无线定位技术指导
H3C无线定位配置指导

目录1 WLAN定位配置 ············································································································ 1-11.1 WLAN 定位简介 ·········································································································1-11.2 配置WLAN定位·········································································································1-31.3 WLAN定位显示与维护 ································································································1-51.4 WLAN定位基本服务配置举例 ·······················································································1-51 WLAN定位配置1.1 WLAN 定位简介无线定位技术利用基于WiFi技术的RFID(Radio Frequency Identification,射频识别)和传感器等设备,实现定位、追踪和监测特定目标。
无线电定位原理与技术

无线电定位原理与技术TOA是通过测量信号从发射器发射到接收器接收的时间来确定距离的。
当无线电信号从发射器发出后,经过空气传播到达接收器,接收器接收到信号后会测量从信号发出到接收到的时间差,再根据信号在空气中的传播速度以及时间差来计算距离。
RSSI则是通过测量接收到的信号强度来确定距离的。
由于信号在传播过程中会遇到阻尼、衰减等因素的影响,接收到的信号强度会随着距离的增加而减弱,因此可以根据接收到的信号强度来推测距离。
多普勒效应测量则是通过测量接收到的信号频率的变化来确定移动物体的速度和方向的。
当移动物体靠近接收器时,接收到的信号频率会变高;当移动物体远离接收器时,接收到的信号频率会变低。
通过测量频率的变化量,可以推测物体的速度和方向。
GPS是使用最广泛的无线电定位技术之一,它利用一组卫星在轨道上发射无线电信号,并通过接收器接收到这些信号来计算自身的位置。
通过接收到多个卫星的信号,并使用三角测量的原理,可以准确地确定自身的位置。
基站定位是通过使用移动通信网络中的基站来确定移动设备的位置。
当移动设备与基站进行通信时,基站会记录下与设备通信的信号参数,通过测量被记录的信号参数的变化,可以计算设备的位置。
无源定位是一种通过被动地接收到的无线电信号来确定设备位置的技术。
这种技术适用于无法主动发送信号的设备,例如无线电频谱分析仪、无线电信号监测系统等。
通过分析接收到的信号参数,并结合信号传播模型和统计方法,可以推测设备的位置。
总之,无线电定位技术通过测量信号的到达时间、信号强度和频率变化等参数来确定移动设备或物体的位置。
通过不同的实现方式和算法,可以实现各种应用场景下的定位需求。
ZIGBEE无线定位技术

ZIGBEE无线定位技术D典型的办公场所都会配置ZigBee 设备,通过各办公室和会议室中的温度传感器、控制温度调节装置以及A/C 导管。
同时,每个房间还会安装由ZigBee 控制的灯具开关和设备,而这些设备又易于作为定位引擎的参考节点。
将ZigBee 射频作为ZigBee 协议栈上的参考节点所需的代码容量通常小于 1 Kb。
