2019-2020年高中数学《微积分基本定理》教案4新人教A版选修2-2
2019-2020年高中数学 1.6 微积分基本定理学案 新人教A版选修2-2

2019-2020年高中数学 1.6 微积分基本定理学案 新人教A 版选修2-2学习目标:1、了解微积分基本定理的内容与含义;2、会利用微积分基本定理求函数的定积分。
一、主要知识:1、微积分基本定理:如果函数是区间上的 ,且,那么 。
2、(1)若,则 ;(2)若,则 ;(3)若,则 ;(4)若,则 ;(5)若,则 ;(6)若,则 ;二、典例分析:〖例1〗:计算下列定积分:(1)(2);(3);(4);(5)。
〖例2〗:(1)求函数()[)[)[]3,0,11,22,2,3x x x f x x x ⎧∈=∈∈⎪⎩在区间上的定积分;(2)求。
〖例3〗:已知()131326x ax a b dx a -++-=+ò且()()303tf t x ax a b dx =++-ò为偶函数,求的值。
三、课后作业:1、( )A 、B 、C 、D 、 2、若则的值是( )A 、6B 、4C 、3D 、2 3、( )A 、B 、C 、D 、 4、是一次函数,且⎰⎰==1010617)(,5)(dx x xf dx x f ,那么的解析式是( ) A 、 B 、 C 、 D 、 5、设()()()211112x x f x x x +≤⎧⎪=⎨>⎪⎩,则( ) A 、 B 、 C 、 D 、6、(1) ;(2) ;(3) ;(4) ;(5) ;(6) ;(7) ;(8) ;(9) 。
7、已知,则 。
8、计算:(1);(2)。
9、已知函数()()201x f x at bt dt =++ò为奇函数,且,求的值。
最新人教版高中数学选修2-2第一章《微积分基本定理》示范教案(第1课时)

1.6微积分基本定理整体设计教材分析本节的主要内容是微积分基本定理的含义及运用微积分基本定理计算简单的定积分.教科书采用从局部到整体、从具体到一般的思想,从导数和定积分这两个微积分学中最基本和最重要的概念入手,以寻求二者之间的联系为突破口,先利用物理意义和导数的几何意义,并结合定积分的概念,通过对变速直线运动物体的位移问题进行详细探究,分别用物体的运动规律s=s(t)和速度函数v=v(t)表示出物体在时间段[a,b]上的位移s,进而推出一般形式的结论,得出微积分基本定理.微积分基本定理不仅揭示了导数和定积分之间的内在联系,而且还提供了计算定积分的一种有效方法.通过本节的学习,使学生经历定理的发现过程,直观了解微积分基本定理的含义.通过计算简单的定积分,使学生体会微积分基本定理的威力,从而引发学生进一步学习微积分知识的兴趣.课时分配《微积分基本定理》的教学分两个课时完成:第1课时内容为微积分基本定理;第2课时内容为定积分的几何意义.第1课时教学目标知识与技能目标通过实例了解导数和定积分的联系,直观了解微积分基本定理的含义,会用牛顿—莱布尼兹公式求简单的定积分.过程与方法目标通过实例体会用微积分基本定理求定积分的方法,感受在其过程中渗透的思想方法.情感、态度与价值观通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生的辩证唯物主义观点,提高理性思维能力和逆向思维能力,激发学生学习数学的兴趣,逐步培养学生分析问题、解决问题的能力及思维能力.重点难点重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用微积分基本定理计算简单的定积分.难点:了解微积分基本定理的含义.教学方法问题驱动、启发式、自主探究式教学法,使学生在获得知识的同时,能够掌握方法、提升能力.教具准备多媒体课件.教学过程引入新课提出问题1:前面我们讲过用定积分的定义计算定积分,请回顾用定义计算∫10x3dx的过程,并尝试仿照此过程利用定积分的定义计算∫101x dx.活动设计:学生先独立思考,尝试求解,然后相互交流.学情预测:学生几乎不可能直接用定义计算出∫101x dx的值.活动成果:从前面的学习中可以发现,虽然被积函数f(x)=x3非常简单,但如果直接用定积分的定义计算∫10x3dx的值,其计算过程比较复杂,技巧性要求很高.而对于∫101x dx,几乎不可能直接用定义计算.那么,有没有更加简便、有效的方法求定积分呢?我们必须寻求计算定积分新的、更简洁的方法,也是比较一般的方法.设计意图使学生体会用定义求定积分的缺点和局限性,激发学生的探求欲望,为微积分基本定理的引入作好铺垫.探究新知我们已经学习了微积分学中两个最基本和最重要的概念——导数和定积分,这两个概念之间有没有内在联系呢?我们能否利用这种联系来求定积分呢?提出问题2:如图,一个作变速直线运动的物体的运动规律是s=s(t),它在任意时刻t 的速度v(t)与位移s(t)有何关系?活动设计:学生思考,进行口答.学情预测:绝大多数学生能得出正确结论.活动结果:得出变速直线运动中速度v(t)与位移s(t)的关系:v(t)=s′(t).设计意图回顾导数的相关知识及物理背景,复习路程与速度之间的关系,为进一步探究v(t)和s 做好铺垫.提出问题3:设这个物体在时间段[a,b]上的位移为s,你能用s(t),v(t)表示s吗?活动设计:学生独立思考,根据图象进行回答.学情预测:根据物理学的相关知识,结合图象,学生容易得出正确结论.活动结果:显然,物体位移s是函数s=s(t)在t=b处与t=a处的函数值之差,从而得出变速直线运动中位移s与位移函数s(t)的关系:s=s(b)-s(a).①设计意图得出基本定理公式中右端的雏形——s(b)-s(a),为进一步探究微积分基本定理做好铺垫.提出问题4:设这个物体在时间段[a,b]上的位移为s,你能用v(t)表示s吗?活动设计:学生先思考,允许分组讨论交流,必要时教师引导.学情预测:根据1.5.2节相关知识,不难得出结果.活动结果:师生共同梳理,得出变速直线运动中s与位移函数v(t)的关系:物体作变速直线运动,速度函数为v =v(t),求它在a ≤t ≤b 内所做的位移s ,步骤如下:(1)用分点a =t 0<t 1<t 2<…<t n =b 将区间[a ,b]等分成n 个小区间:[t 0,t 1],[t 1,t 2],…,[t i -1,t i ],…,[t n -1,t n ],其中每个小区间的长度均为Δt =t i -t i -1=b -a n.物体在此时间段内经过的路程为Δs i . (2)当Δt 很小时,在区间[t i -1,t i ]上,v(t)的变化很小,可以认为物体近似地以速度v(t i -1)作匀速直线运动,物体所做的位移Δs i ≈h i =v(t i -1)Δt =s ′(t i -1)Δt =b -a ns ′(t i -1). 从几何意义上看(如图),设曲线s =s(t)上与t i -1对应的点为P ,PD 是点P 处的切线,由导数的几何意义可知,切线PD 的斜率等于s ′(t i -1),于是Δs i ≈h i =tan ∠DPC·Δt =s ′(t i -1)·Δt.(3)物体的总位移:s =1n i i S =∆∑≈∑i =1n h i =∑i =1n v(t i -1)Δt =∑i =1n s ′(t i -1)Δt. 