航空模型基础知识教程
航模基础知识要点

航模基础知识要点航模基础知识要点一、航模的组成航模一般由动力源、螺旋桨、安定器、电池、遥控器等其他配件组成。
1、动力源:航模的动力源主要分为两种,一种是燃油发动机,一种是电动机。
燃油发动机航模的优点是马力大,不需要电源,飞行时间长,但需要燃烧汽油,有污染。
电动机航模的优点是噪音小,马力大,环保,但飞行时间短。
2、螺旋桨:螺旋桨是航模飞行的直接动力部分,通过旋转产生升力,推动航模飞行。
根据飞行需要,可选择不同规格的螺旋桨。
3、安定器:安定器是航模的重要配件,主要作用是稳定航模飞行,减少航模的摇晃和旋转。
4、电池:电池是航模的能源来源,一般使用聚合物锂电池。
电池的容量和放电倍率会影响航模的飞行时间和性能。
5、遥控器:遥控器是操纵航模的设备,通过遥控器上的操纵杆和控制按钮,飞行员可以控制航模的飞行方向、高度、速度等。
二、航模的性能航模的性能主要分为三种:最大飞行速度、最大爬升率、最大下降率。
1、最大飞行速度:指航模在正常飞行条件下所能达到的最大速度。
2、最大爬升率:指航模在最大推力条件下所能达到的最大爬升速度。
3、最大下降率:指航模在最大推力条件下所能达到的最大下降速度。
三、航模的飞行环境航模的飞行环境对其飞行性能有很大影响,因此飞行员需要了解航模的最佳飞行环境。
1、高度:航模的飞行高度受到空气密度、温度、气压等因素的影响,一般适合在1000米以下飞行。
2、气象条件:航模一般适合在晴朗、无风的天气飞行,风速一般不超过10米/秒。
大风、暴雨、雷电等恶劣天气不适合飞行。
3、地形:航模的飞行场地需要选择平坦、开阔、无障碍物的地形,以保证航模的安全飞行。
四、航模的操纵技巧操纵航模需要有一定的技巧和经验,以下是几个重要的操纵技巧:1、控制油门:油门是控制发动机或电机的转速,通过控制油门的大小,可以控制航模的飞行速度和高度。
2、控制姿态:通过控制遥控器的操纵杆,可以控制航模的姿态,如俯冲、爬升、侧滑等。
3、调整重心:航模的重心位置会影响航模的稳定性和操纵性,通过调整配重,可以调整航模的重心位置。
航模基础知识002

一、什么叫航空模型在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。
其技术要求是:最大飞行重量同燃料在内为五千克;最大升力面积一百五十平方分米;最大的翼载荷100克/平方分米;活塞式发动机最大工作容积10亳升。
1、什么叫飞机模型一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。
2、什么叫模型飞机一般称能在空中飞行的模型为模型飞机,叫航空模型。
二、模型飞机的组成模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五局部组成。
1、机翼——是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞机飞行时的横侧安定。
2、尾翼——包括水平尾翼和垂直尾翼两局部。
水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。
水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。
3、机身——将模型的各局部联结成一个整体的主干局部叫机身。
同时机身内能够装载必要的控制机件,设备和燃料等。
4、起落架——供模型飞机起飞、着陆和停放的装置。
前部一个起落架,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。
5、发动机——它是模型飞机产生飞行动力的装置。
模型飞机常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。
三、航空模型技术常用术语1、翼展——机翼(尾翼)左右翼尖间的直线距离。
(穿过机身局部也计算在内)。
2、机身全长——模型飞机最前端到最末端的直线距离。
3、重心——模型飞机各局部重力的合力作用点称为重心。
4、尾心臂——由重心到水平尾翼前缘四分之一弦长处的距离。