定位引擎从3~16 个参考节点采集数据,并使用这些数据计算定位位置。
如果定位引擎从16 个以上的节点接收到数据时,它则会将接收到的参考节点位置进行分类,然后采用16 个参考节点中信号最强的RSSI 值。
扩大覆盖范围定位引擎的覆盖范围为64m×64m,然而,大多数的应用要求更大的覆盖范围。
扩大定位引擎的覆盖范围可以通过两种方法来实现:* 提高参考节点的输出功率,同时降低定位引擎计算结果的精度;* 在一个更大的范围布置参考节点,并利用最强的信号进行相关参考节点的定位计算。
由于第二种方法能够在定位引擎扩大覆盖面的同时不牺牲定位精度,因此更为可取。
具体的工作原理是:网络中的待测节点发出广播信息,并从各相邻的参考节点采集数据,选择信号最强的参考节点的X 和Y 坐标。
然后,计算与参考节点相关的其他节点的坐标。
最后,对定位引擎中的数据进行处理,并考虑距离最近参考节点的偏移值,从而获得待测节点在大型网络中的实际位置。
为了达到最佳的定位范围,当布置参考节点时,应同时考虑到室内和室外环境中天花板/地板的吸附作用。
最佳的方案就是使各节点处于相同的高度,并远离地面、天花板以及墙壁。
在实际的部署过程中要达到这种要求,是比较困难的。
因此,尽量将参考节点固定在天花板的高度或低于天花板的高度,并使天线倒置以使RF 信号向外和向下传输,同时将待测节点(手持或固定于设备)放置在人的腰部以上、头部以下位置(此处提到的高度是以人站立在该环境中为标准的)。
节点的这种设置方法实现了天花板和地板吸附作用的最小化,同时将实现在该场所中的行人或物体之间相互干扰的最小化。
快递自动跟踪技术—无线定位技术

LBS的结构及工作原理
三、LBS的应用
(二)开开&多乐趣
开开是由贝多在近期发布的一款类4SQ移动社 交产品,以便帮助用户与朋友们分享位置、交 流心得,并用全新的方法探索身边的城市。 用户可将虚拟宝贝兑换成实物。
多乐趣是国内近期内测的一款类Foursquare产 品,它提供了多种手机操作平台上的应用程序 去感知用户所在的地理位置。
爱邂逅以地理位置为基础,为用户推荐约会地点; 设定虚拟礼物(比如希望对某个用户发起约会,送 Ta一份虚拟礼物)等。
16fun是一款基于地理位置的社群游戏。游戏中用 户可以通过虚拟报到、消费、买卖房产、等游戏方 式与在现实生活中的商家、热门地点、好友互动。
LBS的结构及工作原理
三、LBS的应用
(六)大众点评
LBS的应用 一、基于LBS的移动互联网应用——信息平台主要内容
基于LBS
新鲜事
签到
活动
好友关系
照片
好友
签到:告诉朋友们“我在这里”
攻略:吃喝玩乐生活指南
同步分享:向朋友分享图片、趣事、活动等
城市探索:搜集徽章、奖励头衔
等级
LBS+SNS
LBS的应用
一、基于LBS的移动互联网应用——信息平台主要内容
Android在内的多个平台的接入。
• 同类产品包括:街旁、盛大游玩、网易
八方、开开、玩转四方、微妙空间、多
趣多、蘑菇团等等。
魔力城市 是一款基于地理位置的游戏的定位介于 foursquare 和
mytown 之间,在签到的基础上引入地产买卖,收租等操作。
LBS的结构及工作原理
三、LBS的应用
(五)爱邂逅&16fun
指定的位置,用户参与这些互动游戏,过关(Treks)后可以获 得商家的奖励(Rewards)。 • 引入挖宝、开箱子、抽奖、竞猜、秒杀元素。 • 在虚拟世界中构建游戏层—社交层。
《无线定位技术》课件

将无线定位技术部署到实际应用场景 中,进行定期维护和更新,保证系统 的稳定性和可靠性。
04
无线定位技术优缺点
无线定位技术的优点
高精度定位
无线定位技术可以提供厘米级 甚至毫米级的定位精度,满足
各种高精度应用需求。
实时性
