利用ABAQUS模拟NATM隧道施工过程_朱训国

合集下载

ABAQUS前_后处理模块二次开发的应用

ABAQUS前_后处理模块二次开发的应用
211 二次开发在前处理中的应用
我们都知道二次开发在前处理中主要功能是提高 工作效率 ,对与上述例题如按照一般步骤来要完成先 建模 、创建材料特性 、装配等过程 。而在建模和装配过 程中是比较费时的 ,尤其是在装配过程中容易出错 。 本节将使 用 第 一 种 方 法 即 开 发 出 自 己 应 用 程 序 的 界 面 ,只要用户输入相关参数就可是自动完成建模和装 配任务 ,以提高工作效率 。
Toolkit的拓展 ,它在编写程序时也是遵循 Python语言 的格式 。
ABAQUS二次开发有如下几种途径 : ①通过用户 子程序可以开发新的模型 ,控制 ABAQUS计算过程和 结果 ; ②通过环境初始化文件可以改变 ABAQUS的许 多缺省设置 ; ③通过内核脚本建立的函数可以用于前 处理建模和后处理分析计算结果 ; ④通过 GU I脚本可 以创建新的图形用户界面 。本文将使用联合使用第 3、 4种方法 ,来实现对 ABAQUS的前后处理的二次开发 。
图 2 内核程序和 GU I程序的通信
ABAQUS有限元程序通过集成 Python语言向二次 开发者提供了很多库函数 , 通过 ABAQUS 脚本接口 (ABAQUS Scrip ting In2terface) , Python语言调用这些库 函数来增强 ABAQUS的交互式操作功能 。它允许用户 绕过 ABAQUS /CAE的 GU I( graphical user interfaces)直 接与内核交互 , 可以大大提高工作效率或完成 ABAQUS /CAE没有提供的功能 。但是因为它没有通 过 GU I,显的不那么直观 ,而且如想改变某些参数就不 得不修改脚本程序 ,这些对一般用户来说就显的比较 麻烦 。因此 , 对 ABAQUS 二次开发一般应先开发 出 GU I后 ,让 用 户 输 入 或 选 择 有 关 参 数 后 , 然 后 生 成 ABAQUS的脚本语言来自动处理 。ABAQUS的 GU I是 用 ABAQUS GU I Toolkit来编 写 , 它 也是 对 FOX GU I