显然,n 越大,即Δt 越小,区间[a ,b]的划分就越细,∑i =1n v(t i -1)Δt =∑i =1n s ′(t i -1)Δt 与s的近似程度就越高.(4)由定积分的定义有s =lim n →∞∑i =1n b -a n v(t i -1)=lim n →∞∑i =1n b -a n s ′(t i -1)=∫b a v(t)dt =∫b a s ′(t)dt.② 设计意图得出基本定理中公式左端的雏形——∫b a v(t)dt ,使公式雏形基本形成.提出问题5:通过上面的探究,我们将物体在时间段[a ,b]上的位移s ,分别用s(t)和v(t)进行了表示,现在你能否将二者联系起来?活动设计:教师引导学生,观察①②两式,得出关系式.学情预测:学生容易得出二者的关系式.活动结果:物体在区间[a ,b]上的位移s 就是v(t)=s ′(t)在区间上的定积分,等于函数s(t)在区间端点b ,a 处的函数值之差s(b)-s(a),从而s =∫b a v(t)dt =∫b a s ′(t)dt =s(b)-s(a).设计意图回到最初提出的问题,使学生潜移默化地形成目标意识,得出微积分定理的一个特例,为得出微积分基本定理奠定基础.提出问题6:对于一般的函数f(x),设F ′(x)=f(x),是否也有:∫b a f(x)dx =∫b a F ′(x)dx =F(b)-F(a)?若上式成立,我们就找到了用f(x)的原函数(即满足F ′(x)=f(x))的数值差F(b)-F(a)来计算f(x)在[a ,b]上的定积分的方法.活动设计:由学生做出猜想,教师可视具体情况决定是否给出学生证明过程.学情预测:学生容易得出正确的猜想结论.活动结果:对于一般函数f(x)是区间[a ,b]上的连续函数,设F ′(x)=f(x),则有∫b a f(x)dx =F(b)-F(a).证明如下:(此处并不要求学生掌握证明的过程)∵Φ(x)=∫x a f(t)d 与F(x)都是f(x)的原函数,故F(x)-Φ(x)=c(a ≤x ≤b),其中c 为某一常数.令x =a ,得F(a)-Φ(a)=c ,又Φ(a)=∫a a f(t)dt =0,∴c =F(a),故F(x)=Φ(x)+F(a).∴Φ(x)=F(x)-F(a)=∫x a f(t)dt.令x =b ,有∫b a f(x)dx =F(b)-F(a).为了方便起见,还常用F(x)|b a 表示F(b)-F(a),即∫b a f(x)dx =F(x)|b a =F(b)-F(a).设计意图教师引导学生由特殊到一般做出猜想,得出牛顿—莱布尼兹公式,体现定积分的基本思想,突出导数的几何意义,体现了数形结合这一数学中的基本思想方法.这里不要求学生掌握公式的证明过程,重在让学生体会推理的思想.回到最初提出的问题,使学生潜移默化地在学习及解决问题的过程中形成目标意识.归纳总结定理 一般地,如果函数f(x)是区间[a ,b]上的连续函数,并且F ′(x)=f(x),那么∫b a f(x)dx =F(b)-F(a).该式称之为微积分基本公式或牛顿—莱布尼兹公式.它指出了求连续函数定积分的一般方法,把求定积分的问题转化成求原函数的问题,是微分学与积分学之间联系的桥梁.公式不仅揭示了导数和定积分之间的内在联系,同时也提供了计算定积分的一种有效方法,为后面的学习奠定了基础.因此,牛顿—莱布尼兹公式处于极其重要的地位,起到了承上启下的作用,而且它给微积分学的发展带来了深远的影响,是微积分学中最重要、最辉煌的成果.理解新知提出问题7:计算定积分∫b a f(x)dx 的关键是什么?如何求F(x)?活动设计:组织学生交流、讨论回答.活动结果:由微积分基本定理知,计算定积分∫b a f(x)dx 关键是找出满足F ′(x)=f(x)的函数F(x),从而把问题转化为计算函数F(x)在区间的两个端点处的函数值之差.通常,我们可以运用基本初等函数求导公式和导数的四则运算法则从反方向上求出F(x).设计意图明确运用微积分基本定理的关键,进一步加深对定理的理解和记忆.运用新知例1计算∫10x 3dx.活动设计:以学生练习、讨论为主,教师引导、点评.活动结果:让学生与上一节例题比较,得出结论:结果相同,但比用定义计算定积分简单.教师给出规范的书写格式.解:因为(14x 4)′=x 3,所以∫10x 3dx =14x 4|10=14. 设计意图初步展示利用微积分基本定理求定积分的优越性,规范运用微积分基本定理求定积分的书写格式.例2计算(1)∫10x 2dx ;(2)∫211xdx. 解:(1)因为(13x 3)′=x 2,所以∫10x 2dx =13x 3|10=13. (2)因为(lnx)′=1x ,所以∫211xdx =lnx|21=ln2-ln1=ln2. 点评:进一步熟练、规范运用微积分基本定理求定积分的书写格式.巩固练习计算:1.∫211x 2dx ;2.∫31(2x -1x 2)dx. 解:1.∫211x 2dx =(-x -1)|21=-12+1=12. 2.因为(x 2)′=2x ,(1x )′=-1x 2, 所以∫31(2x -1x 2)dx =∫312xdx -∫311x 2dx =x 2|31+1x |31=(9-1)+(13-1)=223. 变练演编1.已知∫t 0(2x -4)dx =5,则t =__________.2.已知∫21f(x)dx =(lnx 2)|21,则f(x)=__________.3.请你仿照第3题,自己编一个类似的题目,并与你的同学交换,试求其结果.答案:1.5 2.2x3.答案略. 点评:1.训练逆向思维,进一步熟悉公式;2.进一步体会公式运用的关键——求原函数F(x);3.进一步体会导数与定积分的关系,强化本节的基本思想,同时训练复合函数的求导问题;4.训练学生仿例编题,增加问题的多样性、趣味性、探索性和挑战性,使学生潜移默化地学会编题、解题.达标检测1.∫1-1xdx 等于( )A .-1B .1C .0D .22.y =∫10(3x 2-x +1)dx ,则y ′等于( )A .0B .1C .3D .63.∫21(x -1x)dx =__________. 4.∫21(x 2-2x -3x)dx =__________. 答案:1.C 2.A 3.32-ln2 4.-12-3ln2 课堂小结知识整理,形成系统(由学生归纳,教师完善).1.知识收获:本节课借助于变速直线运动物体的速度与路程的关系以及图形,得出了特殊情况下的牛顿—莱布尼兹公式,进而推广到一般的函数,得出了微积分基本定理,找到了一种求定积分的简便方法.2.方法收获:运用微积分基本定理的关键是找到被积函数的原函数,在探求定理的过程中,充分体会了“由特殊到一般”的研究问题的方法.3.思维收获:数形结合的思想,由特殊到一般推理的思想.布置作业习题1.6 A 组1.(1)(3).补充练习基础练习1.∫π0sinxdx 等于( )A .0B .2C .πD .2π2.若∫a 1(2x +1x)dx =3+ln2,且a>1,则a 的值为( ) A .6 B .4C .3D .23.