无线定位技术可以实时获取目 标的位置信息,对于需要快速 响应的应用场景非常有利。
详细描述
无线定位技术可以为公共安全领域提供重要的位置信息支持,例如在火灾、地震等灾害发生时,该技术可以帮助 救援人员快速定位受困人员,提高应急响应速度。同时,该技术还可以用于追踪犯罪嫌疑人,提高案件侦破效率 。
THANKS
感谢观看
无线定位技术在物流行业中的应用
总结词
优化物流配送,提高运营效率
详细描述
无线定位技术可以帮助物流企业实时跟踪货物的位置信息,优化配送路线,提 高物流配送的准确性和及时性。此外,该技术还可以协助企业进行仓储管理, 提高库存周转率,降低运营成本。
无线定位技术在公共安全领域中的应用
总结词
提升应急响应速度,保障公共安全
02
基于距离的定位技 术
包括RSS(接收信号强度)、 AOA(到达角度)和指纹地图匹 配等。
03
混合定位技术
结合基于时间和基于距离的定位 技术,以提高定位精度和可靠性 。
无线定位技术的误差来源
多径效应
由于电磁波在传播过程中会受到 建筑物、树木等障碍物的反射和 折射,导致接收到的信号强度和 相位发生变化,影响定位精度。
困难或无法定位。
高能耗
无线定位技术需要大量的计算 和传输,导致能耗较高,需要
频繁更换或充电电池。
安全问题
无线信号容易被截获或干扰, 存在一定的安全风险。
移动通信中的无线定位技术

移动通信中的无线定位技术摘要:随着通信系统的全面发展和进步,无线通信系统定位技术的应用范围不断扩大。
为了提高通信系统的应用质量,要整合具体的应用模式,发挥各项技术的优势作用。
分析了无线通信系统定位技术的内涵,并对其实际应用展开讨论。
关键词:移动通信;无线;定位技术;前言:基于位置服务的多元化需求,无论是室内还是室外,快速准确完成移动终端位置信息定位管理的业务量逐渐增多。
为了充分提升位置服务质量和网络应用性能,要积极整合定位技术应用模式,打造更加科学合理的信息保护安全管控机制,为通信系统定位管理工作的优化提供保障。
1无线通信系统定位技术无线通信系统定位技术指借助无线通信技术和传感器等设备有效建立测量接收模式,对接收到的无线电波时间、幅度、相位等基础参数进行测量分析,结合具体的算法规则完成被测物体的位置判定。
通过建立定位、监测、着重等控制模式,保证导航管理、机器人跟踪、虚拟现实以及军事目标定位等基础工作都能顺利开展。
1.1GPS 定位技术全球定位系统(GPS)定位是目前应用最为广泛的定位方式,借助工作卫星和备用卫星实现相关信息的实时性接收和存储。
地面接收机接收GPS卫星发送的实时性信号,配合数据处理获取相关信息,依据卫星广播的星历信息完成定位和导航。
需要注意的是,GPS 定位系统在较为开阔的环境下定位精准度较高,抗干扰性和保密性较好。
1.2Cell-ID定位技术Cell-ID定位技术通过获取目标手机所在的蜂窝小区 ID来确定其具体位置,针对移动网络进行针对性跟踪和管理,有效实现识别信号的可控性目标。
在技术应用体系内,只要系统能将小区基站设置的中心位置和小区覆盖半径直接发送到终端设备上,就能结合相关信息描述的的内容和关键点有效确定移动终端的位置。
此外,Cell-ID定位技术能实现简单定位和处理,实际的响应速度较快,无须进行网络和移动终端的更改就能大大提升覆盖范围,保证信息传递和数据处理的可靠性。
若是基站分布数量不足,则很难有效完成定位控制。
物联网中的无线定位技术教程

物联网中的无线定位技术教程物联网(Internet of Things,IoT)是指通过互联网将各种传感器和设备连接起来,实现智能化控制和数据交互的网络。
无线定位技术是物联网应用中的关键技术之一,其能够实时获取物体的位置信息,并将其传输给系统进行处理和分析。
本文将介绍物联网中常见的无线定位技术及其原理、应用场景、优势和挑战。