基于ABAQUS的地下隧洞开挖及围岩稳定性分析

基于ABAQUS的地下隧洞开挖及围岩稳定性分析

基于ABAQUS的地下隧洞开挖及围岩稳定性分析都辉;任旭华;张继勋;吾克尔·吾买尔【摘要】以ANSYS为平台建立了有限元分析模型,采用ABAQUS作为计算和后处理软件,对工程区的地应力场开展了研究,分析了有断层贯穿的隧洞开挖及支护后围岩的稳定性,探究了提高围岩体参数的等效模拟方法的可行性.分析结果表明,断层对隧洞开挖后的围岩应力及位移均有不利的影响,容易出现应力集中现象;锚杆采用等效参数模拟的结果是合理、简捷的;支护系统提高了围岩体的稳定性.【期刊名称】《三峡大学学报(自然科学版)》【年(卷),期】2014(036)002【总页数】5页(P28-32)【关键词】ABAQUS;地应力;稳定性;断层;锚杆;支护系统【作者】都辉;任旭华;张继勋;吾克尔·吾买尔【作者单位】河海大学水利水电学院,南京210098;河海大学水利水电学院,南京210098;河海大学水利水电学院,南京210098;河海大学水利水电学院,南京210098【正文语种】中文【中图分类】TV39地下洞室围岩稳定性问题研究方法[1]主要有:工程地质法、模拟实验法、现场测试法、数值分析法等,其中数值分析法已发展成为评价围岩整体稳定性及设计支护系统的重要方法.断层是地下洞室开挖过程中最常见的不良地质现象,有断层分布的区段是地下洞室围岩最不稳定的区段之一.阮彦晟[2]从断层附近应力分布的异常角度做了相关研究,分析了地下工程围岩的稳定性,指出了断层对稳定性的不利影响;崔芳等[3]对断层影响下隧道围岩稳定性进行了数值模拟分析;吴满路等[4]从地应力测量方面对隧洞围岩稳定性做了相应研究,指出了断层对稳定性的危害.综上所述,断层对围岩的稳定性起着重要的作用,有必要对其进行深入研究.1 工程概况波堆水电站是波得藏布流域梯级开发的第三级电站,坝址海拔2780m,控制流域面积2453km2,年均流量132m3/s,电站装机9600kW,年均发电量6714万kW·h,是以发电为任务的单目标工程.泄洪建筑物主要有洞室溢洪道和泄洪洞(兼导流洞).泄洪洞总长536.66m,为圆形隧洞,洞径10m,布置在左岸山体中.导流洞洞身段0+080~0+395段岩性为灰岩,以弱风化~微风化岩体为主,依据《水力发电工程地质勘察规范》(GB50287-2006)附录J围岩分类标准,属Ⅲ类岩石;洞顶山岩覆盖厚度均大于3倍洞径,为Ⅳ类岩石;导流洞外侧岩质岸坡部位砂质板岩内小规模断层较发育,导流洞洞身部位局部地段小规模断层较发育,断层破碎带和灰岩接触带部位风化作用较强,岩性较破碎,属Ⅴ类岩石,需进行支护.导流期采用现浇C40混凝土衬砌,衬砌厚度1m,存在断层和破碎带.选桩号0+120至0+320段进行计算分析,地质剖面图如图1所示,隧洞埋深30~60m. 图1 导流洞地质剖面图2 数值分析2.1 计算假定文章的数值模拟计算是基于以下的假定:1)初始应力场仅考虑自重作用;2)不考虑地下水在开挖过程中的作用;3)开挖过程并没有模拟施工过程,而是理想的一次性开挖.4)模型的支护中只考虑初期支护喷混凝土和锚杆支护作用,未考虑二衬.2.2 计算模型与计算参数本文采用Ansys建立三维有限元模型,将节点和单元信息导入ABAQUS中进行计算和后处理,采用的本构模型为摩尔-库伦理想弹塑性模型.模型除上表面为起伏的曲面外其余均为垂直于坐标轴的平面,其中垂直于X轴的两个平面与垂直于Z轴的两个平面均采用法向位移约束,底面位移完全约束.3类岩石及断层破碎带均采用四面体实体单元模拟,断层厚度1m,倾角在60°左右,斜穿过隧洞,材料为Ⅴ类岩石.模型共99325个节点、93288个单元.材料参数由波堆水电站地形地质资料而得,具体见表1,有限元模型网格划分及坐标系建立如图2所示,其中Y方向为竖直方向,X方向为洞轴线方向.表1 材料参数类型密度ρ/(kg·m-3)弹性模量E/GPa泊松比μ抗拉强度R/MPa粘聚力c/MPa摩擦角φ/°2650 8 0.252.2 1.147.4Ⅳ类岩石 2450 5 0.3 2 0.5 35Ⅴ类岩石 2250 1.2 0.4 1.5 0.2 25混凝土(C40)Ⅲ类岩石2400 32.5 0.21.71 - -图2 模型网格图3 初始应力场分析为保证初始位移为零同时对模型施加初始应力场,必须进行地应力的平衡,即通过正演计算提取应力作为内力然后再施加重力荷载进行平衡,从而实现初始应力场的施加同时保证初始位移为零.ABAQUS提供了4种方法来平衡地应力[5]:初始应力提取法、关键字定义法、子程序定义法及(AUTOBALANCE)自动平衡法.考虑到本例地表起伏不平及岩土材料不均匀的情况,采用初始应力提取法进行地应力平衡.