复数汇编1
高中数学竞赛试题汇编一二《集合与简易逻辑》《复数》

【2013浙江】集合{,11P x x R x =∈-<},{,1},Q x x R x a =∈-≤且P Q ⋂=∅,则实数a 取值范围为( )A. 3a ≥B. 1a ≤-.C. 1a ≤-或 3a ≥D. 13a -≤≤答案 C{02},{11},P x x Q x a x a =<<=-<<+要使P Q ⋂=∅,则12a -≥或10a +≤。
解得1a ≤-或 3a ≥。
【2013浙江】若,,R αβ∈ 则90αβ+= 是sin sin 1αβ+>的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件答案 D当0,90sin sin 1αβαβ==⇒+= 。
当60sin sin 31αβαβ==⇒+=> ,但90αβ+≠ 。
【2013河北】已知集合{}11,10,,lg ,10A B y y x x A ⎧⎫===∈⎨⎬⎩⎭,则A B = . 答案:{}0,1,1B =-,{}1A B = .【2013辽宁】已知集合{}{}23100,121A x x x B x m x m =--≤=+≤≤-,当A B =∅ 时,实数m 的取值范围是( )(A) 24m <<(B) 24m m <>或 (C) 142m -<< (D) 142m m <->或 答案:B.,B B =∅≠∅.【2013吉林】已知函数[](),0,1f x ax b x =+∈,20a b +>是()0f x >恒成立的( )(A) 充分不必要条件(B) 必要不充分条件(C) 充要条件(D) 既不充分也不必要条件答案:B【2013湖北】设集合{}1,3,5,7,9A =,{}2,4,6,18B =,{},C a b a A b B =+∈∈,则集合C 的所有元素之和为 .答案:178【2013陕西】设AB 是两个非空的有限集,全集U A B = 且U 中含有m 个元素,若()()U U C A C B 中含有n 个元素,则A B 中含有元素的个数为 .答案:m-n【2013甘肃】设集合{}2A x x a =-<,{}2230B x x x =--<,若B A ⊆,则实数a 的取值范围是 .答案:3a ≥.【2013黑龙江】已知全集U R =,集合112x N x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2680M x x x =-+≤,图中阴影部分所表示的集合为()(A ){}0x x ≤(B ){}24x x ≤≤(C ){}024x x x <≤≥或(D ){}024x x x ≤<>或答案:3a ≥.【2013黑龙江】命题“所有实数的平方都是正数”的否定 ( )(A )所有实数的平方都不是正数(B )有的实数的平方是正数(C )至少有一个实数的平方不是正数(D )至少有一个实数的平方是正数答案:C.【2013江苏】已知全集{}20122013log log A x x x =<,{}2B x x ax a x =-+<,且A B ⊆,则实数a 的取值范围是 . 答案:{}01A x x =<<,因为A B ⊆,所以{}1B x a x =<<,故0a ≤.【2013全国】设集合{}0,1,2,3A =,{}2,2B x x A x A =-∈-∉,则集合B 的所有元素之和为 .答案:-5U N M《复数》汇编【2013河北】已知复数z 满足2z z i +=+,那么z = . 答案:34z i =+ 【2013辽宁】第3题【2013山东】已知复数z 满足1z =,则21z z -+的最大值为 . 答案:21z z -+=22131332424z z ⎛⎫-+≤-+≤ ⎪⎝⎭,当1z =-时达到最大值3. 【2013黑龙江】已知i 是虚数单位,2342013i i i i i +++++=(A) i(B) 1-(C) 0(D) 1答案:A【2013四川】已知i 是虚数单位,23420131z i i i i i =++++++ ,把复数z 的共轭复数记为z ,则z z = .答案:234,,10,n n n n a i a a i i i +==+++=则1z i =+,所以1z i =-,则2z z = .【2013浙江】已知复数(,,z x yi x y R i =+∈为虚数单位),且28z i =,则z =( )(A)22z i =+(B)22z i =--(C)22,z i =-+或22z i =-(D)22,z i =+或22z i =--答案 D。
最新高考数学分类汇编 复数 完整版强力推荐

最新高三最新模拟数学理试题分类汇编1、(安溪八中)i 为虚数单位,若11aii i +=-,则a 的值为A. iB. i -C. 2i -D. 2i答案:C2、(南安一中)i 为虚数单位,若11aii i +=-,则a 的值为A. iB. i -C. 2i -D. 2i答案:C3、(清流一中普通班)设i 是虚数单位,复数(1)i i +化简为 ( )A. 1i -+B. 1i --C. 1i +D. 1i -答案:A4、(清流一中实验班)设i 是虚数单位,复数1ii +化简是 ( )A. 1i -+B. 1i --C. 1i +D. 1i -答案:D5、(泉州一中)已知i 为虚数单位,则复数21ii -+在复平面上所对应的点在( D )A .第一象限B .第二象限C .第三象限D .第四象限答案:D6、(仙游一中)若复数(1)(2)bi i ++是纯虚数(i 是虚数单位,b 是实数),则b =(A ) A 、2B 、2-C 、12 D 、12-答案:A各地高三最新模拟数学理试题分类汇编复数排列组合与二项式定理1、(福州八中高三毕业班第一次质检)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有A .4种B .10种C .18种D .20种答案:B 2、(东山第二中学高三上学期期中)用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有 ( ).A 288个 .B 240个 .C 144个 .D 126个答案:B3(莆田一中)73)12(x x的展开式中常数项为 .答案:14。