一、无线定位技术的原理1. GPS定位技术全球定位系统(Global Positioning System,GPS)是最常见的无线定位技术之一。
其基本原理是通过接收多颗卫星发出的信号,通过测量信号传播时间和卫星位置的方法来计算接收器的位置。
GPS定位技术具有全球覆盖、高精度和广泛应用的优势,可用于航空导航、车辆监控、人员定位等领域。
2. RFID定位技术射频识别(Radio Frequency Identification,RFID)是一种通过无线电信号识别目标对象的技术。
其原理是将目标对象附着或植入RFID标签,通过读写器与标签之间的无线通信,实现对目标对象的识别和定位。
RFID定位技术具有实时性强、定位精度高、成本低廉的特点,常用于仓储物流管理、商场导航、动物跟踪等应用场景。
3. WLAN定位技术无线局域网(Wireless Local Area Network,WLAN)定位技术是通过无线信号强度衰减和到达时间推算目标位置的方法来实现定位。
其原理是将目标对象装备有WLAN无线通信模块,通过收集目标对象与无线基站之间的信号强度信息或到达时间信息,利用指纹定位或三角定位算法计算目标位置。
WLAN定位技术具有室内覆盖范围广、成本低廉、精度较高的优势,可用于室内导航、人员跟踪、智能家居等场景。
二、无线定位技术的应用场景1. 物流管理通过物联网中的无线定位技术,可以对货物进行实时跟踪和定位,提高物流管理的效率和精度。
例如,在仓库中使用RFID定位技术,可以准确地记录货物的位置和数量,实现智能化的仓储管理;在物流运输过程中使用GPS定位技术,可以实时监控车辆的位置和行驶状态,提升物流运输的可控性和安全性。
常见的七种无线定位技术总结

常见的七种无线定位技术总结
常见的无线定位技术有以下七种:
红外线定位、超声波定位、蓝牙定位、射频识别定位、超宽带定位、无线高保真定位和Zigbee(传感器)定位。
红外线定位
基本原理:主要通过在已知节点处的红外线发射设备发射红外线,然后在待测节点布置好的光学传感器接收这些红外信号,经过对红外信号的处理,计算出距离,从而达到定位效果。
优缺点:一是红外线传播距离较短,二是红外线没有越过障碍物的能力,这就要求定位环境没有障碍物,或说定位只能在可视距条件下。
超声波定位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三 RADAR系统 系统
RADAR是微软雷德蒙研究院于2000年
提出的基于射频的室内定位跟踪系统 基于射频的室内定位跟踪系统, 基于射频的室内定位跟踪系统 目的是补足射频无线局域网数据网络的 定位能力和跟踪能力。系统是使用移动 设备接收到的射频信号强度 射频信号强度来进行定位。 射频信号强度 并用了经验信号强度测量值和电波传播 模型两种方法对用户进行定位,即传播 模型法和位置指纹法。
基于场景分析的定位:对定位
的特定环境进行抽象和形式化,用一 些具体的、量化的参数描述定位环境 中的各个位置,并用一个数据库把这 些信息集成在一起。基于场景分析的 定位技术可以细分为两种:基于经验 模型(Empirical Model)的场景分析定 位技术和基于确定模型 (DeterministicModel)的场景分析定位 技术。
1
在线定位:其主要工作是将实时测
量的信号强度信息与位置指纹数据库 中的信息进行比较,采取匹配算法, 将信号强度最接近点的位置作为估计 位置。
位置指纹数据库建立完成后, RADAR系统在进行实时室内定位过 程中,首先待定位节点对周围AP的 RSSI进行采集,形成一组AP的RSSI 观测值,然后通过在位置指纹数据 库中进行搜索匹配,搜索匹配采用 信号空间最近距离邻居法(NNSS)