∫10e x dx 等于( )A .e -1B .1C .eD .e -14.∫0-1(x -e x )dx 等于( )A .-1-1eB .-1C .-32+1eD .-32答案:1.B 2.D 3.D 4.C拓展练习5.设函数y =∫x 0(t -1)dt(x>0),则y 有( )A .极小值12B .极小值-12C .极大值12D .极大值-126.已知∫5t (2x -4)dx =5,则t =__________.答案:5.B 6.0或4点评:第6题是变练演编第1题的变式与提升,第6题重在使学生认识不同的积分区间可能得到相同的积分值,提升对微积分基本定理的认识,为几何意义的引出做好铺垫.第5题是与导数知识相结合求极值的问题,意在提高学生的综合解题能力.设计说明本节从变速直线运动这一实际问题出发,让学生观察探究、合作交流讨论.通过数形结合,使学生经历从特殊到一般的推理过程研究.通过探究变速直线运动物体在某段时间内的速度与位移的关系,寻求导数和积分的内在联系,得到微积分基本定理.在“数形结合”的思想下,在问题式教学的引导下,学生既经历了微积分基本定理的发现过程,又直观了解了微积分基本定理的含义.在教材处理上,大胆创新,结合学生的认知能力和思维习惯进行引导,突出微积分基本定理的探究过程,整个过程以学生探究为主,使其体会探索的乐趣和微积分基本定理的威力.例题和练习的设计遵循由浅入深、循序渐进的原则,低起点、多角度、多层次地加深对微积分基本定理的认识,强化运用定理解题的步骤和格式,使学生在运用中体会微积分基本定理的具体用法以及运用定理的关键.备课资料备选例题例1函数y=∫x-x(t2+2)dt(x>0)()A.是奇函数B.是偶函数C.是非奇非偶函数D.以上都不正确思路分析:本题容易得出y=23x3+4x,但应注意x>0,故答案应选C,而非A.答案:C例2设f(x)是连续函数,且f(x)=x+2∫10f(t)dt,求f(x).解:由题意,可知f(x)=x+c(c是一个常数).所以f(x)=x+2∫10f(t)dt=x+2∫10(t+c)dt=x+1+2c,即x+c=x+1+2c,从而c=-1.所以f(x)=x-1.(设计者:韩辉杰)。
2019-2020年高中数学 1.6 2微积分基本定理教案 新人教A版选修2-2

2019-2020年高中数学 1.6 2微积分基本定理教案新人教A版选修2-2[教学目的]使学生了解积分上限函数的概念,理解微积分基本定理,掌握牛顿—莱布尼兹公式与积分上限函数的求导方法.[重点与难点]重点是微积分基本定理与牛顿—莱布尼兹公式,难点是微积分基本定理的证明.[教学过程]前面介绍了积分的概念,从理论上讲,总可通过和式的极限来确定积分的值,但实际运算起来是很繁琐的,有时甚至无法计算。
本节通过揭示积分与导数的关系,将引出计算积分的一个简便而可行的计算公式——牛顿—莱布尼兹公式.为了解决这个问题,我们先来介绍积分上限函数的概念及其性质一、积分上限函数及其导数⒈ 积分上限函数的概念设函数在上连续,为上的一点,不难得知,在部分区间上的积分存在,这里,既表示积分的上限又表示积分变量,为明确起见,把积分变量改用另一字母表示,从而该积分可表为.显然,对于上的任一取值,积分都有唯一确定的值与之对应,因此,在区间上确定了一个以积分上限为自变量的函数,称之为积分上限函数,通常记为,即⒉ 积分上限函数的性质积分上限函数具有如下的重要性质定理1(微积分基本定理)如果函数在上连续,则积分上限的函数在上可导,且证明当时,若自变量在处取得增量且,函数相应的增量为(积分中值定理)其中,介于与之间。
于是,当或时,同理可证得:,证毕这个定理的重要意义在于:⑴肯定了连续函数的原函数必存在;⑵初步揭示了积分与导数的关系,从而预示有可能通过原函数来求得积分;⑶给出了积分上限函数的导数公式,并由复合函数的求导法则可推得例1 求极限.解:易知该极限为型未定式,故由洛必达法则得例2 求下列函数的导数:⑴ ⑵解:⑴⑵;因为所以,.例3 设是内的正值连续函数,证明函数⎰⎰xxdttfdtttf)()(在内是单调增加的.证因为2)()()()()(⎪⎭⎫⎝⎛-⎰⎰⎰xxxdttfdttf txfdttfxf x2)()()()(⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛-=⎰⎰⎰xxxdttfdtttfdttxfxf2)()()()(⎪⎭⎫⎝⎛-=⎰⎰xxdttfdttftxxf当时,在上,,,且,故知,从而推得在内是单调增加的.二、牛顿—莱布尼兹公式定理2 如果函数是连续函数在的一个原函数,那么证因为在上连续,所以,为的一个原函数,又是的原函数,因此,当时,,又得当时,有即整理即得证毕注:⑴ 上式叫牛顿—莱布尼兹公式,也称为微积分基本公式.⑵ 在运用该公式时,通常记为或;⑶ 该公式对于时也适用;公式表明:一个连续函数在某一区间上的积分等于它的任何一个原函数在该区间上的增量.这就为积分的计算提供了一个简便而有效的方法.例4 求.解:因为所以, 例5 求. 解:因为,所以,由上可知,利用牛顿—莱布尼兹公式求积分一般分两步完成,运算熟练后,可合并表示. 例6 求. 解: 例7 求.解:因为,⎪⎩⎪⎨⎧≤≤<≤<≤-=211002},max {222x x x x x x x x所以,例8 设⎪⎩⎪⎨⎧+∞⋃-∞∈∈=),()0,(0],0[sin 21)(ππx x x x f ,求在内的表达式. 解:当时,)cos 1(21cos 210x t x-=⎥⎦⎤⎢⎣⎡-=当时, 当时, 所以,⎪⎪⎩⎪⎪⎨⎧>≤≤-<=Φππx x x x x 10)cos 1(2100)(习题3.21.求由参数表示式,所确定的函数对的导数. 2.求下列极限:⑴ ⑵ 3.计算下列各函数的导数: ⑴ ⑵ 4.计算下列各积分: ⑴ ⑵⑶ ⑷ ⑸ ⑹ ⑺ ⑻⑼,其中,⎪⎩⎪⎨⎧>≤+=12111)(2x x x x x f .5.设,求在的表达式. 6.求函数的极值.7.设函数在上连续,在内可导且,试证明:在内有.2019-2020年高中数学 1.6 3微积分学基本定理定积分计算教案 新人教A版选修2-2教学目的与要求:1. 理解并掌握微积分基本定理的内容及意义. 具有应用微积分基本定理证明定积分有关问题的能力.2. 熟练应用积分第二中值定理证明定积分有关问题. 教学重点,难点:1. 微积分基本定理的内容及意义. 应用微积分基本定理证明定积分有关问题的能力.2. 应用积分第二中值定理证明定积分有关问题. 教学内容:当函数的可积性问题告一段落,并对定积分的性质有了足够的认识之后,接着要来解决一个以前多次提到过的问题——在定积分形式下证明连续函数必定存在原函数.一 变限积分与原函数的存在性设f 在[a,b]上可积,根据定积分的性质4,对任何x∈(a,b), f 在[a, x]上也可积.于是,由()()[]⎰∈=Φxab a x dt t f x ,, (1)定义了一个以积分上限x 为自变量的函数,称为变上限的定积分.类似地,又可定义变下限的定积分:[]⎰∈=bxb a x dt t f x .,,)()(ψ (2)与ψ统称为变限积分.注:在变限积分(1)与(2)中,不可再把积分变量写成x(例如)以免与积分上、下限的x 相混淆.