高中数学竞赛试题汇编一二《集合与简易逻辑》《复数》讲义

1. 命题“所有实数的平方都是正数”的否定 (A )所有实数的平方都不是正数 (B )有的实数的平方是正数(C )至少有一个实数的平方不是正数 (D )至少有一个实数的平方是正数2. 集合{11}P x x =-<{1},Q x x a =-≤且P Q ⋂=∅,则实数a 取值范围为A. 3a ≥B. 1a ≤-.C. 1a ≤-或 3a ≥D. 13a -≤≤ 3. 若,,R αβ∈ 则90αβ+=是sin sin 1αβ+>的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件4. 已知全集U R =,集合112xN x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2680M x x x =-+≤,图中阴影部分所表示的集合为 (A ){}0x x ≤(B ){}24x x ≤≤ (C ){}024x x x <≤≥或 (D ){}024x x x ≤<>或 5. 已知集合{}23100A x x x =--≤,{}121B x m x m =+≤≤-,当A B =∅ 时,实数m 的取值范围是(A) 24m << (B) 24m m <>或(C) 142m -<< (D) 142m m <->或6. 已知函数[](),0,1f x ax b x =+∈,“20a b +>”是“()0f x >恒成立”的(A) 充分不必要条件 (B) 必要不充分条件(C) 充要条件 (D) 既不充分也不必要条件7. 已知{}11,10,,lg ,10A B y y x x A ⎧⎫===∈⎨⎬⎩⎭, 则A B = .8. 设集合{}1,3,5,7,9A =,{}2,4,6,18B =,{},C a b a A b B =+∈∈,则集合C 中所有的元素之和为 . 9. 设AB 是两个非空的有限集,全集U A B = 且U 中含有m 个元素,若()()U U C A C B 中含有n 个元素,则A B 中含有元素的个数为 . 10. 设{}2A x x a =-<,{}2230B x x x =--<,若B A ⊆,则实数a 的取值范围是 . 11.设{}20122013log log A x x x =<,{}2B x x ax a x =-+< 且A B ⊆,则a 的取值范围是 . 12设{}0,1,2,3A =,{}2,2B x x A x A =-∈-∉,则集合B 的所有元素之和为 .13. 已知复数z 满足2z z i +=+,那么z = .14. 已知复数z 满足1z =,则21z z -+的最大值为 .15. 已知i 是虚数单位,2342013i i i i i+++++= .16. i 是虚数单位,23420131z i i i i i=++++++ ,复数z 的共轭复数记为z ,则z z = . 17. 已知复数(,,z x yi x y R i =+∈为虚数单位),且28z i =,则z =( ) (A) 22z i =+ (B) 22z i =--(C) 22,z i =-+或22z i =- (D) 22,z i =+或22z i =--UNM高中数学竞赛试题汇编一《集合与简易逻辑》《复数》讲义。
复数—(2018-2022)高考真题汇编

复数—(2018-2022)高考真题汇编一、单选题(共35题;共70分)1.(2分)(2022·浙江)已知a,b∈R,a+3i=(b+i)i(i为虚数单位),则()A.a=1,b=−3B.a=−1,b=3C.a=−1,b=−3D.a=1,b=3【答案】B【解析】【解答】由题意得a+3i=bi−1,由复数相等定义,知a=−1,b=3.故答案为:B【分析】利用复数的乘法运算化简,再利用复数的相等求解.2.(2分)(2022·新高考Ⅱ卷)(2+2i)(1−2i)=()A.−2+4i B.−2−4i C.6+2i D.6−2i【答案】D【解析】【解答】(2+2i)(1−2i)=2+4−4i+2i=6−2i,故答案为:D【分析】根据复数代数形式的乘法法则即可求解.3.(2分)(2022·全国乙卷)设(1+2i)a+b=2i,其中a,b为实数,则()A.a=1,b=−1B.a=1,b=1C.a=−1,b=1D.a=−1,b=−1【答案】A【解析】【解答】易得(a+b)+2ai=2i,根据复数相等的充要条件可得a+b=0,2a=2,解得:a=1,b=−1.故选:A【分析】根据复数代数形式的乘法运算法则以及复数相等的充要条件即可求解.4.(2分)(2022·全国甲卷)若z=−1+√3i,则zzz̅−1=()A.−1+√3i B.−1−√3i C.−13+√33iD.−13−√33i【答案】C【解析】【解答】解:由题意得, z =−1−√3i ,则zz =(−1+√3i)(−1−√3i)=4 则z zz−1=−1+√3i 3=−13+√33i .故选:C【分析】由共轭复数的概念及复数的运算即可得解.5.(2分)(2022·全国甲卷)若 z =1+i .则 |iz +3z̅|= ( )A .4√5B .4√2C .2√5D .2√2【答案】D【解析】【解答】解:因为z=1+i ,所以iz +3z =i (1+i )+3(1−i )=2−2i ,所以 |iz +3z|=√4+4=2√2 . 故选:D【分析】根据复数代数形式的运算法则,共轭复数的概念先求得iz +3z =2−2i ,再由复数的求模公式即可求出.6.(2分)(2022·全国乙卷)已知 z =1−2i ,且 z +az̅+b =0 ,其中a ,b 为实数,则( )A .a =1,b =−2B .a =−1,b =2C .a =1,b =2D .a =−1,b =−2【答案】A【解析】【解答】易知 z̅=1+2i 所以 z +az̅+b =1−2i +a(1+2i)+b =(1+a +b)+(2a −2)i 由 z +az̅+b =0 ,得 {1+a +b =02a −2=0,即 {a =1b =−2 . 故选:A【分析】先求得 z̅ ,再代入计算,由实部与虚部都为零解方程组即可. 