、∠BCN的平分线交于点Q,∠A=64°,∠CBQ,∠BCQ的平分线交于点P,则∠BPC=119°,延长BC至点E,∠ECQ的平分线与BP的延长线相交于点R,则∠R=29°.【解题思路】(1)根据三角形的内角和角平分线的定义;(2)由角平分线得出∠ECB=12∠ACB,∠EBD=12∠ABD.由三角形外角的性质知∠ABD=∠A+∠ACB,∠EBD=∠ECB+∠BEC,根据∠EBD=12∠ABD=12(∠A+∠ACB)=∠BEC+∠ECB可得答案;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠QBC与∠QCB,然后再根据三角形的内角和定理列式整理即可得解;(4)结合(1)(2)(3)的解析即可求得.【解答过程】解:(1)∵PB、PC分别平分∠ABC和∠ACB,∴∠PBC=12∠ABC,∠PCB=12∠ACB(角平分线的定义),∵∠BPC+∠PBC+∠PCB=180°(三角形内角和定理),∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣(12∠ABC+12∠ACB)=180°−12(∠ABC+∠ACB)=180°−12(180°﹣∠A)=180°﹣90°+12∠A=90°+12∠A=90°+12×64°=122°.故答案为:122°;(2)∵BE是∠ABD的平分线,CE是∠ACB的平分线,∴∠ECB=12∠ACB,∠EBD=12∠ABD.∵∠ABD是△ABC的外角,∠EBD是△BCE的外角,∴∠ABD=∠A+∠ACB,∠EBD=∠ECB+∠BEC,∴∠EBD=12∠ABD=12(∠A+∠ACB)=∠BEC+∠ECB,即12∠A+∠ECB=∠ECB+∠BEC,∴∠BEC=12∠A=12α;(3)结论:∠BQC=90°−12∠A.理由如下:∵∠CBM与∠BCN是△ABC的外角,∴∠CBM=∠A+∠ACB,∠BCN=∠A+∠ABC,∵BQ,CQ分别是∠ABC与∠ACB外角的平分线,∴∠QBC=12(∠A+∠ACB),∠QCB=12(∠A+∠ABC).∵∠QBC+∠QCB+∠BQC=180°,∴∠BQC=180°﹣∠QBC﹣∠QCB,=180°−12(∠A+∠ACB)−12(∠A+∠ABC),=180°−12∠A−12(∠A+∠ABC+∠ACB),=180°−12∠A﹣90°=90°−12∠A;(4)由(3)可知,∠BQC=90°−12∠A=90°−12×64°=58°,由(1)可知∠BPC=90°+12∠BQC=90°+12×58°=119°;由(2)可知,∠R=12∠BQC=29°故答案为119,29.26.(2021春•鄂州期末)探究知:任何一个三角形都满足三角形三内角和等于180°,我们把这个结论称之为三角形三内角和定理.如图1,AB∥CD,且∠BED+∠CDE=120°,请根据题目条件,结合三角形三内角和定理,探究下列问题:(1)如图2,在图1基础上作:∠BEF=12∠DEF,∠CDE=3∠CDF,EF与DF交于点F,求∠EFD的度数;(2)如图3,在图1基础上作:过B作BG⊥AB,交CD于点F,且∠CDG=34∠CDE,求∠G∠E的值.【解题思路】(1)设∠BEF=α,∠CDF=β,根据角之间的比例关系可得∠DEF=2α,∠DEB=3α,∠CDE=3β,∠EDF=2β,进而可得∠DEF+∠EDF=80°,所以可得答案;(2)根据垂直可得∠CDG =90°﹣∠G ,再根据∠E +∠CDE =120°经过整理得3∠E =4∠G ,进而可得答案.