该方法中的文件FILENAME.INP获取方法为:首先将已知边界条件施加到模型上进行正演计算,然后将计算得到的每个单元的应力外插到形心点处并导出6个应力分量.将得到的应力作为内力施加到模型中同时施加重力荷载重新计算,即实现地应力的平衡,如图3所示(本文位移单位均为m,应力单位均为Pa,后面均不再标注).图3 地应力平衡效果图观察图3平衡后的结果可知,模型位移的量级由厘米级降到零点几个毫米级,可以近似认为初始位移为零,而竖向应力基本一致,平衡效果较好,这样就实现了模型近似不变形的情况下,将自重形成的初始应力场施加到模型上的目的.4 洞室开挖围岩稳定性分析X=43.8m截面和Z=56m截面为洞轴线与断层相交点所处的X向和Z向典型截面,本例重点分析断层的不利影响,因此选择这两个截面来研究.4.1 开挖完成后位移场分析1)顶拱和底板的位移主要以竖向位移为主,且沿X轴纵深方向顶部与底部竖向位移大小均是增加趋势,原因是上部岩体及覆盖层自重也是沿X轴增加,如图4所示.图4 开挖后竖向位移分布云图2)通过Z=56m截面观察竖向位移U2分布云图,发现竖向位移沿X轴纵深方向变化规律在断层与隧洞交汇处出现波动,顶拱和底部的最大位移均出现在断层附近(如图5所示),所以断层与隧洞交汇处的位移为控制位移.图5 Z=56m截面竖向位移最大点3)洞室开挖后,由于应力释放,围岩产生指向洞室内部的回弹变形,顶拱和底部位移较大为3mm,两侧位移较小,分布如图6所示.4.2 开挖完成后应力场分析1)观察第一主应力断面图,发现在洞室与断层的交汇处出现不同程度的应力集中,在断层上盘和下盘都存在一个最大拉应力极值,为0.38MPa(如图7~8所示),这是由两个应力载荷共同作用的结果[6],一是原始应力场中的应力因隧洞开挖而重新分布后对洞壁形成的载荷;二是断层面受上盘挤压而形成的垂直断层面的侧向应力的分力,再加上断层的岩体一般都比较软弱和破碎,不能承受高的应力所致,但断层厚度仅有1m,所以影响范围并不是很大,而且拉应力并未超过Ⅴ类岩石抗拉强度1.5MPa.图6 开挖后X=43.8m截面合成位移分布云图图7 X=43.8m截面主应力云图图8 Z=56m截面主应力云图2)隧洞开挖后,由于开挖扰动使得围岩应力在一定范围内有所调整,地应力分布状态也会出现明显的扰动,围岩体第一主应力越靠近洞壁越大,应力值增大幅度明显,顶拱和底部增至最大,远离洞壁位置,最大主应力的变化幅度较小,呈平稳变化.4.3 塑性破坏区隧洞开挖后,断层附近的岩体会产生弹塑性区.本例断层的倾角在60°左右,且厚度为1m,附近的塑性区变化不明显,塑性区主要分布在断层破碎带范围内[7],如图9所示,说明断层仍是影响围岩稳定的重要因素.图9 塑性区分布图上述结果表明:开挖后最大拉应力点和竖向(U2)最大正负向位移均出现在断层与隧洞的交界处,这是由于洞室开挖构成了岩体的临空面,这些临空面与断层把岩体切割成柱体或楔形体等易失稳构件,应力波动比较剧烈,加上断层破坏了岩层的连续性和完整性,导致断层附近岩石比较软弱和破碎、强度低、力学性质比较复杂,不能承受高的应力和不利于能量积累,所以此处成为应力降低带.考虑到围岩受断层影响的不利性,有必要采取适当支护措施来限制围岩位移的继续扩大,同时也是为了防止因应力恶化出现岩爆冒顶或冲击地压而导致围岩失稳.5 支护措施与支护效果分析本例采取的支护措施为施加混凝土初衬及在断层与隧洞交汇区段施加锚杆.通过计算,分析比较了有无衬砌情况下断层与隧洞交汇区段围岩体所受的拉应力极值的变化,结果表明施加混凝土初衬后,围岩体位移得到了明显改善,但交汇区段的拉应力极值却由0.38MPa增大到1.2MPa,已经很接近Ⅴ类岩石的抗拉强度1.5MPa,因此要加强交汇区段的支护措施,即在断层与隧洞交汇区段施加锚杆.通常在实际工程中的锚杆数以千计,如果逐一进行模拟会耗费大量的时间且难度较大,所以采用将岩体锚杆支护系统看成一种增强材料,建立等效力学模型,提高材料参数的方法进行模拟,从而简捷地为工程设计和施工提供参考意见.5.1 ABAQUS锚杆嵌入式模拟方法与等效参数方法比较5.1.1 ABAQUS锚杆嵌入式模拟(方案1)该方案是在ABAQUS前处理器中建立锚杆模型,采用*Embedded Element命令实现锚杆的嵌入.为使锚杆模拟方便,采用已有节点进行杆单元(T2D2)的创建,锚杆采用普通砂浆锚杆,直径Φ22,长度深入岩石3m,间排距约为3m,密度为7800kg/m3,弹模为200GPa,泊松比取0.27.5.1.2 等效参数法(方案2)锚杆的作用相当于形成一个环向加固区[8],简单的处理方法就是提高锚杆作用区的力学指标c(粘聚力),φ(摩擦角)值,依据锚杆-围岩复合结构体的力学参数确定方法[9],粘聚力可根据Dulacska的公式计算式中,D为锚杆直径;c′0为锚杆-围岩复合结构体的初始粘聚力;σs为锚杆抗拉强度;c0和φ0分别为围岩初始状态的粘聚力和内摩擦角;sa和sc分别为在隧洞轴向和环向上的间距.