7.(2分)(2022·北京)若复数 z 满足 i ⋅z =3−4i ,则 |z|= ( )A .1B .5C .7D .25【答案】B【解析】【解答】由已知条件可知 z =3−4ii=−4−3i ,所以 |z|=√(−4)2+(−3)2=5 . 故答案为:B【分析】根据复数的代数运算以及模长公式,进行计算即可.8.(2分)(2022·新高考Ⅱ卷)若i(1−z)=1,则z+z̅=()A.-2B.-1C.1D.2【答案】D【解析】【解答】解:由题意得,z=1−1i=1−ii2=1+i,则z̅=1−i,则z+z̅=2,故选:D【分析】先由复数的四则运算,求得z,z̅,再求z+z̅即可.9.(2分)(2021·新高考Ⅱ卷)复数2−i1−3i在复平面内对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【解答】解:2−i1−3i=(2−i)(1+3i)(1−3i)(1+3i)=5+5i10=12+12i,表示的点为(12,12),位于第一象限.故答案为:A【分析】根据复数的运算法则,及复数的几何意义求解即可10.(2分)(2021·北京)在复平面内,复数z满足(1−i)z=2,则z=()A.2+i B.2−i C.1−i D.1+i 【答案】D【解析】【解答】解:z=21−i=2(1+i)(1−i)(1+i)=1+i,故答案为:D【分析】根据复数的运算法则直接求解即可.11.(2分)(2021·浙江)已知a∈R,(1+ai)i=3+i,(i为虚数单位),则a=()A.-1B.1C.-3D.3【答案】C【解析】【解答】因为(1+ai)i=3+i,所以1+ai=3+ii=3i−1i·i=1−3i利用复数相等的充分必要条件可得:a=−3.故答案为:C.【分析】根据复数相等的条件,即可求得a的值。
历年(2019-2024)全国高考数学真题分类(复数)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(复数)汇编考点01 求复数的实部与虚部1.(2020∙全国∙高考真题)复数113i-的虚部是( ) A .310-B .110-C .110D .3102.(2020∙江苏∙高考真题)已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是 .考点02 复数相等1.(2023∙全国甲卷∙高考真题)设()()R,i 1i 2,a a a ∈+-=,则=a ( ) A .‐1B .0 ∙C .1D .22.(2022∙浙江∙高考真题)已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( ) A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==3.(2022∙全国乙卷∙高考真题)设(12i)2i a b ++=,其中,a b 为实数,则( ) A .1,1a b ==-B .1,1a b ==C .1,1a b =-=D .1,1a b =-=-4.(2022∙全国乙卷∙高考真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则( ) A .1,2a b ==-B .1,2a b =-=C .1,2a b ==D .1,2a b =-=-5.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -考点03 共轭复数1.(2024∙全国甲卷∙高考真题)设z ,则z z ⋅=( )A .2-BC .D .22.(2024∙全国甲卷∙高考真题)若5i z =+,则()i z z +=( ) A .10iB .2iC .10D .23.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1-D .1-4.(2023∙全国乙卷∙高考真题)设252i1i i z +=++,则z =( )A .12i -B .12i +C .2i -D .2i +5.(2023∙全国新Ⅰ卷∙高考真题)已知1i22iz -=+,则z z -=( ) A .i -B .iC .0D .16.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .7.(2022∙全国甲卷∙高考真题)若1z =-,则1zzz =-( )A .1-B .1-C .13-D .13-8.(2022∙全国新Ⅰ卷∙高考真题)若i(1)1z -=,则z z +=( ) A .2-B .1-C .1D .29.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -10.(2021∙全国新Ⅰ卷∙高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i -C .62i +D .42i +考点04 复数的模1.(2024∙全国新Ⅱ卷∙高考真题)已知1i z =--,则z =( )A .0B .1C D .22.(2023∙全国乙卷∙高考真题)232i 2i ++=( )A .1B .2CD .53.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .4.(2022∙北京∙高考真题)若复数z 满足i 34i z ⋅=-,则z =( ) A .1B .5C .7D .255.(2020∙全国∙高考真题)若312i i z =++,则||=z ( ) A .0 B .1CD .26.(2020∙全国∙高考真题)若z=1+i ,则|z 2–2z |=( )A .0B .1CD .27.(2020∙全国∙高考真题)设复数1z ,2z 满足12||=||=2z z ,12i z z +=,则12||z z -= . 8.(2019∙全国∙高考真题)设3i12iz -=+,则z =A .2 BC D .19.(2019∙天津∙高考真题)i 是虚数单位,则51ii-+的值为 . 10.(2019∙浙江∙高考真题)复数11iz =+(i 为虚数单位),则||z = .