5、翼型——机翼或尾翼的横剖面形状。
6、前缘——翼型的最前端。
7、后缘——翼型的最后端。
8、翼弦——前后缘之间的连线。
9、展弦比——翼展与平均翼弦长度的比值。
展弦比大说明机翼狭长。
航模基础知识

航模的材料与工艺
材料
航模的材料主要包括轻木、碳纤维、玻璃钢等轻质、高强度 材料。这些材料可以有效地减轻航模的重量,提高飞行性能 。
工艺
航模的制造工艺主要包括切割、打磨、粘接、热压等。这些 工艺的使用需要根据材料的不同特性进行选择,以保证航模 的质量和可靠性。
航模的动力系统
发动机
尾翼
尾翼是航模用来保持稳 定性的部件,包括水平 尾翼和垂直尾翼。尾翼 的位置、尺寸和形状对 航模的飞行性能有很大
影响。
机身
机身是航模的主体结构 ,用于安装发动机、接 收器、电池等部件。机 身的材料和结构对航模 的整体性能有很大影响
。
起落架
起落架是航模在地面停 放和起飞着陆时使用的 支撑机构,通常由轻质 材料制成,如铝管或碳 纤维。起落架的设计和 布局对航模的起飞和着
03
CATALOGUE
航模的组装与调试
航模的组装步骤
准备工作
确保工具齐全,阅读说明书, 了解航模的结构和原理。
机体组装
按照说明书指示,组装机身、 机翼、尾翼等部分,确保连接 牢固。
电子设备安装
安装电池、接收机、舵机等电 子设备,确保正确连接。
调试与检查
检查航模各部分工作是否正常 ,进行必要的调试,确保飞行
05
CATALOGUE
航模的进阶知识
航模的性能优化
动力系统优化
根据飞行需求选择合适的发动机和螺旋桨, 调整发动机参数以获得最佳性能。
空气动力学优化
通过改进机体设计、翼型选择和翼面布局, 减少空气阻力,提高飞行效率。
重量与平衡优化
合理分配机体各部分重量,确保航模在空中 保持稳定。
操控性能优化
航模基础知识培训

翼载荷——单位升力面积所承受的飞行重量。
航空模型的分类
练习机 板机 像真机 按照我们的学习、制作的目标,我们将其主要分为三类
航天器
航空器
飞行器
最大飞行重量同燃料在内为五千克; 最大升力面积一百五十平方分米; 最大的翼载荷100克/平方分米; 活塞式发动机最大工作容积10毫升。
01
重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。
02
其技术要求是:
航空模型:
航模的一般组成
机翼:产生升力, 保持横侧安定
机身全长
航模技术常用术语
翼型——机翼或尾翼的横剖面形状。
前缘——翼型的最前端
后缘——翼型的最后端
翼弦——前后缘之间的连线
展弦比——翼展与平均翼弦长度的比值。展弦比大说明机翼狭长
削尖比——指梯形机翼翼尖翼弦长与翼根翼弦长的 比值
b1
b0
航模技术常用术语
01
02
03
04
航模技术常用术语
航模基础知识培训
西安航空职业技术学院·蓝翔航模社
汇报时间:12月20日
Annual Work Summary Report
飞行器的分类
各种飞机
滑翔机
直升机
旋翼机
固定翼航空器
旋翼航空器
扑翼机
空间探测器
人造地球卫星(运载火箭发射)
载人飞船
航天站
航天飞机
飞艇人航天器
载人航天器
01
0
0
0
05
航模基础知识要点

航模基础知识要点航模是指模仿真实飞机原理和结构,通过模型制作的飞行器。
它可以飞行、模拟飞行和进行相关实验,并在飞行过程中采集数据。
航模制作是一门综合性比较强的学科,需要涉及飞行原理、空气动力学、材料科学、机械工程等多个学科的知识。
下面是航模基础知识的要点介绍。
一、飞行原理:1.升力的产生:航模的飞行依靠翅膀产生的升力。
升力的产生与机翼的气动特性有关,如充气方式、翼型、机翼横断面、机翼悬挂方式等。
2.推力的产生:推力的产生与发动机和螺旋桨有关。
常见的推力方式有喷气推力和螺旋桨推力。
3.驱动方式:航模的驱动方式有遥控和自动驾驶两种。
遥控驱动需要通过遥控设备来控制航模的运动,而自动驾驶是指通过预设的程序或传感器来控制航模的运动。
二、材料科学:1.结构材料:航模的结构通常采用轻质材料,如碳纤维复合材料、玻璃纤维复合材料等,以实现轻量化和强度要求。
2.制造工艺:航模的制造工艺包括模具制作、材料选择、剪裁、分层和成型等。