变限积分所定义的函数有着重要的性质.由于 因此下面只讨论变上限积分的情形.定理9.9 若f 在[a,b]上可积,则由(1)式所定义的函数在[a,b]上连续. 证 对[a,b]上任一确定的点x,只要x+△x∈[a,b],按定义式(1)有 ⎰⎰⎰∆+∆+=-=∆Φx axx xxx adt t f dt t f dt t f .)()()(因f 在[a,b]上有界,可设于是,当△x>0时有 ;)()(x M dt t f dt t f xx xxx x∆≤≤=∆Φ⎰⎰∆+∆+当△x<0时则有由此得到即证得在点x 连续.由x 的任意性, 在[a,b]上处处连续. □定理9.10 (原函数存在定理) 若f 在[a,b]上连续,则由(1)式所定义的函数在[a,b]上处处可导,且()[]⎰∈==Φ'xa b a x x f dt t f dxd x .,),()( (3) 证 对[a,b]上任一确定的x,当△x≠0且x+△x∈[a,b]时,按定义式(1)和积分第一中值定理,有由于f 在点x 连续,故有).()()(lim lim 00x f x x f x x x x =∆+=∆∆Φ=Φ'→∆→∆θ 由x 在[a,b]上的任意性,证得是f 在[a,b]上的一个原函数. □注 本定理沟通了导数和定积分这两个从表面看去似不相干的概念之间的内在联系;同时也证明了“连续函数必有原函数”这一基本结论,并以积分形式(1)给出了f 的一个原函数,正因为定理9.10的重要作用而被誉为微积分学基本定理. 且可用它可以给出牛顿-莱布尼茨公式的另一证明。
高中数学教案 选修2-2教案 第一章 导数及其应用 《微积分基本定理(二)》教案

§15 微积分基本定理(二)【学习目标】1.直观了解微积分基本定理的含义,能运用微积分基本定理计算简单的定积分。
2.通过学习微分与积分的关系,体会数学的博大精深,为进一步学好微积分打好基础。
【学习重点】微积分基本定理的理解;【学习难点】运用微积分基本定理计算简单的定积分。
【学习内容】一、预习提纲1.微积分基本定理:2.定积分公式:(1)=⎰b a cdx (2)=⎰b a n dx x (3)=⎰b a xdx cos (4)=⎰b axdx sin (5))0(___________1>=⎰x dx x b a(6)=⎰b a x dx e (7)=⎰n mx dx a 3.定积分性质(1)⎰⎰=b aba dx x f k dx x kf )()((k 为常数) (2)⎰⎰⎰±=±bab a b a dx x g dx x f dx x g x f )()()]()([ (3),)()()(⎰⎰⎰+=b c c a b a dx x f dx x f dx x f 二、典型例题 例1.计算下列定积分 (1)⎰-21)1(dx x (2)⎰+21)1(dx x e x(3)⎰π0|cos |dx x (4)⎰-302|4|dx x例2.求由曲线3,1362+=+-=x y x x y 围成的封闭区域的面积例3. 已知函数bx ax x x f ++=23)(在1=x 处有极值2-。
(1)求常数b a ,;(2)求曲线)(x f y =与x 轴围成的图形的面积。
三.课堂练习1.计算下列定积分(1)⎰ππ2cos xdx (2)⎰-+11)1(||dx x x2.计算⎰-11)(dx x f ,其中⎪⎩⎪⎨⎧≤>=0,0,)(23x x x x x f3.求由曲线22,x y x y ==围成的图形的面积§15 微积分基本定理(二)课外作业1.计算下列定积分(1)⎰π02cos xdx (2)⎰-212)1(dx xx(3)⎰+4025dx x (4)⎰202sin πxdx2.已知)(x f 是]3,3[-上的偶函数,且16)(30=⎰dx x f ,求⎰--+33]5)([dx x x f 的值。
2019-2020年高中数学《微积分基本定理》教案2新人教A版选修2-2

2019-2020年高中数学《微积分基本定理》教案2新人教A 版选修2-2教学目标:通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分 教学重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的 含义,并能正确运用基本定理计算简单的定积分。
教学难点:了解微积分基本定理的含义 一. 问题再现:1、复习:导数的定义及运算法则;定积分的概念及用定义计算2、利用定积分的定义计算 二. 自学导引:1、自学教材 51—53页,回答下面的问题:微积分基本定理一般地,如果是区间上的连续函数,并且,那么_______________,这个结论叫做微积分基本定理,又叫做_______________,为了方便起见,还常用 表示________,即()()|()()bb a af x dx F x F b F a ==-⎰注意:1、在定理中:若,那么_________,所以求定积分的关键是找到满足的任意一个函数即可;2、无论是或,此公式 都成立。
3、微积分基本定理的简单证明过程,了解即可。
证明:因为=与都是的原函数,故-=C (),其中C 为某一常数。
令得-=C ,且==0即有C=,故 =+即=-= 令,有2、看53-54页的例2回答下面的问题:定积分的取值:定积分的取值可能取________,也可能取_______,还可能是__________(1)当对应的曲边梯形位于_________,定积分的值取________,且等于____________ (2)当对应的曲边梯形位于_________,定积分的值取________,且等于____________ (3)当位于轴_____________等于位于轴____________,定积分的值为__________ , 且等于位于轴_____________减去位于 x 轴__________________.三. 交流展示:比较用定积分定义计算定积分与用微积分基本基本定理求定积分的优越性: 四. 典型例题:例1.计算下列定积分:(1);(2); 例2.计算下列定积分:(1) ;(2)点拨提升:本节课借助于变速运动物体的速度与路程的关系以及图形得出了特殊情况下的牛顿-莱 布尼兹公式成立,进而推广到了一般的函数,得出了微积分基本定理,得到了一种求定积分的简 便方法,运用这种方法的关键是找到被积函数的原函数,这就要求对前面导数的知识非常熟练.1.7定积分的简单应用学习目标:1.进一步深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法;2.深刻 理解定积分的几何意义以及微积分的基本定理;3.初步掌握利用定积分求曲边梯形的几种常见 题型及方法;4.体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。
最新人教版高中数学选修2-2第一章《微积分基本定理》示范教案(第2课时)