考点05 复数的几何意义1.(2023∙全国新Ⅱ卷∙高考真题)在复平面内,()()13i 3i +-对应的点位于( ). A .第一象限B .第二象限C .第三象限D .第四象限2.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1-D .1-3.(2021∙全国新Ⅱ卷∙高考真题)复数2i13i--在复平面内对应的点所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限4.(2020∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=( ). A .12i +B .2i -+C .12i -D .2i --5.(2019∙全国∙高考真题)设z =‐3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限6.(2019∙全国∙高考真题)设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y += B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x +=参考答案考点01 求复数的实部与虚部1.(2020∙全国∙高考真题)复数113i-的虚部是( ) A .310-B .110-C .110D .310【答案】D【详细分析】利用复数的除法运算求出z 即可. 【答案详解】因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D.【名师点评】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题. 2.(2020∙江苏∙高考真题)已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是 . 【答案】3【详细分析】根据复数的运算法则,化简即可求得实部的值. 【答案详解】∵复数()()12z i i =+-∴2223z i i i i =-+-=+ ∴复数的实部为3.故答案为:3.【名师点评】本题考查复数的基本概念,是基础题.考点02 复数相等1.(2023∙全国甲卷∙高考真题)设()()R,i 1i 2,a a a ∈+-=,则=a ( ) A .‐1 B .0 ∙ C .1 D .2【答案】C【详细分析】根据复数的代数运算以及复数相等即可解出.【答案详解】因为()()()22i 1i i i 21i 2a a a a a a a +-=-++=+-=,所以22210a a =⎧⎨-=⎩,解得:1a =. 故选:C.2.(2022∙浙江∙高考真题)已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( ) A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==【详细分析】利用复数相等的条件可求,a b .【答案详解】3i 1i a b +=-+,而,a b 为实数,故1,3a b =-=, 故选:B.3.(2022∙全国乙卷∙高考真题)设(12i)2i a b ++=,其中,a b 为实数,则( ) A .1,1a b ==- B .1,1a b == C .1,1a b =-= D .1,1a b =-=-【答案】A【详细分析】根据复数代数形式的运算法则以及复数相等的概念即可解出.【答案详解】因为,a b ÎR ,()2i 2i a b a ++=,所以0,22a b a +==,解得:1,1a b ==-. 故选:A.4.(2022∙全国乙卷∙高考真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则( ) A .1,2a b ==- B .1,2a b =-= C .1,2a b == D .1,2a b =-=-【答案】A【详细分析】先算出z ,再代入计算,实部与虚部都为零解方程组即可 【答案详解】12z i =-12i (12i)(1)(22)i z az b a b a b a ++=-+++=+++-由0z az b ++=,结合复数相等的充要条件为实部、虚部对应相等,得10220a b a ++=⎧⎨-=⎩,即12a b =⎧⎨=-⎩ 故选:A5.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i - B .12i + C .1i + D .1i -【答案】C【详细分析】设i z a b =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【答案详解】设i z a b =+,则i z a b =-,则()()2346i 46i z z z z a b ++-=+=+, 所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1i z =+. 故选:C.考点03 共轭复数1.(2024∙全国甲卷∙高考真题)设z ,则z z ⋅=( )A .2-BC .D .2【详细分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【答案详解】依题意得,z =,故22i 2zz =-=. 故选:D2.(2024∙全国甲卷∙高考真题)若5i z =+,则()i z z +=( ) A .10i B .2i C .10 D .2【答案】A【详细分析】结合共轭复数与复数的基本运算直接求解. 【答案详解】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=. 故选:A3.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1- D .1-【答案】D【详细分析】根据复数的几何意义先求出复数z ,然后利用共轭复数的定义计算.【答案详解】z 在复平面对应的点是(-,根据复数的几何意义,1z =-,由共轭复数的定义可知,1z =-. 