模具的制作要求精度高,以保证航模的几何形状和表面光洁度。
3.节能材料:航模中还广泛应用了一些具有节能特性的材料,如空气动力学中的流线型设计、减阻材料等,以增加航模的飞行效率。
三、控制系统:1.操纵系统:航模的操纵系统包括遥控器、舵机、控制杆等。
通过操纵杆控制舵机的运动,进而控制航模的姿态。
2.自动控制系统:航模的自动控制系统通常包括航向控制、高度控制和速度控制等。
通过预设的程序或传感器来实现航模的自动控制。
四、空气动力学:1.升力与阻力:航模在飞行时会受到气流的作用,其中最重要的是升力和阻力。
升力使航模能够飞行,在设计航模时需要根据升力和重力平衡关系来确定机翼的形状和大小。
阻力会影响航模的速度和飞行续航能力,因此需要进行降低阻力的设计。
2.气动性能:航模的气动性能取决于机翼的几何形状、气动特性和航模的重量。
要提高航模的气动性能,需要注意机翼和机身的流线型设计,减小飞行阻力。
五、航模制作与调试:1.比例缩小:航模制作时需要考虑飞机模型与真实飞机的比例关系,以保证航模的结构和空气动力学特性与真实飞机相似。
2024版年度航模初级培训教程教学课件

2024/2/3
9
飞行原理简介
飞行姿态
了解飞行器的平飞、爬升、俯冲、 转弯等基本飞行姿态。
2024/2/3
动力系统
了解航模发动机或电动机的工作原 理及性能参数。
飞行环境
掌握风、气温、气压等气象条件对 飞行的影响。
10
航模结构组成
机身
机翼
承载发动机、设备、电 池等,提供飞行稳定性。
产生升力,控制飞行姿 态。
航模初级培训教程教 学课件
2024/2/3
1
目录
• 航模概述与入门 • 航模基础知识 • 航模选购与组装技巧 • 飞行操作与训练技巧 • 维护与保养知识分享 • 比赛观摩与经验交流
2024/2/3
2
01
航模概述与入门
2024/2/3
3
航模定义及分类
2024/2/3
定义
航空模型是一种重于空气的,有尺 寸限制的,带有或不带有发动机的, 不能载人的航空器,就叫航空模型。
2024/2/3
6
安全操作规范
遵守飞行规定
在飞行前,应了解并遵守当地的 飞行规定和法律法规,避免违规
飞行带来的风险。
2024/2/3
检查设备安全
在飞行前,应对航模进行全面检 查,确保设备完好无损、电池电 量充足、遥控器信号正常等。
注意飞行环境
在飞行时,应注意周围环境的变 化,避免在人群密集、建筑物密 集或气象条件恶劣的环境下飞行。
掌握正确的起飞姿势和加速方法,避 免航模在起飞阶段出现失控或坠毁。
2024/2/3
巡航飞行
学习如何在空中保持航模的稳定飞行, 掌握基本转向和爬升/俯冲操作。
降落操作
了解不同降落方式的特点,掌握正确 的降落技巧,确保航模安全着陆。
航空模型基础知识

航空模型基础知识航空模型是一种机型缩小版,通常由轻质材料制成,包括木材、泡沫、高强度轻金属及碳纤维等。
它们可以飞行并提供很大的乐趣和挑战。
航空模型种类航空模型有几种主要的种类,包括飞机、直升机、固定翼和无人机等。
这些种类通常通过它们的设计和功能来区分。
飞机类的航空模型通常被称为RC(遥控)飞机。
它们的设计和结构通常是基于现实生活中的飞机。
RC飞机可以飞行在内部或者室外,并能进行3D飞行,如升降、翻滚和翻转等动作,需要有高超的技术操作才能顺利完成。
直升机类的航空模型是比较困难的挑战,因为它们需要进行特殊的控制技能。
直升机航空模型具有在空中悬停的能力,因此在制作和设计过程中必须考虑到很多因素,如重量平衡、旋转速率、稳定性等。
固定翼航空模型通常是集群飞行,通常需要两个或多个人进行操作。
它们在高空进行飞行,需要高超的操作技术和良好的沟通能力。
固定翼航空模型通常是运动性和竞技性最为强烈的机型。
无人机航空模型是多功能的机型,它们适用于各种不同的领域,如灵敏度检测、农业和航拍等。
无论您是在小区,果园还是大农场里都可以找到无人机的踪迹。
无人机航空模型的优势在于可以进行高空拍摄、搭载传感器进行探测、自主导航、支持实时遥控等领域。
航空模型的控制方式航空模型的控制通常会使用遥控器。
目前市场上遥控器主要有4通道、6通道和8通道等不同型号。