锚杆-围岩复合结构体的内摩擦角的计算公式:由公式(1)和(2)可计算得出锚杆-围岩复合结构体的粘聚力和内摩擦角,相比于未加锚杆前围岩的粘聚力和摩擦角,本例摩擦角φ提高了10°,粘聚力c提高了30%.5.1.3 结果分析选择Z=56m截面及X=146.3m截面为典型截面,观察位移与第一主应力分布云图.两种方法均可实现限制围岩体位移的目的,与只施加混凝土初衬相比,在锚固区的位移均有明显减小(如图10所示).在效果接近的情况下,采用ABAQUS嵌入式锚杆模拟方法围岩体的第一主应力最大值未超过0.67MPa,而等效参数模拟法得到的围岩体主拉应力最大值未超过1MPa(如图11所示).两种方法位移分布基本一致,围岩体所受拉应力值均在合理范围内,因此在模拟工程实例进行有限元分析时,对于方案一锚杆建模不便时,可以适当采用方案二进行简捷等效计算,本例采用等效参数模拟方法进行支护模拟.图10 位移分布比较图图11 第一主应力分布比较图5.2 支护效果分析依据5.1节所探究的锚杆模拟方法,采用等效参数模拟方法对本例的支护系统进行相关模拟,综合混凝土初衬及锚杆作用进行支护效果分析.同时,在探究支护效果的过程中,进行了只施加混凝土初衬与锚杆和初衬相结合的比对.洞室开挖扰动后,围岩体在断层与隧洞交汇的特殊部位出现了异常的应力集中现象,所以在此交汇区段采用提高支护水平的方法即采取锚杆(等效参数法)结合混凝土初衬方案进行支护,通过分析来探究支护效果对围岩稳定性的影响.5.2.1 应力分析1)施加支护后围岩体部分完全处于受压状态,而未加支护时,在断层与隧洞交汇处是有部分受拉区的,说明支护系统可以帮助围岩分担部分载荷.2)通过在局部区域(易破坏区)施加锚杆改善混凝土初衬整体的受力情况,效果明显,对比观察单纯施加混凝土初衬与加上锚杆两种情况的第一主应力图(如图12所示)可知,衬砌顶部和底部拉应力区的应力最大值由1.2MPa减少到0.86MPa.模拟锚杆加固区顶部和底部均承受了部分拉应力起到了锚杆的等效作用,降低了衬砌承受的拉应力.图12 Z=56m截面第一主应力分布比较图5.2.2 位移分析施加混凝土初衬后位移场规律基本不变,只是量值上有所差别,最大位移由3mm 降到了1.9mm,而且位移的最大值点也不在断层与隧洞交汇区附近,实际位移减少比例更大,这说明衬砌很好地限制了围岩体的位移,竖向位移的分布规律也是一致的.施加锚杆后,断层附近区域位移更小了,锚固作用效果明显.5.2.3 塑性区分析对比施加支护措施前后的塑性区分布图可知,施加支护后模型在断层与隧洞交汇处已无塑性区,如图13所示,说明支护有效地限制了交汇区段的塑性区发展.图13 支护前后塑性区分布比较图6 结语通过模拟有断层贯穿的地下隧洞的开挖与支护,进行了围岩稳定性的相关分析,得出以下几点结论:1)在考虑自重是初始应力场的主要成因前提下,对于地表起伏的情况,采用初始应力提取法最为有效和可行.2)断层与隧洞相交处的围岩体位移为控制位移,主要原因是断层面与临空面将岩体切割成楔形体等易破坏形态,同时也破坏了原岩的整体性和连续性.3)对于复杂的单元形状,在不方便模拟锚杆单元时,采用等效参数模拟方法缩减了建模的过程,提高了效率;支护措施有效地改善了断层与隧洞交汇处的应力集中现象.参考文献:[1]邓声君,陆晓敏,黄晓阳.地下洞室围岩稳定性分析方法简述[J].地质与勘探,2013,49(3):541-547.[2]阮彦晟.断层附近应力分布的异常和对地下工程围岩稳定的影响[D].济南:山东大学,2008.[3]崔芳,高永涛,吴顺川.断层影响下隧道围岩稳定性的数值分析[J].公路,2011(9):242-245.[4]吴满路,廖椿庭.大茅隧道地应力测量及围岩体稳定性研究[J].地质力学学报,2000,6(2):71-76.[5]代汝林,李忠芳,王姣.基于ABAQUS的初始地应力平衡方法研究[J].重庆工商大学学报:自然科学版,2012,29(9):76-81.[6]晁建伟,余同勇,韦四江.回采巷道过断层顶板破坏特征研究[J].矿业安全与环保,2009,36(2):13-15+92.[7]付存仓,温森.断层对巷道附近塑性区的影响[J].采矿技术,2006,6(2):31-32.[8]刘学.采用ABAQUS的隧道稳定性分析[J].山西建筑,2009,35(9):312-313.[9]冯夏庭,张传庆,李邵军,等.深埋硬岩隧洞动态设计方法[M].北京:科学出版社,2013:354-356.。