故选:D4.(2023∙全国乙卷∙高考真题)设252i1i i z +=++,则z =( )A .12i -B .12i +C .2i -D .2i +【答案】B【详细分析】由题意首先计算复数z 的值,然后利用共轭复数的定义确定其共轭复数即可. 【答案详解】由题意可得()252i 2i 2i 2i2i 112i 1i i 11i i 1z +++-=====-++-+-,则12i z =+. 故选:B.5.(2023∙全国新Ⅰ卷∙高考真题)已知1i22iz -=+,则z z -=( ) A .i - B .i C .0D .1【答案】A【详细分析】根据复数的除法运算求出z ,再由共轭复数的概念得到z ,从而解出. 【答案详解】因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-.6.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .【答案】D【详细分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【答案详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z += 故选:D.7.(2022∙全国甲卷∙高考真题)若1z =-,则1zzz =-( )A .1- B .1- C .13-D .13-【答案】C【详细分析】由共轭复数的概念及复数的运算即可得解.【答案详解】1(1113 4.z zz =-=--=+=113z zz ==-- 故选 :C8.(2022∙全国新Ⅰ卷∙高考真题)若i(1)1z -=,则z z +=( ) A .2- B .1- C .1 D .2【答案】D【详细分析】利用复数的除法可求z ,从而可求z z +.【答案详解】由题设有21i1i i iz -===-,故1+i z =,故()()1i 1i 2z z +=++-=,故选:D9.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i - B .12i + C .1i + D .1i -【答案】C【详细分析】设i z a b =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【答案详解】设i z a b =+,则i z a b =-,则()()2346i 46i z z z z a b ++-=+=+, 所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1i z =+. 故选:C.10.(2021∙全国新Ⅰ卷∙高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i -C .62i +D .42i +【答案】C【详细分析】利用复数的乘法和共轭复数的定义可求得结果.【答案详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i +=-+--=+故选:C.考点04 复数的模1.(2024∙全国新Ⅱ卷∙高考真题)已知1i z =--,则z =( )A .0B .1CD .2【答案】C【详细分析】由复数模的计算公式直接计算即可.【答案详解】若1i z =--,则z ==故选:C.2.(2023∙全国乙卷∙高考真题)232i 2i ++=( )A .1B .2CD .5【答案】C【详细分析】由题意首先化简232i 2i ++,然后计算其模即可. 【答案详解】由题意可得232i 2i 212i 12i ++=--=-,则232i 2i 12i ++=-=故选:C.3.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .【答案】D【详细分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【答案详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z += 故选:D.4.(2022∙北京∙高考真题)若复数z 满足i 34i z ⋅=-,则z =( ) A .1 B .5C .7D .25【答案】B【详细分析】利用复数四则运算,先求出z ,再计算复数的模.【答案详解】由题意有()()()34i i 34i 43i i i i z ---===--⋅-,故|5|z ==.故选:B .5.(2020∙全国∙高考真题)若312i i z =++,则||=z ( ) A .0 B .1C D .2【答案】C【详细分析】先根据2i 1=-将z 化简,再根据复数的模的计算公式即可求出.【答案详解】因为31+2i i 1+2i i 1i z =+=-=+,所以 z ==. 故选:C .【名师点评】本题主要考查复数的模的计算公式的应用,属于容易题.6.(2020∙全国∙高考真题)若z=1+i ,则|z 2–2z |=( )A .0B .1CD .2【答案】D【详细分析】由题意首先求得22z z -的值,然后计算其模即可.【答案详解】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D.【名师点评】本题主要考查复数的运算法则和复数的模的求解等知识,属于基础题.7.(2020∙全国∙高考真题)设复数1z ,2z 满足12||=||=2z z ,12i z z +=,则12||z z -= .【答案】【详细分析】方法一:令1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,根据复数的相等可求得2ac bd +=-,代入复数模长的公式中即可得到结果.方法二:设复数12z ,z 所对应的点为12Z ,Z ,12OP OZ OZ =+, 根据复数的几何意义及复数的模,判定平行四边形12OZ PZ 为菱形,12OZ OZ 2OP ===,进而根据复数的减法的几何意义用几何方法计算12z z -. 