4通道遥控器4通道遥控器通常用于最基本的飞行和控制,它能控制飞机的升降、角度和飞行方向等基本要素。
6通道遥控器6通道遥控器则更为高级,它可以控制飞机的航向、俯仰角、横滚角、升降、油门等所有要素,因此也适用于直升机和固定翼模型。
8通道遥控器8通道遥控器是最为高级的遥控器型号,它可以更加精确地控制飞机,包括航向、俯仰角、横滚角、油门、起落架、照明、道钉、电动机排队等等。
航空模型利用的动力机制航空模型的动力来源通常是电动机或油动发动机,也有少数航空模型使用弹弓或发射器等非电动发动机。
电动机使用电动机作为动力源是最为普遍的方法之一,它可以为模型信号源提供足够的能量,并且有很高的可靠性和稳定性。
航模培训航模飞机制作教程ppt学习课件

首飞过程记录及问题分析
记录航模飞机起飞、飞行、降落过程 中的各项数据,如飞行高度、速度、 航向等
分析航模飞机在飞行过程中出现的问 题,如飞行不稳定、偏离航线等
观察航模飞机飞行姿态是否稳定,有 无异常抖动或偏移现象
针对问题提出改进措施,如调整电机 输出、优化飞控参数等
针对问题调整策略分享
对于飞行不稳定问题,可 以尝试调整电机输出和飞 控参数,提高航模飞机的 稳定性和操控性
对于偏离航线问题,可以 检查GPS模块定位精度和 航向传感器准确性,优化 航线规划算法
对于电池续航能力不足问 题,可以选择更高能量密 度的电池或优化航模飞机 功耗设计
分享调整策略时,应提供 具体步骤和注意事项,以 便学员能够准确理解和操 作
采用高增益天线等方法进行改善。
舵机设置及调整技巧
01
舵机类型选择
根据航模需求选择合适的舵机类型,如模拟舵机、数字舵机等。
02
安装与连接
将舵机安装在航模上合适的位置,并连接至接收机对应通道。
03
调整技巧
通过遥控器对舵机进行中立点调整、行程调整以及反向调整等操作,确
保舵机能够准确响应遥控器指令。同时,还需注意舵机的防震和散热问
02
航模飞机结构与原理
航模飞机组成部分
机翼
提供升力的主要部分,分为上 单翼、中单翼和下单翼三种类 型。
发动机
提供飞行动力,分为活塞发动 机、喷气发动机等类型。
机身
航模飞机的主体部分,承载发 动机、机翼、尾翼等部件。
尾翼
包括水平尾翼和垂直尾翼,用 于保持航向和稳定性。
起落架
用于支撑飞机在地面停放和滑 行,分为前三点式和后三点式 两种类型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
航空模型基础知识教程(一)) 一、什么叫航空模型 在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。其技术要求是: 最大飞行重量同燃料在内为五千克; 最大升力面积一百五十平方分米; 最大的翼载荷100克/平方分米; 活塞式发动机最大工作容积10亳升。 1、什么叫飞机模型 一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞 机模型。 2、什么叫模型飞机 一般称能在空中飞行的模型为模型飞机,叫航空模型。 二、模型飞机的组成 模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。 1、机翼——是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞机飞行时的横侧安定。 2、尾翼——包括水平尾翼和垂直尾翼两部分。水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时 的方向安定。水平尾翼上的升降舵能控制模型飞机的升降, 垂直尾翼上的方向舵可控制模型飞机的飞行方向。 3、机身——将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装载必要的控制机件,设备和燃料等。 4、起落架——供模型飞机起飞、着陆和停放的装置。前部一个起落架 ,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。 5、发动机——它是模型飞机产生飞行动力的装置。模型飞机常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。 三、航空模型技术常用术语 1、翼展——机翼(尾翼)左右翼尖间的直线距离。(穿过机身部分也计算在内)。 2、机身全长——模型飞机最前端到最末端的直线距离。 3、重心——模型飞机各部分重力的合力作用点称为重心。 4、尾心臂——由重心到水平尾翼前缘四分之一弦长处的距离。 5、翼型——机翼或尾翼的横剖面形状。 6、前缘——翼型的最前端。 7、后缘——翼型的最后端。 8、翼弦——前后缘之间的连线。 9、展弦比——翼展与平均翼弦长度的比值。展弦比大说明机翼狭长。