NNSS只能完成离散点的定位服务, 而改进后的NNSS-AVG能够近似完 成连续空间的定位服务
其他的WLAN定位技术 四 其他的 定位技术
Horus:玛丽兰大学正在研究中的一个基
于WLAN的定位系统。同样采用RSS作为构 成信号空间的基本元素,Horus在信号空间 的建立中引入了概率模型。Horus系统在预 先选定的参考点上,采集并记录下AP的RSS 数值。但Horus不对全部采样值进行平均或 者中位数处理,而是形成每个AP的RSS值在 该点上的直方分布图,并将直方分布数据存 储在Radio Map中。
除了以上提及的定位技术,还有基于计 算机视觉、光跟踪定位、基于图像分析、 磁场以及信标定位等。此外,还有基于 图像分析的定位技术、信标定位、三角 定位等。目前很多技术还处于研究试验 阶段,如基于磁场压力感应进行定位的 技术。
致谢
超宽带(UWB)定位技术:超宽
带通信系统利用持续时间为纳秒或亚纳 秒级的窄脉冲作为载体进行数据传输, 使得信号可以占有数GH的带宽,超宽带 通信信道容量大、穿透能力强、辐射功 率谱密度低、对信道衰落不敏感、抗多 径干扰和电磁干扰能力强等。特别适合 应用于室内环境下的高速通信,精确定 位与跟踪。 常采用基于TOA,TDOA的定位方法实现 定位。
杉矶分校(UCLA)提出的一个WLAN定 位系统,它和RADAR、Horus的显著 区别是采用信噪比作为信号空间的样 本,而不是采用RSS,Nibble和Horus 一样采用概率模型来建立信号空间, 但和Horus不同,采用贝叶斯网络来建 立信号空间的连续概率分布图。
Weyes:是由北京航空航天大学研
二 Wi-Fi
Wi-Fi:Wi-Fi 俗称无线宽带,其实就是
IEEE 802.11b 的别称,是由一个名为 “无线以太网相容联盟”(Wireless Ethernet Compatibility Alliance, WECA) 的组织所发布的业界术语,中文译为 “无线相容认证”。它是一种短程无线 短程无线 传输技术,能够在数百英尺范围内支持 传输技术 互联网接入的无线电信号。因此,是一 种十分重要的WLAN技术
射频识别(RFID)技术:RFID系统
包括:Reader、Tag、主机(host)及数据库。 当系统要进行物体辨识工作时,主机通 过有线或无线方式下达控制命令给Reader, Reader接收到控制命令后,其内部的控制 器会通过RF收发器发送出某一频率的无 线电波能量,当Tag内的天线 感应到无线电波能量时,会传回一系列 的辨识资料给Reader,最后传回主机进行 物件的辨识与管理。
基于信号到达时间(TOA)、基于信号 到达时间差(DTOA)、基于信号入射角 (AOA)以及基于信号强度(RSS)的 定位技术是目前最主要的无线定位技术, 但是由于AOA和TOA都需要专门的设备 支持,来协助完成角度计算和延时计算, 无线局域网中通常采取基于信号强度 基于信号强度 的定位技术,即位置指纹法和传 (RSS)的定位技术 的定位技术 播模型法。
位置指纹法:
位置指纹:(Location Fingerprint)是
指特定的位置与某个可测物理量之间的 特殊关系。 位置指纹法工作在两个阶段:离线采样阶 段和在线定位阶段。 在离线阶段,采集环境内各个测试点的 信号强度,建立信号强度指纹分布图。 在线阶段是利用离线阶段建立的信号强 度分布图,根据实时在线阶段采集的各 个AP的信号强度估计移动设备的位置。
WLAN(Wireless Local Area Networks)即
无线局域网络,是在局部区域内以无线 媒体或介质进行无线通信的网络.无线局 域网的传输媒质有射频无线电波和光波 两类。 基于无线局域网的定位就是在无线局域 网中通过对接收到的无线电信号的特征 信息进行分析,根据特定的算法来计算 出被测物体所在的位置.