【答案详解】方法一:设1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,12()z z a c b d i i ∴+=+++=+,1a cb d ⎧+=⎪∴⎨+=⎪⎩12||=||=2z z ,所以224a b +=,224cd +=, 222222()()2()4a c b d a c b d ac bd ∴+++=+++++=2ac bd ∴+=-12()()z z a c b d i ∴-=-+-===.故答案为:方法二:如图所示,设复数12z ,z 所对应的点为12Z ,Z ,12OP OZ OZ =+,由已知122OZ OZ OP ====,∴平行四边形12OZ PZ 为菱形,且12,OPZ OPZ 都是正三角形,∴12Z 120OZ ∠=︒,222221212121||||||2||||cos12022222()122Z Z OZ OZ OZ OZ =+-︒=+-⋅⋅⋅-=∴1212z z Z Z -==.【名师点评】方法一:本题考查复数模长的求解,涉及到复数相等的应用;考查学生的数学运算求解能力,是一道中档题.方法二:关键是利用复数及其运算的几何意义,转化为几何问题求解 8.(2019∙全国∙高考真题)设3i12iz -=+,则z =A .2 BC D .1【答案】C【详细分析】先由复数的除法运算(分母实数化),求得z ,再求z .【答案详解】因为312iz i -=+,所以(3)(12)17(12)(12)55i i z i i i --==-+-,所以z =,故选C . 【名师点评】本题主要考查复数的乘法运算,复数模的计算.本题也可以运用复数模的运算性质直接求解. 9.(2019∙天津∙高考真题)i 是虚数单位,则51ii-+的值为 .【详细分析】先化简复数,再利用复数模的定义求所给复数的模.【答案详解】5(5)(1)231(1)(1)i i i i i i i ---==-=++-. 【名师点评】本题考查了复数模的运算,是基础题. 10.(2019∙浙江∙高考真题)复数11iz =+(i 为虚数单位),则||z = .【答案】2【详细分析】本题先计算z ,而后求其模.或直接利用模的性质计算. 容易题,注重基础知识、运算求解能力的考查.【答案详解】1|||1|2z i ==+.【名师点评】本题考查了复数模的运算,属于简单题.考点05 复数的几何意义1.(2023∙全国新Ⅱ卷∙高考真题)在复平面内,()()13i 3i +-对应的点位于( ).A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【详细分析】根据复数的乘法结合复数的几何意义详细分析判断.【答案详解】因为()()213i 3i 38i 3i 68i +-=+-=+,则所求复数对应的点为()6,8,位于第一象限.故选:A.2.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1- D .1-【答案】D【详细分析】根据复数的几何意义先求出复数z ,然后利用共轭复数的定义计算.【答案详解】z 在复平面对应的点是(-,根据复数的几何意义,1z =-,由共轭复数的定义可知,1z =-.故选:D3.(2021∙全国新Ⅱ卷∙高考真题)复数2i13i --在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【详细分析】利用复数的除法可化简2i13i --,从而可求对应的点的位置. 【答案详解】()()2i 13i 2i 55i 1i 13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫⎪⎝⎭,该点在第一象限,故选:A.4.(2020∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=( ).A .12i +B .2i -+C .12i -D .2i -- 【答案】B【详细分析】先根据复数几何意义得z ,再根据复数乘法法则得结果.【答案详解】由题意得12z i =+,2iz i ∴=-.故选:B.【名师点评】本题考查复数几何意义以及复数乘法法则,考查基本详细分析求解能力,属基础题. 5.(2019∙全国∙高考真题)设z =‐3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【详细分析】先求出共轭复数再判断结果.【答案详解】由32,z i =-+得32,z i =--则32,z i =--对应点(‐3,‐2)位于第三象限.故选C .【名师点评】本题考点为共轭复数,为基础题目.6.(2019∙全国∙高考真题)设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x += 【答案】C【详细分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x ,y )和点(0,1)之间的距离为1,可选正确答案C .【答案详解】,(1),z x yi z i x y i =+-=+-1,z i -==则22(1)1y x +-=.故选C .【名师点评】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.。
高中数学复数真题汇编(解析版)

专题25 高中数学复数真题汇编1.设复数z满足|z|=1,使得关于x的方程有实根,则这样的复数z的和为.【答案】【解析】设z=a+bi(a,b∈R,a2+b2=1).将原方程改为(a+bi)x2+2(a-bi)x+2=0,分离实部与虚部后等价于:①②若b=0,则a2=1,但当a=1时,①无实数解,从而,此时存在实数满足①、②,故z=-1满足条件。