航空模型基础知识教程(二) 第一节 活动方式和辅导要点 航空模型活动一般包括制作、放飞和比赛三种方式,也可据此划分为三个阶段。 制作活动的任务是完成模型制作和装配。通过制作活动对学生进行劳动观点、劳动习惯和劳动技能的教育。使他们学会使用工具,识别材料、掌握加工过程和得到动手能力的训练。 放飞是学生更加喜爱的活动,成功的放飞,可以大大提高他们的兴趣。放飞活动要精心辅导,要遵循放飞的程序,要介绍飞行调整的知识,要有示范和实际飞行情况的讲评。通过放飞对学生进行应用知识和身体素质的训练。 比赛可以把活动推向高潮,优胜者受到鼓舞,信心十足:失利者或得到教训,或不服输也会憋足劲头。是引导学生总结经验,激发创造性和不断进取精神的好形式。参加大型比赛将使他们得到极大的锻炼而终生不忘。 第二节 飞行调整的基础知识 飞行调整是飞行原理的应用。没有起码的飞行原理知识,就很难调好飞好模型。辅导员要引导学生学习航空知识,并根据其接受能力、结合制作和放飞的需要介绍有关基础知识。同时也要防止把航模活动变成专门的理论课。 一、升力和阻力 飞机和模型飞机之所以能飞起来,是因为机翼的升力克服了重力。机翼的升力是机翼上下空气压力差形成的。当模型在空中飞行时,机翼上表面的空气流速加快,压强减小;机翼下表面的空气流速减慢压强加大(伯努利定律)。这是造成机翼上下压力差的原因。 造成机翼上下流速变化的原因有两个:a、不对称的翼型;b、机翼和相对气流有迎角。翼型是机翼剖面的形状。机翼剖面多为不对称形,如下弧平直上弧向上弯曲(平凸型)和上下弧都向上弯曲(凹凸型)。对称翼型则必须有一定的迎角才产生升力。 升力的大小主要取决于四个因素:a、升力与机翼面积成正比;b、升力和飞机速度的平方成正比。同样条件下,飞行速度越快升力越大;c、升力与翼型有关,通常不对称翼型机翼的升力较大;d、升力与迎角有关,小迎角时升力(系数)随迎角直线增长,到一定界限后迎角增大升力反而急速减小,这个分界叫临界迎角。 机翼和水平尾翼除产生升力外也产生阻力,其他部件一般只产生阻力。 二、平飞 水平匀速直线飞行叫平飞。平飞是最基本的飞行姿态。维持平飞的条件是:升力等于重力,拉力等于阻力(图3)。 由于升力、阻力都和飞行速度有关,一架原来平飞中的模型如果增大了马力,拉力就会大于阻力使飞行速度加快。飞行速度加快后,升力随之增大,升力大于重力模型将逐渐爬升。为了使模型在较大马力和飞行速度下仍保持平飞,就必须相应减小迎角。反之,为了使模型在较小马力和速度条件下维持平飞,就必须相应的加大迎角。所以操纵(调整)模型到平飞状态,实质上是发动机马力和飞行迎角的正确匹配。 三、爬升 前面提到模型平飞时如加大马力就转为爬升的情况。爬升轨迹与水平面形成的夹角叫爬升角。一定马力在一定爬升角条件下可能达到新的力平衡,模型进入稳定爬升状态(速度和爬角都保持不变)。稳定爬升的具体条件是:拉力等于阻力加重力向后的分力(F=X十Gsinθ);升力等于重力的另一分力(Y=GCosθ)。爬升时一部分重力由拉力负担,所以需要较大的拉力,升力的负担反而减少了(图4)。 和平飞相似,为了保持一定爬升角条件下的稳定爬升,也需要马力和迎角的恰当匹配。打破了这种匹配将不能保持稳定爬升。例如马力增大将引起速度增大,升力增大,使爬升角增大。如马力太大,将使爬升角不断增大,模型沿弧形轨迹爬升,这就是常见的拉翻现象(图5)。 四、滑翔 滑翔是没有动力的飞行。滑翔时,模型的阻力由重力的分力平衡,所以滑翔只能沿斜线向下飞行。滑翔轨迹与水平面的夹角叫滑翔角。 稳定滑翔(滑翔角、滑翔速度均保持不变)的条件是:阻力等于重力的向前分力(X=GSinθ);升力等于重力的另一分力(Y=GCosθ)。 滑翔角是滑翔性能的重要方面。滑翔角越小,在同一高度的滑翔距离越远。滑翔距离(L)与下降高度(h)的比值叫滑翔比(k),滑翔比等于滑翔角的余切滑翔比,等于模型升力与阻力之比(升阻比)。 Ctgθ=1/h=k。 滑翔速度是滑翔性能的另一个重要方面。模型升力系数越大,滑翔速度越小;模型翼载荷越大,滑翔速度越大。 调整某一架模型飞机时,主要用升降调整片和重心前后移动来改变机翼迎角以达到改变滑翔状态的目的。