【解答过程】解:(1)∵∠BEF =12∠DEF , ∴∠DEF =2∠BEF , 又∵∠CDE =3∠CDF , ∴设∠BEF =α,∠CDF =β,∴∠DEF =2α,∠DEB =3α,∠CDE =3β,∠EDF =2β, ∵∠BED +∠CDE =120°, ∴3α+3β=120°, ∴α+β=40°, ∴2α+2β=80°,∴∠EFD =180°﹣∠DEF ﹣∠EDF =180°﹣(2α+2β)=180°﹣80°=100°, 答:∠EFD 的度数为100°; (2)∵BF ⊥AB , ∴∠ABG =90°, ∵AB ∥CD ,∴∠ABG +∠BFC =180°, ∴∠BFC =∠GFD =90°,在△GFD 中,∠GFD +∠CDG +∠G =180°, ∴∠CDG =90°﹣∠G ,∵∠E +∠CDE =120°,∠CDG =34∠CDE ,∴∠E +43∠CDG =120°,∠E +43(90°﹣∠G )=120°, 整理得:3∠E =4∠G , ∴∠G ∠E=34.27.(2020秋•南昌期中)【问题探究】将三角形ABC 纸片沿DE 折叠,使点A 落在点A ′处(1)如图1,当点A 落在四边形BCDE 的边CD 上时,直接写出∠A 与∠1之间的数量关系; (2)如图2,当点A 落在四边形BCDE 的内部时,求证:∠1+∠2=2∠A ;(3)如图3,当点A落在四边形BCDE的外部时,探索∠1,∠2,∠A之间的数量关系,并加以证明;【拓展延伸】(4)如图4,若把四边形ABCD纸片沿EF折叠,使点A、D落在四边形BCFE的内部点A′、D′的位置,请你探索此时∠1,∠2,∠A,∠D之间的数量关系,写出你发现的结论,并说明理由.【解题思路】(1)运用折叠原理及三角形的外角性质即可解决问题;(2)运用折叠原理及四边形的内角和定理即可解决问题;(3)运用三角形的外角性质即可解决问题;(4)根据三角形的内角和和四边形的内角和即可得到结论.【解答过程】解:(1)如图1,∠1=2∠A.理由如下:由折叠知识可得:∠EA′D=∠A;∵∠1=∠A+∠EA′D,∴∠1=2∠A;(2)如图2,2∠A=∠1+∠2.理由如下:∵∠1+∠A′DA+∠2+∠A′EA=360°,∠A+∠A′+∠A′DA+∠A′EA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得:∠A=∠A′,∴2∠A=∠1+∠2;(3)如图3,∠1﹣∠2=2∠A,理由:∵∠1+2∠AED=180°,2∠ADE﹣∠2=180°,∴∠1﹣∠2+2∠AED+2∠AED=360°,∵∠A+∠AED+∠ADE=180°,∴2∠A+2∠AED+2∠ADE=360°,∴∠1﹣∠2=2∠A;(4)∠1+∠2=2(∠A+∠D)﹣360°,理由:∵∠1+2∠AEF=180°,∠2+2∠DFE=180°,∴∠1+∠2+2∠AEF+2∠DFE=360°,∵∠A+∠D+∠AEF+∠DFE=360°,∴2∠A+2∠D+2∠AEF+2∠DFE=720°,∴∠1+∠2=2(∠A+∠D)﹣360°.28.(2021春•桥西区期末)请认真思考,完成下面的探究过程.已知在△ABC中,AE是∠BAC的角平分线,∠B=60°,∠C=40°.【解决问题】如图1,若AD⊥BC于点D,求∠DAE的度数;【变式探究】如图2,若F为AE上一个动点(F不与E重合),且FD⊥BC于点D时,则∠DFE=10°;【拓展延伸】如图2,△ABC中,∠B=x°,∠C=y°,(且∠B>∠C),若F为线段AE上一个动点(F不与E重合),且FD⊥BC于点D时,试用x,y表示∠DFE的度数,并说明理由.【解题思路】(1)由∠B=60°,∠C=40°,得∠BAC=180°﹣∠B﹣∠C=80°.由角平分线的定义,得∠EAC=40°.根据三角形外角的性质,得∠FED=80°.由FD⊥BC,根据三角形内角和定理,故可求得∠DFE.(2)与(1)同理.(3)与(1)同理.【解答过程】解:(1)解决问题:∵∠B=60°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=80°.又∵AE是∠BAC的角平分线,∴∠EAC=12∠BAC=40°.∴∠AED=∠C+∠EAC=40°+40°=80°.