若b≠0,则由②知x∈{0,2},但显然x=0不满足①,故只能是x=2,代入①解得,进而,相应有.综上,满足条件的所有复数之和为.2.设复z、w满足,其中,i为虚数单位,分别表示z、w的共轭复数.则的模为________.【答案】【解析】由运算性质知:,由,.又.则.因此,的模为.3.已知复数数列满足,其中,为虚数单位,表示的共轭复数.则的值为______.【答案】【解析】由已知得对一切正整数,有,.故.故答案为:4.称一个复数数列为“有趣的”,若|z1|=1,且对任意正整数n,均有.求最大的常数C,使得对一切有趣的数列及任意正整数m,均有.【答案】【解析】一方面,取,其中.则,故.另一方面,由条件可得,不失一般性,可不妨设z1=1(否则可用代替z i)及(否则可用代替z i).设,其中.记集合.并设,其中.则.故.因此:即.5.设复数满足,且.求:(1)的最小值;(2)的最小值。
【答案】(1)2;(2)【解析】(1)对,设由条件知。
则又当时,。
这表明,的最小值为2。
(2)对k=1,2,将对应到平面直角坐标系中的点,记关于x轴的对称点,则点均位于双曲线的右支上。
设分别为双曲线C的左、右焦点易知,据双曲线的定义有故当且仅当点位于线段上时,上式等号成立(例如,当时,恰为的中点)。
综上,的最小值为6.确定所有的复数,使得对任意复数,均有.【答案】【解析】记.则:. ①假设存在复数,使得.则由式①知.注意到,.故另一方面,对任意满足的复数,令 ,其中,.则.而,故.此时,将代入式①得综上,符合要求的的值为.1.123z z z 、、为多项式()3P z z az b =++的三个根,满足222123250z z z ++=,且复平面上的三点123z z z 、、恰构成一个直角三角形.求该直角三形的斜边的长度.【答案】515【解析】由韦达定理得123123003z z z z z z ++++=⇒=⇒以123z z z 、、两为顶点的三角形的重心为原点.不妨设1213,z z x z z y -=-=为两条直角边.由于顶点与重心的距离等于该顶点所对应的中线长的23, 2222214419499y z x x y ⎛⎫=+=+ ⎪⎝⎭故. 类似地,2222224149499x z y x y ⎛⎫=+=+ ⎪⎝⎭. 22222341194499x y z x y ⎛⎫=+=+ ⎪⎝⎭.则222123z z z ++=222266222509933x y x y +=+=⇒=2.设21i =-。
2014届高考数学专题汇编1:复数

专题1:复数1.(2012年海淀一模理9)复数2i 1ia +-在复平面内所对应的点在虚轴上,那么实数a = .2.(2012年东城一模理1)若a ,b ∈R ,i 是虚数单位,且(2)i 1i b a +-=+,则a b +的值为( )A .1B .2C .3D .43.(2012年门头沟一模理9)复数1a i i+-为纯虚数,则a = . 4.(2012年东城11校联考理9)若复数i i ai -=++3)2)(1(,则实数a 的值为 .5.(2012年密云一模理9)复数1312i i-+=+ . 6.(2012年石景山一模理2)在复平面内,复数21i i -+对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限7.(2012年西城二模理10)已知复数z 满足(1i)1z -⋅=,则z =_____.8.(2012年朝阳二模理2)复数z 满足等式(2i)i z -⋅=,则复数z 在复平面内对应的点所在的象限是( )A .第一象限B .第二象限C .第三象限D . 第四象限9.(2012年丰台二模理1)复数1i 2i-+的虚部是( ) A .i - B .3i 5- C .–1 D .35-11.(2013届北京丰台区一模理科)复数z=1i i-在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限 12.(2013届北京西城区一模理科)若复数i 2ia +的实部与虚部相等,则实数a =( ) A .1- B .1C .2-D .2 13.(北京市东城区2013届高三上学期期末考试数学理科试题)已知a 是实数,i 1i a +-是纯虚数,则a 等于( )A .1-B .1CD .14.(北京市海淀区北师特学校2013届高三第四次月考理科数学)已知复数i zz =-+11,则z 的虚部为( ) A .1 B .1- C .i D .i - 15.(北京市西城区2013届高三上学期期末考试数学理科试题)在复平面内,复数5i 2i-的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 16.(北京市顺义区2013届高三第一次统练数学理科试卷(解析))在复平面内,复数i i +-221对应的点的坐标为( )A .()1,0-B .()1,0C .⎪⎭⎫ ⎝⎛-53,54D .⎪⎭⎫ ⎝⎛53,54 17.(北京市通州区2013届高三上学期期末考试理科数学试题 )在复平面内,复数21i i-对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限18.(北京市朝阳区2013届高三上学期期末考试数学理试题 )已知i 是虚数单位,若复数(1i)(2i)a ++是纯虚数,则实数a 等于( )A .2B .12C .12-D .2-19.(北京市房山区2013届高三上学期期末考试数学理试题 )设,a b ∈R ,(1)(2)a bi i i +=-+(为虚数单位),则a b +的值为( )A .0B .2C .3D .4二、填空题20.(2013届北京海滨一模理科)在复平面上,若复数+ i a b (,a b ∈R )对应的点恰好在实轴上,则b =_______.21.(2013届北京市延庆县一模数学理)若复数i m m m z )1()2(2+++-=(为虚数单位)为纯虚数,其中m R ∈,则=m .22.(2013届房山区一模理科数学)已知复数z 满足(1)2z i i ⋅-=,其中i 为虚数单位,则z = .23.(2013届门头沟区一模理科)复数11i z i-=+,则z = . 24.(北京市昌平区2013届高三上学期期末考试数学理试题 )若221ai i i =-+-,其中i 是虚数单位,则实数a 的值是____________.。
高考数学压轴专题最新备战高考《复数》难题汇编及答案解析

分析:直接利用复数代数形式的乘除运算化简复数,然后求 的共轭复数,即可得到 在复平面内对应的点所在的象限.