ABAQUS软件对隧道开挖过程的模拟

ABAQUS软件对隧道开挖过程的模拟

ABAQUS 软件对隧道开挖过程的模拟一、ABAQUS 在岩土工程中应用简介:岩土工程中的开挖问题主要就是指隧道、基抗的开挖。

这些问题的施工过程常常较为复杂,如分步骤开挖,支挡结构的施工等,常规的分析方法处理起来十分困难,往往需要通过有限元对支护结构的内力与变形,周围土体的位移等进行分析。

ABAQUS 由于其本身强健的非线性求解功能,在工业界被公认为技术最先进的非线性有限元分析软件,与传统商业软件不同,ABAQUS 就是专门为解决工程中困难问题而发展并逐渐被广大用户推崇的超级通用有限元软件。

因此,本文将采用ABAQUS 软件对隧道开挖过程进行模拟及分析。

二、隧道开挖过程问题简介:1、模型简介:某个地下隧道,由一个混凝土的衬砌支持。

建造这样一个隧道,涉及到一个非常复杂的土木工程过程。

工程界希望能通过数值模拟预测与验证设计建造过程中的各种问题,以加快建造过程与优化建造成本,并且最大程度的保证安全性。

2、几何特性:隧道直径8米,在地下20米,隧道周围黏土的本构简化为线弹性(E=200MPa,0.2ν=,220kN/m γ=),混凝土衬砌(E=19GPa,0.2ν=),厚度为0、15米。

图1 模型示意图3、分析思路:隧道的开挖与其她开挖问题类似,其实质主要就是应力的释放。

如果没有衬砌的施工,那问题很简单,只要在建立初始应力之后,移除开挖单元即可。

但实际工程中,隧道的开挖施工步骤就是十分复杂的,涉及到灌浆、卡极为、衬砌施工等。

而在有限元计算中衬砌等支护结构施工的模拟尤为重要,特别就是衬砌单元激活的时机,若在开挖区域单元移除之前激活不符合真实工程中的施工顺序,衬砌施工时土体应力已有所释放;而若在单元移除之后进行则应力早已完全释放,衬砌起不到支撑的作用。

为了解决这一问题,研究人员们提出了以下两种方法:1、在衬砌施工前,将开挖区单元的模量降低,移除来模拟应力释放效应。

2、首先将开挖面上的节点施加约束,得到与初始应力平衡的节点力。

ABAQUS在浅埋大断面隧道围岩稳定性分析中的应用

ABAQUS在浅埋大断面隧道围岩稳定性分析中的应用

ABAQUS在浅埋大断面隧道围岩稳定性分析中的应用摘要:在隧道掘进过程中,围岩的稳定性与否直接影响施工安全与进度,尤其是浅埋大断面隧道。

本文以万象至万荣高速公路老中友谊隧道为例,应用ABAQUS 根据隧道围岩地质情况及勘察设计资料,确定了岩体材料与初期支护构件的本构模型,建立了隧道开挖支护后模型,基于杨氏衰减法模拟围岩及支护结构在后续施工期间的应力分布及支护变化位移情况,通过与开挖支护后现场监控量测实测数据曲线图对比,验证了ABAQUS仿真模型在隧道围岩稳定性分析中的有效性。