第2课时教学目标知识与技能目标通过实例进一步熟练微积分基本定理解题的步骤格式,了解其几何意义,掌握定积分的性质.过程与方法目标通过实例体会用微积分基本定理求定积分的方法,感受在其过程中渗透的数形结合等思想方法.情感、态度与价值观通过微积分基本定理的简单应用,培养学生运用知识解决实际问题的能力,提高分析问题、解决问题的能力,激发学生学习数学的兴趣.重点难点重点:运用微积分基本定理解决简单的数学及实际问题,了解其几何意义.难点:微积分基本定理的含义,定积分的值与曲边梯形面积之间的关系,定积分的性质.教学方法问题探究式教学法,使学生在解决问题中练习知识、掌握知识;同时,能够掌握方法、提升能力.教学过程复习回顾1.微积分基本定理的内容是什么?如果函数f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),则∫b a f(x)dx=F(x)|b a=F(b)-F(a).2.计算定积分的关键是什么?计算定积分∫b a f(x)dx关键是找出满足F′(x)=f(x)的函数F(x),从而把问题转化为计算函数F(x)在区间的两个端点处的函数值之差.3.一般如何得出F(x)?通常我们可以运用基本初等函数的求导公式和导数的四则运算法则逆向求出F(x).4.计算下列定积分:∫3-1(4x-x2)dx.答案:20 3.引入新课提出问题1:计算下列定积分:∫π0sinxdx,∫2ππsinxdx,∫2π0sinxdx.活动设计:可由多名学生同时到黑板上板演,其他学生独立思考求解.学情预测:学生可以比较顺利地计算出来.活动成果:用牛顿—莱布尼兹公式计算定积分比较简洁、有效,结果如下:解:因为(-cosx)′=sinx,所以∫π0sinxdx=(-cosx)|π0=(-cosπ)-(-cos0)=2;∫2π0πsinxdx=(-cosx)|2ππ=(-cos2π)-(-cosπ)=-2;∫2π0sinxdx=(-cosx)|2π0=(-cos2π)-(-cos0)=0.设计意图体会求导数对求定积分的重要意义,同时熟练运用公式.探究新知提出问题2:由计算结果你能发现什么结论?试利用曲边梯形的面积表示所发现的结论.活动设计:学生先独立思考,然后小组讨论,并对成果进行展示.学情预测:学生的说法可能有多种,经过讨论、细化、规范说法,但可能仍有重复或疏漏.活动结果:教师引导学生进行分析比较,可以发现:定积分的值可能取正值,也可能取负值,还可能是0.(1)当对应的曲边梯形位于x轴上方时(图1),定积分的值取正值,且等于曲边梯形的面积;图1(2)当对应的曲边梯形位于x轴下方时(图2),定积分的值取负值,且等于曲边梯形的面积的相反数;图2(3)当位于x轴上方的曲边梯形的面积等于位于x轴下方的曲边梯形的面积时,定积分的值为0(图3),且等于位于x轴上方的曲边梯形的面积减去位于x轴下方的曲边梯形的面积.图3设计意图着重说明定积分的值与曲边梯形面积之间的关系.提出问题3:你能否给出一般的定积分∫b a f(x)dx的几何意义?活动设计:学生类比问题2进行思考,然后口答.学情预测:学生一般能得出正确结论,但叙述上可能不太严谨.活动结果:如图,定积分∫b a f(x)dx的几何意义是:界于x轴、曲线y=f(x)及直线x=a、x=b之间各部分曲边梯形面积的“代数和”——在x轴上方的面积取正号,在x轴下方的面积取负号.因此,定积分的值也可以分成几部分来求,然后把各部分的值加起来,就是所求定积分的值.(定积分的性质)通过探究思考,使学生掌握定积分的几何意义,进一步加深对定积分的认识.设计意图 ⎠⎜⎛0π2 提出问题4:不计算定积分的值,试比较⎠⎜⎛0π2 cosxdx 与22cos xdx ππ-⎰的大小关系. 活动设计:学生先思考,然后分组讨论交流,教师引导.学情预测:有了上面的讨论和分析,学生不难得出结果. 活动结果:师生共同梳理,根据余弦函数的对称性,从图象上容易看出22cos xdx ππ-⎰所对应的曲边梯形的面积,刚好是⎠⎜⎛0π2cosxdx 所对应的曲边梯形的面积的2倍. 设计意图体会定积分几何意义的重要性.提出问题5:计算定积分⎠⎜⎛0π2cosxdx 与22cos xdx ππ-⎰的值,并与0sin xdx π⎰进行比较,试从几何意义上给出解释.活动设计:可由学生到黑板上板演,其他学生独立思考求解.学情预测:学生可以比较顺利地计算出来.活动成果:解:因为(sinx)′=cosx ,所以⎠⎜⎛0π2cosxdx =sinx|π20=sin π2-sin0=1, 22cos xdx ππ-⎰=sinx|π2-π2=sin π2-sin(-π2)=2.根据正弦函数与余弦函数图象的关系,容易得出22cos xdx ππ-⎰所对应的曲边梯形的面积,刚好等于∫π0sinxdx 所对应的曲边梯形的面积.设计意图通过计算及比较,进一步熟悉公式、加深对几何意义的理解,同时强化数形结合的思想方法.设计意图运用新知例1由抛物线y 2=x 和直线x =1所围成的图形的面积等于( )A .1 B.43 C.23 D.13活动设计:以学生练习、讨论为主,教师引导、点评.活动结果:根据几何意义,所求面积也就是定积分∫10xdx 的2倍(如图阴影部分所示).因为(23x 32)′=x ,所以∫10xdx =(23x 32)|10=23. 所求面积为2×23=43,故选答案B. 设计意图进一步体会几何意义的重要性,同时渗透数形结合的思想.例2汽车以每小时32公里的速度行驶,到某处需要减速停车.设汽车作匀减速刹车,加速度大小a =1.8米/秒2,问从开始刹车到停车,汽车行驶了多少米?解:首先要求出从刹车开始到停车经过了多少时间,当t =0时,汽车速度v 0=32千米/小时=32×1 0003 600米/秒≈8.88米/秒,刹车后汽车匀减速行驶,其速度为v(t)=v 0-at =8.88-1.8t.当汽车停住时,速度v(t)=0,故由v(t)=8.88-1.8t =0,解得t =8.881.8≈4.93(秒). 于是在这段时间内,汽车所驶的距离是s =∫4.930v(t)dt =∫4.930(8.88-1.8t)dt = (8.88t -1.8×12t 2)|4.930≈21.90(米). 即在刹车后,汽车需驶过21.90米才能停住.点评:进一步熟练、规范运用微积分基本定理求定积分问题,并体会定积分在解决实际问题中的价值.巩固练习计算下列定积分:(1) ⎠⎜⎛0π2 (3x +sinx)dx ;(2) 412cos 2xdx ππ⎰;(3)∫21(x -1)dx. 答案:(1)3π28+1;(2)14;(3)423-53. 变练演编1.∫20(2x -4)(x 2-4)dx =__________. 2.∫32(x +1x)2dx =__________. 3.∫41x(1-x)dx =__________.答案:1.403 2.92+ln3-ln2 3.-176点评:进一步熟练运用公式;进一步体会公式运用的关键——求原函数F(x);体会导数与定积分的关系;体会利用定积分的性质计算定积分.达标检测1.∫21(e x -2x)dx =__________. 答案:e 2-e -2ln22.计算定积分∫3π0sinxdx 的值,并从几何意义上解释这个值表示什么.解:∫3π0sinxdx =(-cosx)|3π0=2.