∵AD⊥BC,∴∠ADE=90°.∴∠DAE=180°﹣∠ADE﹣∠AED=180°﹣90°﹣80°=10°.(2)变式探究:由(1)知:∠AED=80°.∵FD⊥BC,∴∠FDE=90°.∴∠DFE=180°﹣∠FDE﹣∠FED=180°﹣90°﹣80°=10°.故答案为:10°.(3)拓展延伸:∠DFE=12x°−12y°,理由如下:∵∠B=x°,∠C=y°,∴∠BAC=180°﹣x°﹣y°.又∵AE是∠BAC的角平分线,∴∠CAE=12∠BAC=12(180°−x°−y°)=90°−12x°−12y°.∴∠AED=∠C+∠CAE=y°+90°−12x°−12y°=90°−12x°+12y°.∵FD⊥BC,∴∠FDE=90°.∴∠DFE=180°﹣∠FDE﹣∠FED=180°﹣90°﹣(90°−12x°+12y°)=12x°−12y°.29.(2021春•庐江县期末)如图1,AB⊥BC于点B,CD⊥BC于点C,点E在线段BC上,且AE⊥DE.(1)求证:∠EAB=∠CED;(2)如图2,AF、DF分别平分∠BAE和∠CDE,则∠F的度数是45°(直接写出答案即可);(3)如图3,EH平分∠CED,EH的反向延长线交∠BAE的平分线AF于点G.求证:EG⊥AF.(提示:三角形内角和等于180°)【解题思路】(1)根据垂直得到直角三角形,由直角三角形两锐角互余利用等量代换证明结论;(2)通过作FM∥AB∥CD可证∠DF A=∠CDF+∠BAF,因为∠CDE+∠BAE=90°和角平分线的定义可得∠F=12(∠CDE+∠BAE),继而得到答案;(3)根据角平分线的定义得∠CEH=∠DEH=∠GEB=∠BAG=∠EAF,由于∠B=90°,∠BAE+∠BEA =90°,在△AEG中,可证得∠EAG+∠AEG=90°,从而证得结论.【解答过程】(1)证明:∵AB⊥BC,CD⊥BC,∴∠B=∠C=90°,∴∠BAE+∠AEB=90°,∵AE⊥DE,∴∠AED=90°,∴∠AEB+∠CED=90°,∴∠BAE=∠CED.(2)解:答案为45°;过点F作FM∥AB,如图,∵AB⊥BC,CD⊥BC,∴∠B=∠C=90°,∴AB∥CD,∵∠C=90°,∴∠CED+∠CDE=90°,∵∠BAE=∠CED,∴∠BAE+∠CDE=90°,∵AF、DF分别平分∠BAE和∠CDE,∴∠CDF=12∠CDE,∠BAF=12∠BAE,∴∠CDF+∠BAF=12(∠BAE+∠CDE)=45°,∵FM∥AB∥CD,∴∠CDF=∠DFM,∠BAF=∠AFM,∴∠AFD=∠CDF+∠BAF=45°.(3)∵EH平分∠CED,∴∠CEH=12∠CED,∴∠BEG=12∠CED,∵AF平分∠BAE,∴∠BAG=12∠BAE,∵∠BAE=∠CED,∴∠BAG=∠BEG,∵∠BAE+∠BEA=90°,∴∠BAG+∠GAE+∠AEB=90°,即∠GAE+∠AEB+∠BEG=90°,∴∠AGE=90°,∴EG⊥AF.30.(2021春•崇川区期末)在△ABC中,BD是△ABC的角平分线,E为边AC上一点,EF⊥BC,垂足为F,EG平分∠AEF交BC于点G.(1)如图1,若∠BAC=90°,延长AB、EG交于点M,∠M=α.①用含α的式子表示∠AEF为180°﹣2α;②求证:BD∥ME;(2)如图2,∠BAC<90°,延长DB,EG交于点N,请用等式表示∠A与∠N的数量关系,并证明.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形角度的计算专题
一、 选择题 1. 等腰三角形的一个外角是 80°,则其底角是( )
A.100° B.100°或 40° C.40° D.80° 2. 等腰三角形的顶角是 80°,则一腰上的高与底边的夹角是( )
A.40° B.50° C.60° D.30° 3.等腰三角形的一个外角是 80°,则其底角是( )
6.如图,已知:在
中,
,
数.