关键字:浅埋大断面隧道;围岩稳定性;ABAQUS模型;监控量测0 引言隧道工程属于隐蔽施工,常常面临非常复杂的地质环境,隧道开挖支护后应及时做好监测,保障隧道施工安全。

李新志等[5]为研究隧道地表沉降变化特征,应用三维连续介质快速拉格朗日元模拟隧道的施工过程,所得结果与现场监测具有较好的拟合性;周丁恒等[7]研究表明采用不同施工工序,对支护体系力学结构影响较大,合理的施工工序是支护体系稳定性的关键。

本文针对老中友谊双向四车道隧道围岩开挖支护后稳定性问题,运用ABAQUS对隧道开挖支护后围岩应力场变化进行数值模拟,进而优化隧道开挖后支护参数,结合现场监控量测,通过模拟信息与实测量测曲线进行对比分析,对隧道围岩稳定性进行安全综合性评估。

1 工程概况本文万象至万荣高速公路老中友谊隧道,隧道建筑限界净宽:0.75+0.5+2×3.75+0.75+0.75=10.25m;净高:5.0m。

选取的模拟分析地段隧道围岩主要为碎石状结构,软弱夹层发育,夹粉质粘土;地下水类型主要为基岩裂隙水,岩体破碎,围岩完整性差,围岩自稳能力弱,开挖前应做好超前支护,若支护不及时或强度不足,易产生塌方。

2 ABAQUS隧道模型的建立2.1 岩体材料与支护材料的本构模型ABAQUS数值模拟软件基于其强大的非线性求解功能,被广大用户逐渐推崇通用有限元软件。

隧道工程与ABAQUS 分析

隧道工程与ABAQUS 分析

第1章隧道工程与ABAQUS 分析知识要点:;隧道的基本概念和工程概述;隧道的种类及其作用;隧道及地下工程的有限元分析;ABAQUS基础知识简介;本章小结本章导读:本章首先介绍隧道及地下工程的相关基本概念和隧道的种类及其作用,接下来介绍隧道及地下工程的有限元分析特点,并进一步介绍ABAQUS有限元分析方法在隧道及地下工程中的应用及注意事项。

最后重点阐述ABAQUS的相关基础知识及ABAQUS的导入导出功能。

1.1、隧道的基本概念及工程概述地下工程:在山体内或地面下修建的建筑物。

下面简要介绍隧道中常用的术语:隧道:以保持地下空间作为运输孔道的地下工程。

导坑:在地下开挖出一个洞穴并延伸成为一个长形的孔道。

衬砌:在坑道的周围修建的用于支撑洞室稳定的支护结构。

衬砌的内轮廓应能满足使用上的要求,同时也无需无谓的放大。

衬砌的形状和尺寸,应能使结构受力状态最为合理,既不浪费又能稳固。

通常以圆形、椭圆形、马蹄形和卵形为多。

衬砌的用料应适合施工和养护的要求。

通常用坚固、耐久、少腐蚀、能防水、防火、价廉、便于就地取材的材料。

洞门:在隧道端部外露面修建的为保护洞口和排放流水的挡土墙式结构。

明洞:在洞门与洞身间用明挖法修筑的隧道。

洞身衬砌、洞门和明洞就组成了隧道的主体支护结构,作用是保持岩体的稳定和行车安全。

见图1-1。

为了保证隧道的正常使用,还需设置一些附属建筑物。

隧道的附属建筑物是为了运营管理、维修养护、给水排水、供蓄发电、通风、照明、通图1-1 明洞示意图讯、安全等而修建的建筑物,包括有:为工作人员在隧道进行维修或检查时,能及时避让驶来的列车而在隧道两侧开辟的大小避车洞;为了保证隧道洞口的稳定与安全而修建的边仰坡;为了引导洞口边仰坡地表水流而修建的排水天沟;为了排除隧道内渗入的地下水,保证列车正常运行而设置的防水设备及排水设备;为了净化隧道内机车所排出的烟尘和有害气体而设置的通风系统;电力及通讯设施;消防设施等。

Abaqus与隧道工程

Abaqus与隧道工程

关键词:Abaqus;岩土工程;有限元;地应力平衡;桩土;盾构隧道;开挖;模拟;离散元;CFD
小弟读书期间主要做岩土开挖的模拟,用过基于Abaqus的有限元,现在主要做离散元和CFD。