无线定位技术
无线定位:是指利用无线电波信号确
定移动设备在某一参考坐标系统中的位 置。主要有室内无线定位 室外无线定 室内无线定位和 室内无线定位 位 两类
室内无线定位:主要有红外线、超声
波、蓝牙、射频识别、超宽带、ZigBee 和无线局域网等定位技术
典型室内定ห้องสมุดไป่ตู้技术
基于临近关系的定位:根据待定位
物体与一个或多个已知位置的临近关系 来定位。这种定位方法通常需要标识系 统的辅助,以唯一的标识来确定已知的 各个位置。
WIFI有很多突出优势 ,其一,无线电波 的覆盖范围广。其二,传输速度非常快, 可以达到54mbps。其三。布线简单,成 本低廉。因此,用WIFI实现定位是 WLAN中定位技术的重要组成部分。 Ekahau 基于无线网络WiFi 的实时定位系 统(RTLS)是业界最精确、最简便可行、 最具成本效益的 实时定位系统,它也是 一种基于信号强度(RSS)的定位系统。
传播模型法:利用无线电信号传播的
数学模型,把在用户端测得的信号强度 转化为距离,由此估计用户的位置,这 种定位方法即为传播模型法。 传播模型法采用信号强度作为距离测量 的媒介,根据信号的传播模型将信号强 度转换为距离,所以不需要添加额外的 硬件设备。
d0
为了减少RADAR系统对经验数据的依赖,提出了考虑墙壁衰减因素的电波传播模型
基WLAN的定位系统比较 的定位系统比较
五 现有的室内定位技术
红外线定位:在待定位的物体上附上标
识,标识使用红外线发射机定期发送自 身唯一的ID识别码,同时在室内定位区 域的每一个房间里固定放置红外线接收 机,用于提取红外信号携带的数据,并 通过有线网络上报给控制中心数据库。 由于墙壁对红外线的屏蔽作用,确保接 收机只能接收到同一房间中的标识信号, 从而实现对物体的准确定位。
NNSS-AVG是RADAR系统在NNSS
算法上的进一步改进,它在NNSS计算 给出的各参考点距离值的基础上,对 这些距离值进行排序,选取其中距离 值最小的N个参考点,然后对这N个点 的物理位置坐标进行平均,得出的坐 标作为被作为WLAN客户端的最终位 置坐标,其中N的数值可以根据具体系 统环境进行调整。
离线采样:工作是在需定位区域内
的若干个测量点位置进行接收信号 强度测量,连同这些测量点的位置 信息一同保存到数据库。即得到位 置指纹。
在定位区域内选中一定数量的测量 点,在这些测量点上完成接收信号 强度值的采集。对各个AP在这些测 量点测得的RSSI值进行均值处理后, rssj 形成一组RSSI值{ , 0 rssj ……}。将该组RSSI值作为测量点的位 置指纹样本保存在数据库中。
基于信号强度(RSS)的定位是最常用的 基于场景分析的定位方式。RSS技术利用 了信号的衰减规律,即接收端离信号源 越近,收到的信号强度越强,反之,越 弱。
基于三角关系的定位:
基于信号到达时间(TOA) 基于信号到达时间差(TDOA) 基于信号到达角度(AOA)
基于WLAN的室内定位技术 一 基于 的室内定位技术
d0
n为信号强度随距离的衰减速度;p( )表示在参考距离 处的信号强度
d0
d表示信号发送方和接收方的距离; C表示障碍物(墙壁)的最大数; nw表示障碍物(墙壁)的数目; WAF表示信号经墙壁的衰减因子。 该种方法利用室内信号的传播衰减规律, 通过传播模型将实测得到的接收信号强 度转换为距离,然后结合一定数量位置 已知的AP利用三角测量原理完成定位。
究的基于无线局域网的定位系统,采 用RSS作为信号空间的基本采样值, Weyes的信号分布图采用差值模型对 RSS预先进行处理,形成RSS差值,然 后在RadioMap中保存差值模型处理后 的RSS差值序列作为信号空间的参照 量。
Weyes引入差值模型的目的在于消除 RSS中的设备引入误差,从而使建立的 信号空间与设备类型无关。Weyes对 NNSS-AVG算法做的改进主要是将 NNSS-AVG所采用的选取欧几里得距 离最小的N个位置点坐标进行平均的方 法,修改为选取欧几里的距离值小于 等于X倍最小欧几里的距离的M个位置 点,通过归一化处理,换算成概率值, Weyes通过概率分布,通过M个点坐标 和各自的概率值,计算出最终目的坐 标。
即信号空间中欧几里德距离
其中n表示AP的个数,RSS表示实时收到 的来自第i个AP的信号强度, 表示数 据库中的信号强度平均值
并取差异值最小的位置指纹的位置作为 估计的位置。NNSS算法只能计算Radio Map中各参考点和被定位目标位置之间的 距离,并选取距离最近的参考点坐标作 为被定位目标的位置坐标。所以,NNSS 并不能计算WLAN客户端的实际物理位 置坐标,而是采用已知参考点中距离最 近的点坐标作为近似估计坐标。