它表示位于x 轴上方的两个曲边梯形的面积与位于x 轴下方的曲边梯形的面积之差.或表述为:位于x 轴上方的两个曲边梯形的面积(取正值)与位于x 轴下方的曲边梯形的面积(取负值)的代数和.课堂小结知识整理,形成系统(由学生归纳,教师完善).1.知识收获:本节课通过探究正弦函数在某个区间上的定积分,结合图象,得出了定积分的几何意义,同时学习了定积分的性质.2.方法收获:运用微积分基本定理及其几何意义、定积分的性质可以方便地解决定积分问题.3.思维收获:数形结合的思想,由特殊到一般的思想.布置作业习题1.6B 组1.(1)(2)(3).补充练习基础练习1.∫10(e x +e -x )dx 等于( )A .e +1eB .2e C.2e D .e -1e2.曲线y =cosx ,x ∈[0,3π2]与坐标轴围成的图形的面积为( ) A .4 B .3C.52D .2 3.若∫a 0(3x 2+4x -5)dx =a 3-2(a>1),则a =__________.答案:1.D 2.B 3.2拓展练习4.22cos 2x dx ππ⎰=__________. 答案:π4-125.如图,求由两条曲线y =-x 2,4y =-x 2及直线y =-1所围成的图形的面积.解:由⎩⎪⎨⎪⎧y =-x 2,y =-1,得C(1,-1),同理得D(2,-1). ∴所求图形的面积 S =2{∫10[-x 24-(-x 2)]dx +∫21[-x 24-(-1)]dx} =2(∫103x 24dx -∫21x 24dx +∫21dx)=2(x 34|10-x 312|21+x|21)=43. 设计说明本节从探究正弦函数在某个区间上的定积分与对应曲边梯形面积的关系入手,让学生观察探究、合作交流讨论,使学生经历从特殊到一般的探究过程.通过数形结合,寻求定积分和曲边梯形面积的内在联系,得到定积分的几何意义.在“数形结合”的思想下,在问题式教学的引导下,学生既经历了知识发现的过程,又直观了解了定积分的性质.本节教材课本内容相对较少,但其地位却非常重要,因此,本设计增加了相应的探究内容和例题及练习.在充分探究的基础上,强化针对性练习,使学生能较好地理解定积分的几何意义,并掌握其性质.例题和练习的设计遵循由浅入深、循序渐进的原则,与前一节的题目相辅相成,并且相对于前一节题目的难度有所提升,以便于学生更好地掌握公式、熟悉性质.备课资料牛顿与莱布尼兹创立微积分之解析牛顿,1642年生于英格兰,1661年,入英国剑桥大学,1665年,牛顿回到乡间,终日思考各种问题,运用他的智慧和数年来获得的知识,发明了流数术(微积分)、万有引力和光的分析.牛顿生活的时代正是英国发生变革的时代,当时英国发生了国内战争,资产阶级和贵族的阶级妥协,使英国资产阶级革命明显地带上了不彻底性.牛顿在30岁以前发现了微积分,并建立了经典力学体系,而他的后半生在自然科学的研究上几乎一事无成.这是由于在资本主义产生和形成的时期,资产阶级曾经向宗教神学发起冲击,帮助科学从神学中解放出来.但是当资产阶级的地位巩固以后,阶级斗争逐渐激化之时,资产阶级逐渐衰退,他们就抓住各种各样的宗教信念作为奴役人民的思想武器.牛顿受其影响很大,其前半生由于自发的唯物主义的思想倾向,使他获得了巨大的成就,而后半生则完全沉迷于神学的研究.牛顿继承了培根的经验主义传统,特别重视实验和归纳推理的作用,他曾断言,自然科学只能从经验事实出发解释世界.这在当时对打击经院哲学的崇尚空谈、妄称神意来歪曲自然界是起过积极作用的.莱布尼兹生于德国,1672年赴巴黎,在那里接触到惠更斯等一些数学名流,引导其进入了数学领域,开始微积分的创造性工作.牛顿建立微积分是从运动学的观点出发,而莱布尼兹则从几何学的角度去考虑,所创设的微积分符号远远优于牛顿的符号,并有效地促进了微积分学的发展.牛顿发现微积分(1665~1666年)比莱布尼兹至少早了9年,然而莱布尼兹公开发表它的微积分文章比牛顿早3年.如果说,牛顿建立微积分主要是从运动学的观点出发,而莱布尼兹则是从哲学的和几何学的角度去考虑,特别是和巴罗的“微分三角形”有密切的关系,莱布尼兹称它为“特征三角形”.巴罗的“微分三角形”对莱布尼兹有着重要启发,对微分三角形的研究,使他意识到求切线和求积分问题是一对互逆的问题.莱布尼兹第一个发表出微分和积分之间的互逆关系.1675~1676年间,他从求曲边梯形面积出发得到积分的概念,给出微积分基本定理.1686年莱布尼兹发表积分学论文《潜在的几何与分析不可分和无限》,1693年,他给出了上述定理的一个证明,以上这些都发表在《教师学报》上.将微分和积分统一起来,是微积分理论得以建立的一个重要标志.牛顿和莱布尼兹的哲学观点的不同导致了他们创立微积分的方法不同.牛顿坚持唯物论的经验论,特别重视实验和归纳推理.他在研究经典力学规律和万有引力定律时,遇到了一些无法解决的数学问题,而这些数学问题用欧几里德几何学和16世纪的代数学是无法解决的,因此牛顿着手研究新的求曲率、面积、曲线的长度、重心、最大最小值等问题的方法——流数法.莱布尼兹的微积分创造始于研究“切线问题”和“求积问题”,他从微分三角形认识到:求曲线的切线依赖于纵坐标之差与横坐标之差的比值;求曲边图形的面积则依赖于在横坐标的无限小区间上的纵坐标之和或无限薄的矩形之和.莱布尼兹认识到求和与求差运算是可逆的.莱布尼兹的无穷小的分阶正是和它的客观唯心论的哲学体系中那个不同层次的单子系统是相对应的.莱布尼兹在微积分的研究过程中,连续性原则成为其工作的基石,而连续性原则是扎根于他哲学中无限的本质的思想.牛顿和莱布尼兹创立微积分的相同点有:从不同的角度创立了一门新的数学学科,使微积分具有广泛的用途,并能应用于一般函数;用代数的方法从过去的几何形式中解脱出来;都研究了微分与反微分之间的互逆关系.牛顿认为微积分是纯几何的自然延伸,关心的是微积分在物理学中的应用.经验、具体和谨慎是他的工作特点,这种拘束的做法,使他没有能尽情发挥.而莱布尼兹关心的是广泛意义下的微积分,力求创造建立微积分的完善体系.他富于想象,喜欢推广,大胆而且有思辩性,所以毫不犹豫地宣布了新学科的诞生.牛顿和莱布尼兹都是他们时代的科学巨人.微积分之所以能成为独立的学科,并给整个自然科学带来革命性的影响,主要是取决于牛顿与莱布尼兹的工作.从牛顿和莱布尼兹创立微积分的过程中可以看出:当巨人的哲学的沉思变成科学的结论时,对科学发展的影响是深远的.(设计者:韩辉杰)。
高中数学《微积分基本定理》学案2 新人教A版选修2-2

微积分基本定理与应用【知识网络】1. 直观了解微积分基本定理的含义。
2. 会求简单的定积分。
3. 会用定积分的知识解决一些简单的应用问题。