.求:
的度
7.如图,已知:在
中,
,
,
,求
的度数.
8.如图,△ABC 中,AB=AC,∠BAC=120°,AD⊥AC 交 BC•于点 D,•求证:•BC=3AD. A
B
D
C
9.如图,已知△ABC 为等边三角形,在 AC 边外侧作 AD=BC,求∠BDC 的大小.
3
10.如图,AB=AC,DA=DE,BC=BE=BD,求∠A 的度数; 11.如图,AE=AC=AD,BD=BA,CB=CE,求∠ABD 的度数;
A.①②③ B.①②③④ C.①② D.①
C HE
G E
C
A
DFB
A
B
DF
H
4题
5题
5.如图,C、E 和 B、D、F 分别在∠GAH 的两边上,且 AB=BC=CD=DE=EF,若∠A=18°,
则∠GEF 的度数பைடு நூலகம்( )
A.80° B.90° C.100° D.108°
二、填空题
6.已知等腰三角形一个内角的度数为 30°,那么它的底角的度数是_________.
7.等腰三角形的顶角的度数是底角的 4 倍,则它的顶角是________.
8.等腰三角形一腰上的高与另一腰的夹角为 40°,求底角的度数
9.已知:△ABC 中,AB=AC,BD 是 AC 上的高,且∠CBD=35°,则∠A=
.
10.如图,△ABC 中 AB=AC,EB=FC BD =CE,∠A=52°,则∠DEF 的度数是____
11.如图,D、E 在 BC 上,AD=BD,AE=CE,若∠ADE=45°,∠AED=110°,
则∠B=
,∠C=
; 若∠ADE=40°,则∠BAC=
;
若∠BAC=120°,则∠DAE=
.
12. 如图,∠B=∠D=90°,C 是 BD 的中点,MC 平分∠AMD,∠DCM=35°,∠CAB 是
A
A
MD
(1)求∠DAC 的度数 (2)求∠BDE 的度数
E
A
B
D
C
第 2 题图 3、
4、
5.已知:如图,CF⊥AB 于 E,且 AE=EB ,已知 ∠B=40°,求∠ACD, ∠DCF 的度数.
2
5.如图,已知 AB=AC, ∠A=40°,AB 的垂直平分线 MN 交 AC 于点 D,求∠DBC 的 度数.
A.100° B.100°或 40° C.40° D.80° 4.如图 2,△ABC 中,∠ABC 与∠ACB 的平分线交于点 F,过点 F 作 DE∥BC 交 AB 于
点 D,交 AC 于点 E,那么下列结论:①△BDF 和△CEF 都是等腰三角形;②DE=BD+CE; ③△ADE 的周长等于 AB 与 AC 的和;④BF=CF.其中正确的有( )
D
1
F
C
2
B
DE C
BE
C
第 10 题
第 11 题
A
B
第 12 题
1
三、解答题 1、已知,△ABC≌△ADE,∠CAD=10°,∠BAE=120°∠B=∠D=25°,求∠ACB 的度数
D
C E
A
B
第 1 题图
2、如图,△ABC≌△AED,∠E=∠B,∠C=∠ADE,若∠BAD=40°,∠EAC=4∠BAD,