读书期间做了大量的工程实例和模拟方法的探索,现在论文也发了,专利也申请了,于是想公开一些实例和教程。

虽然不是很高深的东西,但对于初学者应该会有一定的帮助。

自己开了个微信订阅号——算盘坊,基本会保证一周放送两次文章和实例,大家有兴趣的可以关注一下微信订阅号 算盘坊:
1.基于ABAQUS的修正剑桥模型的应用(一)——参数取值
2.基于ABAQUS的修正剑桥模型的应用(二)——建模要点
3.隧道开挖实例(一)——标准隧道开挖模拟
4.隧道开挖实例(二)——隧道穿桩模拟
5.隧道开挖实例(三)——隧道叠次穿越高架
6.隧道开挖实例(四)——URUP工法实践及有限元模拟
7.ABAQUS与岩土工程(一)——地应力平衡(初级)。

基于ABAQUS的土石料本构模型二次开发及其应用(1)

基于ABAQUS的土石料本构模型二次开发及其应用(1)

) ,男 ,浙江慈溪人 ,博士研究生 ,从事水工结构和岩土工程数值分析研究 . 作者简介 : 岑威钧 (1977 —
・78 ・
水利水电科技进展 ,2005 , 25 ( 6) Tel :025 Ο 83786335 E2mail : jz @hhu. edu. cn http :/ / kkb. hhu. edu. cn
ABAQUS2based secondary development of constitutive model for earth rockfill materials and its application/ / CEN Wei2 jun , ZHU Yue2ming ( College of Water Conservancy and Hydropower Engineering , Hohai University , Nanjing 210098 , China) Abstract : The user material subroutine UMAT provided by the general software ABAQUS was used for programming for Shenzhujiang’ s double2yield surface model of earth rockfill materials. In combination with the element add/ remove technique , a numerical simulation was performed for dam construction and reservoir impoundment in a case study of an earth rockfill dam. The result shows that the present method is feasible for numerical simulation of earth rockfill dam construction. The calculated result is reasonable , and the development cycle of the method is greatly reduced as compared with that of the user2compiled program. Therefore , the method is of certain reference value. Key words : ABAQUS , secondary development ; UMAT; Shenzhujiang’ s model ; earth rockfill dam ; numerical simulation for construction

采用ABAQUS的隧道稳定性分析

采用ABAQUS的隧道稳定性分析

文章编号:100926825(2009)0920312202采用ABAQUS 的隧道稳定性分析收稿日期:2008211213作者简介:刘 学(19702),男,工程师,中铁十九局集团第四工程有限公司,辽宁辽阳 111000刘 学摘 要:结合某隧道的工程地质特点,采用ABAQUS 对隧道开挖过程进行了数值模拟,分析表明:采用双侧壁导坑法,由于开挖步之间的相互影响,围岩的应力和变形都比较大,因此支护应紧跟,得出了数值模拟成果与现场监测结果规律基本一致的结论。

关键词:ABAQUS,稳定性,数值模拟,双侧壁导坑法,超前支护中图分类号:U451文献标识码:A随着我国大规模建设的展开,高速公路建设发展迅速。

为了避开各种病害,改善运营条件,在穿越山区时,高速公路也常采用隧道方案。

一般隧道施工工序多,难度大,地质、形状和受力条件复杂,一般很难得到理论解析解。

有限元法自20世纪50年代发展至今,已成为解决复杂岩土力学问题的有力工具,用来解决许多难以用解析法求解的力学问题。

大型有限元程序ABAQUS 完全可以模拟隧道动态开挖的全过程,并与目前已施工监测得到的数据进行分析对比,根据分析结果,提出相应的措施和建议。

1 工程概况该隧道穿过低山丘陵地貌区,隧道线路经过的最大高程约为407m,隧址地面标高51.28m ~407.00m,最大相对高差约355.72m 。

隧道设计为单洞双线,全长2.4km,围岩级别为Ó级~Õ级。

其中Õ级段区域地质构造、断裂构造发育,施工过程中极易出现突水和洞室失稳现象,该区段确定为本隧道的施工难点。

本文通过大型有限元软件ABAQUS 对这一区段的开挖进行模拟,揭示该区段内围岩的变形机理,以优化支护参数,保证施工安全进行。

本段隧道为上下行分离的双向六车道高速公路隧道,建筑限界净宽14.5m,净高5m;建筑内轮廓宽15.18m,全高7.92m,围岩级别为Õ级。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档