【典型例题】[例1](1)由抛物线x y =2和直线x =1所围成的图形的面积等于 ( )A .1B .34 C .32D .31 (2)如图,阴影部分的面积是()A .32B .329-C .332 D .335 (3)dx x |4|102⎰-=()A .321B .322C .323D .325(4)dx x⎰ππ222cos = .(5)按万有引力定律,两质点间的吸引力221r m m kF =,k 为常数,21,m m 为两质点的质量,r为两点间距离,若两质点起始距离为a ,质点m 1沿直线移动至离m 2的距离为b 处,试求所作之功(b>a ) .[例2] 如图,求由两条曲线2x y -=,24x y -=及直线[例3]如图,抛物线C 1:y = -x 2与抛物线C 2:y =x 2-2ax (a >0)交于O 、A 两点.若过原点的直线l 与抛物线C 2所围成的图形面积为329a ,求直线l 的方程.yx o 1 2 2 - -1 -1 A B C D 2xy -= 24x y -= 例2图 例3图A例1(2)[例4]已知A (-1,2)为抛物线C :y =2x 2上的点.直线l 1过点A ,且与抛物线C 相切.直线l 2:x =a (a ≠-1)交抛物线C 于点B ,交直线l 1于点D .(1)求直线l 1的方程;(2)设∆ABD 的面积为S 1,求BD 及S 1的值;(3)设由抛物线C 、直线l 1、l 2所围成的图形的面积为S 2,求证:S 1∶S 2的值为与a 无关的常数.【课内练习】 1. 50(24)x dx -⎰=( )A .5B 。
4C 。
3D 。
22. 211ln xdx x ⎰=( )A .21ln 22 B 。
C 。
最新-高中数学《微积分基本定理》学案3 新人教A版选修

微积分基本定理(学案)◆一、学习目标定位学习目标:通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分 学习重点:1、微积分基本定理的内容2、用微积分基本定理的求简单的定积分学习难点:微积分基本定理的引入◆二、新课导入复习定积分的概念试用定义计算211dx x⎰的值. 解:分析:求解过程遇到麻烦,究其原因“和式难求”。
就需寻求新的解决方法。
◆三、新知探究1. 变速直线运动中位置函数与速度函数之间的联系一个作变速直线运动的物体的位移满足函数()y y t =,由导数的概念可知,它在任意时刻t 的速度为 .设这个物体在时间段[],a b 内的位移为s ,试用(),()y t v t s 表示。
问题分解:1)如何用y(t)表示[a,b]内的位移s?2)如何用v(t)表示[a,b]内的位移s?dx x ⎰2111()lim nn i if x n→∞==∙∆∑111limnn i i nn →∞==∙∑11lim nn i i→∞==∑111lim(1)23n n→∞=++++综合可得:2. 微积分基本公式或牛顿—莱布尼兹公式一般的,如果函数[](),()(),f x a b F x f x '=是区间上的连续函数,并且那么,()baf x dx =⎰。
这就是微积分基本定理,也叫牛顿——莱布尼兹公式。
也记作:()baf x dx =⎰= 。
.说明:(!).它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题。
我们可以用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分.(2)。
它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。
思考并回答下列问题:(2)计算定积分()baf x dx ⎰的关键是什么?s()()f x F x (1)与函数相对应的唯一吗?如果不唯一,它们之间有什么关系?原函数的选择影响最后的计算结果吗?()()f x F x (3)寻找函数的原函数的方法是什么?(4)利用基本初等函数的求导公式求下列函数的原函数例题精析例2、计算下列定积分: (1)211dx x⎰解: 解:例2.计算下列定积分:220sin ,sin ,sin xdx xdx xdx ππππ⎰⎰⎰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高中数学《微积分基本定理》教案4新人教A 版选修2-2一、教学目标知识与技能目标通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分过程与方法通过实例体会用微积分基本定理求定积分的方法情感态度与价值观通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。
二、教学重难点重点 通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。
难点 了解微积分基本定理的含义三、教学过程1、复习:定积分的概念及用定义计算2、引入新课我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。
我们必须寻求计算定积分的新方法,也是比较一般的方法。
变速直线运动中位置函数与速度函数之间的联系设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(),则物体在时间间隔内经过的路程可用速度函数表示为。
另一方面,这段路程还可以通过位置函数S (t )在上的增量来表达,即=而。
对于一般函数,设,是否也有若上式成立,我们就找到了用的原函数(即满足)的数值差来计算在上的定积分的方法。
注:1:定理 如果函数是上的连续函数的任意一个原函数,则证明:因为=与都是的原函数,故-=C ()其中C 为某一常数。
令得-=C ,且==0即有C=,故=+=-=令,有此处并不要求学生理解证明的过程为了方便起见,还常用表示,即()()|()()bb a a f x dx F x F b F a ==-⎰该式称之为微积分基本公式或牛顿—莱布尼兹公式。
它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。
它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。
因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。
例1.计算下列定积分:(1); (2)。
解:(1)因为, 所以22111ln |ln 2ln1ln 2dx x x==-=⎰。
(2))因为, 所以3332211111(2)2x dx xdx dx xx -=-⎰⎰⎰ 233111122||(91)(1)33x x =+=-+-=。
练习:计算解:由于是的一个原函数,所以根据牛顿—莱布尼兹公式有===例2.计算下列定积分:2200sin ,sin ,sin xdx xdx xdx ππππ⎰⎰⎰。
由计算结果你能发现什么结论?试利用曲边梯形的面积表示所发现的结论。
解:因为,所以00sin (cos )|(cos )(cos 0)2xdx x πππ=-=---=⎰,22sin (cos )|(cos 2)(cos )2xdx x ππππππ=-=---=-⎰, 2200sin (cos )|(cos 2)(cos 0)0xdx x πππ=-=---=⎰. 可以发现,定积分的值可能取正值也可能取负值,还可能是0:( l )当对应的曲边梯形位于 x 轴上方时(图1.6一3 ) ,定积分的值取正值,且等于曲边梯形的面积;图1 . 6 一 3 ( 2 )(2)当对应的曲边梯形位于 x 轴下方时(图 1 . 6 一 4 ) ,定积分的值取负值,且等于曲边梯形的面积的相反数;( 3)当位于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面积时,定积分的值为0(图 1 . 6 一 5 ) ,且等于位于 x 轴上方的曲边梯形面积减去位于 x 轴下方的曲边梯形面积.例3.汽车以每小时32公里速度行驶,到某处需要减速停车。