航空模型基础知识教程(三) 五、力矩平衡和调整手段 调整模型不但要注意力的平衡,同时还要注意力矩的平衡。力矩是力的转动作用。模型飞机在空中的转动中心是自身的重心,所以重力对模型不产生转动力矩。其它的力只要不通重心,就对重心产生力矩。为了便于对模型转动进行分析,把绕重心的转动分解为绕三根假想轴的转动,这三根轴互相垂直并交于重心(图 7)。贯穿模型前后的叫纵轴,绕纵轴的转动就是模型的滚转;贯穿模型上下的叫立轴,绕立轴的转动是模型的方向偏转;贯穿模型左右的叫横轴,绕横轴的转动是模型的俯仰。 对于调整模型来说,主要涉及四种力矩;这就是机翼的升力力矩,水平尾翼的升力力矩;发动机的拉力力矩;动力系统的反作用力矩。 机翼升力力矩与俯仰平衡有关。决定机翼升力矩的主要因素有重心纵向位置、机翼安装角、机翼面积。 水平尾翼升力力矩也是俯仰力矩,它的大小取决于尾力臂、水平尾翼安装角和面积。 拉力线如果不通过重心就会形成俯仰力矩或方向力矩,拉力力矩的大小决定于拉力和拉力线偏离重心距离的大小。发动机反作用力矩是横侧(滚转)力矩,它的方向和螺旋桨旋转方向相反,它的大小与动力和螺旋桨质量有关。 俯仰力矩平衡决定机翼的迎角:增大抬头力矩或减小低头力矩将增大迎角;反之将减小迎角。所以俯仰力矩平衡的调整最为重要。一般用升降调整片、调整机翼或水平尾翼安装角、改变拉力上下倾角、前后移动重心未实现。 方向力矩平衡主要用方向调整片和拉力左右倾角来调整。横侧力矩平衡主要用副翼来调整。 第三节 检查校正和手掷试飞 一、检查校正 一架模型飞机制作装配完毕后都应进行检查和必要的校正。检查的内容是模型的几何尺寸和重心位置。检查的方法一般为目测,为更精确起见,有些项目也可以进行一些简单的测量。 目测法是从三视图的三个方向观察模型的几何尺寸是否准确。正视方向主要看机翼两边上反角是否相等;机翼有无扭曲;尾翼是否偏斜或扭曲。侧视方向主要看机翼和水平尾翼的安装角和它们的安装角差;拉力线上下倾角。俯视方向主要看垂直尾翼有无偏斜;拉力线左右倾角情况;机翼、水平尾翼是否偏斜。 小模型一般用支点法检查重心,选一点支撑模型,当模型平稳时,该支点就是重心的位置。 检查中如发现重大误差,应在试飞前纠正。如误差较小,可以暂不纠正,但应心中有数,在试飞中进一步观察。 二、手掷试飞 手掷试飞的目的是观察和调整滑翔性能。方法是右手执机身(模型重心部位),高举过头,模型保持平正,机头向前正对风向下倾10度左右,沿机身方向以适当的速度将模型直线掷出,模型进入独立滑翔飞行状态。手掷方法要多次练习,要注意纠正各种不正确的方法,比较普遍的毛病有:模型左右倾斜或机头上仰;出手不是从后向前的直线,而是绕臂根划弧线;出手方向不是沿机身向前,而是向上抛掷;出手速度太大或太小。 出手后如模型直线小角度平稳滑翔属正常飞行,稍有转弯也属正常状态。遇有下列不正常的飞行姿态, 就应进行调整,使模型达到正常的滑翔状态 1、波状飞行:滑翔轨迹起伏如波浪。一般称之为“头轻”即重心太靠后。这种说法虽正确但不够全面。实际上一切抬头力矩过大或低头力矩过小造成的迎角过大都会造成波状飞行。调整的方法有:a、推杆(升降调整片下扳);b、重心前移(机头配重);c、减小机翼安装角;d、加大水平尾翼安装角(作用同推杆)。 2、俯冲:模型大角度下冲。一般叫“头重”,这种说法也不够全面。一切抬头力矩过小,低头力矩过大造成的迎角过小都会造成模型俯冲。调整的方法有:a、拉杆(升降调整片上翘);b、重心后移(减少机头配重);c、加大机翼安装角;d、减小水平尾翼安装角(作用同拉杆)。 3、急转下冲:模型向左(或向右)急转弯下冲。原因是方向力矩不平衡或横