详解:由题意,
则 的共轭复数 对应的点在第二象限.
故选B.
点睛:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
故 ,
故 ,解得 .
所以 .
故选:C.
【点睛】
本题考查复数的运算,共轭复数的求解,属综合基础题.
15.若复数 ,且 ,则实数 的值等于()
A.1B.-1C. D.
【答案】A
【解析】
【分析】
由 可判定 为实数,利用复数代数形即可.
【详解】
,
所以 ,
A. B. C. D.
【答案】D
【解析】
【分析】
化简得到 ,再计算复数模得到答案.
【详解】
,∴ ,∴ ,∴ .
故选: .
【点睛】
本题考查了复数的运算,复数模,意在考查学生的计算能力.
14.已知复数z满足 ,则
A. B.
C. D.
【答案】C
【解析】
【分析】
设出复数 ,根据复数相等求得结果.
【详解】
设 ,则 ,
16.已知复数 ( 为虚数单位),则 的虚部为()
A.-1B.0C.1D.
【答案】C
【解析】
【分析】
利用复数的运算法则,和复数的定义即可得到答案.
【详解】
复数 ,所以复数 的虚部为1,故选C.
【点睛】
本题主要考查了复数的运算法则和复数的概念,其中解答中熟记复数的基本运算法则和复数的概念及分类是解答的关键,着重考查了推理与运算能力,属于基础题.
【详解】
设 ,则 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试卷第1页,总5页
绝密★启用前
复数汇编1
试卷副标题
xxx
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 一、选择题
1.设i 为虚数单位,则复数34i
i
+的共轭复数为( ) A .43i -- B .43i -+ C .43i + D .43i -
【答案】C
2.设1(z i i =+是虚数单位),则
2
2z z
+= ( ) A .1i -- B .1i -+ C .1i + D .1i - 【答案】C
3.2
11⎪
⎭
⎫ ⎝⎛+-i i 的值等于( ) A.1 B.i C.-1 D. –i 【答案】C
4.在复平面内,若复数i x x z )3()9(2
-+-=为纯虚数,则实数x 值为( ) A .3- B .0 C .3 D .3-或3 【答案】A 5.(2013•浙江)已知i 是虚数单位,则(2+i )(3+i )=( ) A .5﹣5i B .7﹣5i C .5+5i D .7+5i 【答案】C
6.如图,在复平面内,点A 表示复数z 的共轭复数,则复数z 对应的点是( )
A .
B .
C .
D .
试卷第2页,总5页
【答案】B
7.若,43i z -=则|z|=
A.3
B. 4 C .5 D .7 【答案】C 8.复数z =
31i
i
+-的共轭复数z =( ). A .1+2i B .1-2i C .2+i D .2-i 【答案】B
9.i 是虚数单位,则复数
的实部为( )
A . 2
B .1
C .1
D .2
【答案】B
10.[2013·北京高考]在复平面内,复数i(2-i)对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【答案】A
11(i 是虚数单位)所对应的点位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 【答案】B
12 ) A.2i + B.2i -+ C.2i - D.2i --
【答案】B
13.已知复数∈+=a ai z (21R ),i z 212-=,若2
1
z z 为纯虚数,则=||1z ( ) A .2 B .3 C .2 D .5 【答案】D 14 ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【答案】C 15等于
A.i
B.i -i i 【答案】A
16 A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】D
17.已知i )
试卷第3页,总5页
A .-1+i
B .-1-i
C .1+i
D .1-i 【答案】D .
18.在复平面内,复数
1
2i
-(i 是虚数单位)对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【答案】A
19.己知,下列结论正确的是
( )
A.
若,则
B.若,则
C.若 ,则
D.若
(为复数的共轭复数),则纯虚数.
【答案】C
20.若复数i a a a )1()23(2-++-是纯虚数,则实数a 的值为( ) A .1 B .2 C .1或2 D .-1
【答案】B
21.设i 时虚数单位,若复数
i
mi
+-12为纯虚数,则实数m 的值为( ) A.2 B.2- C.2
1
D.21-
【答案】A
22.已知i 为虚数单位,复数
在复平面对应点Z 在(
)
A .第一象限
B .第二象限
C .第三象限
D .第四象限 【答案】C
23.已知复数z 满足2015(1)i z i --0= (其中i 为虚数单位) ( ) A 【答案】A
24.设i 是虚数单位,R a ∈,若
21a i
i
-+是一个纯虚数,则实数a 的值为( ) A.12-
B.1-
C.1
2
D.1 【答案】C
25.已知复数z 满足(43)25i z +=(i 是虚数单位),则z 的虚部为( ) A .3- B .3 C 【答案】A
C z z z ∈321,,0232221=++z z z 0321===z z z 0232221>++z z z 232221z z z ->+23
2221z z z ->+023222
1>++z z z 11z z -=z z 1z
试卷第4页,总5页
试卷第5页,总5页
第II 卷(非选择题)
请点击修改第II 卷的文字说明。