设汽车以等减速度=1.8米/秒2刹车,问从开始刹车到停车,汽车走了多少距离?解:首先要求出从刹车开始到停车经过了多少时间。
当t=0时,汽车速度=32公里/小时=米/秒8.88米/秒,刹车后汽车减速行驶,其速度为当汽车停住时,速度,故从解得秒于是在这段时间内,汽车所走过的距离是4.934.9300(t)(8.88 1.8t)s v dt dt ==-⎰⎰= 4.93201(8.88 1.8t )21.902-⨯≈米,即在刹车后,汽车需走过21.90米才能停住.微积分基本定理揭示了导数和定积分之间的内在联系,同时它也提供了计算定积分的一种有效方法.微积分基本定理是微积分学中最重要的定理,它使微积分学蓬勃发展起来,成为一门影响深远的学科,可以毫不夸张地说,微积分基本定理是微积分中最重要、最辉煌的成果.四、课堂小结本节课借助于变速运动物体的速度与路程的关系以及图形得出了特殊情况下的牛顿-莱布尼兹公式.成立,进而推广到了一般的函数,得出了微积分基本定理,得到了一种求定积分的简便方法,运用这种方法的关键是找到被积函数的原函数,这就要求大家前面的求导数的知识比较熟练,希望,不明白的同学,回头来多复习!五、教学后记从教以来,一直困惑于一个问题:课堂上如何突出重点并突破难点。
当然,理论方面自己早已烂熟于心,关键是缺乏实践方面的体验及感悟。
在今天的课堂上,当自己在生物化学班重点及难点均未解决,相反将更多时间纠缠在细节方面,而物理班级恰好相反,教学效果的强烈反差,终于让自己对这个问题有了实践的切身的认识。
记得当实习生时,本来一个相当简单的问题,可在课堂上却花费了大量时间,更严重的是学生却听得更为糊涂。
一个主要原因在于,对相关知识结构理解不到位,眉毛胡子一把抓,而难点又无法解决。
2019-2020年高中数学《总体分布的估计》教案1(1)新人教A版必修3教学目标:知识与技能(1)正确理解样本数据标准差的意义和作用,学会计算数据的标准差。
(2)能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释。
(3)会用样本的基本数字特征估计总体的基本数字特征。
(4)形成对数据处理过程进行初步评价的意识。
过程与方法在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法。
情感态度与价值观会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辨证地理解数学知识与现实世界的联系。
重点与难点重点:用样本平均数和标准差估计总体的平均数与标准差。
难点:能应用相关知识解决简单的实际问题。
教学设想【创设情境】在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究。
——用样本的数字特征估计总体的数字特征(板出课题)。
【探究新知】<一>、众数、中位数、平均数〖探究〗:P62(1)怎样将各个样本数据汇总为一个数值,并使它成为样本数据的“中心点”?(2)能否用一个数值来描写样本数据的离散程度?(让学生回忆初中所学的一些统计知识,思考后展开讨论)初中我们曾经学过众数,中位数,平均数等各种数字特征,应当说,这些数字都能够为我们提供关于样本数据的特征信息。
例如前面一节在调查100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25t(最高的矩形的中点)(图略见课本第62页)它告诉我们,该市的月均用水量为2. 25t的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少。
〖提问〗:请大家翻回到课本第56页看看原来抽样的数据,有没有2.25 这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?(请大家思考作答)分析:这是因为样本数据的频率分布直方图把原始的一些数据给遗失的原因,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差。
〖提问〗:那么如何从频率分布直方图中估计中位数呢?分析:在样本数据中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数。
因此,在频率分布直方图中,矩形的面积大小正好表示频率的大小,即中位数左边和右边的直方图的面积应该相等。
由此可以估计出中位数的值为2.02。
(图略见课本63页图2.2-6)〖思考〗:2.02这个中位数的估计值,与样本的中位数值2.0不一样,你能解释其中的原因吗?(原因同上:样本数据的频率分布直方图把原始的一些数据给遗失了)(课本63页图2.2-6)显示,大部分居民的月均用水量在中部(2.02t左右),但是也有少数居民的月均用水量特别高,显然,对这部分居民的用水量作出限制是非常合理的。
〖思考〗:中位数不受少数几个极端值的影响,这在某些情况下是一个优点,但是它对极端值的不敏感有时也会成为缺点,你能举例说明吗?(让学生讨论,并举例)<二>、标准差、方差1.标准差平均数为我们提供了样本数据的重要信息,可是,有时平均数也会使我们作出对总体的片面判断。
某地区的统计显示,该地区的中学生的平均身高为176㎝,给我们的印象是该地区的中学生生长发育好,身高较高。
但是,假如这个平均数是从五十万名中学生抽出的五十名身高较高的学生计算出来的话,那么,这个平均数就不能代表该地区所有中学生的身体素质。
因此,只有平均数难以概括样本数据的实际状态。
例如,在一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?如果你是教练,选哪位选手去参加正式比赛?我们知道,。
两个人射击的平均成绩是一样的。
那么,是否两个人就没有水平差距呢?(观察P66图2.2-8)直观上看,还是有差异的。
很明显,甲的成绩比较分散,乙的成绩相对集中,因此我们从另外的角度来考察这两组数据。
考察样本数据的分散程度的大小,最常用的统计量是标准差。
标准差是样本数据到平均数的一种平均距离,一般用s表示。
样本数据的标准差的算法:(1)、算出样本数据的平均数。
(2) 、算出每个样本数据与样本数据平均数的差:(3) 、算出(2)中的平方。
(4) 、算出(3)中n 个平方数的平均数,即为样本方差。
(5) 、算出(4)中平均数的算术平方根,,即为样本标准差。
其计算公式为:显然,标准差较大,数据的离散程度较大;标准差较小,数据的离散程度较小。
〖提问〗:标准差的取值范围是什么?标准差为0的样本数据有什么特点?从标准差的定义和计算公式都可以得出:。