2019年春人教七年级下册 第八章 二元一次方程组期末复习卷四十六 含答案
人教版七年级初一数学下学期第八章 二元一次方程组单元 期末复习测试基础卷试卷

人教版七年级初一数学下学期第八章二元一次方程组单元期末复习测试基础卷试卷一、选择题1.已知方程组211x yx y+=⎧⎨-=-⎩,则x+2y的值为()A.2 B.1 C.-2 D.32.方程组2x yx y 3+=⎧+=⎨⎩的解为{x2y==,则被遮盖的两个数分别为( )A.2,1 B.5,1 C.2,3 D.2,43.我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x斛,1个小桶盛酒y斛,下列方程组正确的是().A.5352x yx y+=⎧⎨+=⎩B.5253x yx y+=⎧⎨+=⎩C.53125x yx y+=⎧⎨+=⎩D.35251x yx y+=⎧⎨+=⎩4.已知∠A、∠B互余,∠A比∠B大30°,设∠A、∠B的度数分别为x°、y°,下列方程组中符合题意的是()A.18030x yx y+=⎧⎨=-⎩B.180+30x yx y+=⎧⎨=⎩C.9030x yx y+=⎧⎨=-⎩D.90+30x yx y+=⎧⎨=⎩5.为保护生态环境,某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米.设改变后耕地面积x平方千米,林地面积y平方千米,根据题意,列出如下四个方程组,其中正确的是()A.180250x yy x+=⎧⎪⎨-=⎪⎩B.180250x yx y+=⎧⎪⎨-=⎪⎩C.180250x yx y+=⎧⎪⎨=⋅⎪⎩D.180250x yy x+=⎧⎪⎨=⋅⎪⎩6.某单位采购小李去商店买笔记本和笔,他先选定了笔记本和笔的种类,若买25本笔记本和30支笔,则他身上的钱缺30元;若买15本笔记本和40支笔,则他身上的钱多出30元.()A.若他买55本笔记本,则会缺少120元B.若他买55支笔,则会缺少120元C.若他买55本笔记本,则会多出120元D.若他买55支笔,则会多出120元7.三元一次方程组236216x y zx y z==⎧⎨++=⎩①②的解是()A.135xyz=⎧⎪=⎨⎪=⎩B.556xyz=⎧⎪=⎨⎪=⎩C.632xyz=⎧⎪=⎨⎪=⎩D.642xyz=⎧⎪=⎨⎪=⎩8.如图,8块相同的小长方形地砖拼成一个长方形,其中每一个小长方形的面积为()A.400cm2B.500cm2C.600cm2D.675cm29.已知下列各式:①12+=yx;②2x﹣3y=5;③xy=2;④x+y=z﹣1;⑤12123x x+-=,其中为二元一次方程的个数是()A.1 B.2 C.3 D.410.若二元一次方程组45ax bybx ay+=⎧⎨+=⎩的解为21xy=⎧⎨=⎩,则a+b的值是()A.9 B.6 C.3 D.1二、填空题11.某公园的门票价格如表:购票人数1~5051~100100以上门票价格13元/人11元/人9元/人现某单位要组织其市场部和生产部的员工游览该公园,这两个部门人数分别为a和b(a≥b).若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则共需支付门票费为990元,那么这两个部门的人数a=_____;b=_____.12.冬季降至,贫困山区恶劣的地理环境加之其落后的交通条件,无疑将使得山区在漫长冬季里物资更加匮乏,“让冬天不冷让爱心永驻”,重庆市公益组织心驿家号召全市人民为贫困山区的孩子们捐赠过冬衣物,本次捐赠共收集了11600件棉衣、7500件羽绒服及防寒服若干,自愿者将所有衣物分成若干A、B、C类组合,由自愿者们分别送往交通极其不便利的各个山区,一个A类组合含有60件棉衣,80件防寒服和50件羽绒服;一个B类组合含有40件棉衣,40件防寒服;一个C类组合含有40件棉衣,60件防寒服,50件羽绒服;求防寒服一共捐赠了_____件.13.2018年10月21日,重庆市第八届中小学艺术工作坊在渝北区空港新城小学体育馆开幕,来自全重庆市各个区县共二十多个工作坊集中展示了自己的艺术特色.组委会准备为现场展示的参赛选手购买三种纪念品,其中甲纪念品5元/件,乙纪念品7元/件,丙纪念品10元/件.要求购买乙纪念品数量是丙纪念品数量的2倍,总费用为346元.若使购买的纪念品总数最多,则应购买纪念品共_____件.14.方程组1111121132x y x z y z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩的解为______.15.历代数学家称《九章算术》为“算经之首”.书中有这样一道题的记载,译文为:今有5只雀、6只燕,分别聚集在一起称重,称得雀重,燕轻.若将一只雀、一只燕交换位置,则重量相等;将5只雀、6只燕放在一起称量,则总重量为1斤.问雀、燕每1只各重多少斤?若设雀每只重x 斤,燕每只重y 斤,则可列方程组为________________16.关于x ,y 的方程组223321x y m x y m +=+⎧⎨-=-⎩的解满足不等式组5030x y x y ->⎧⎨-<⎩,则m 的取值范围_____.17.已知1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),若()()()()2222123222281n a a a a ++++++⋯++=,则这列数的个数n 为____.18.解三元一次方程组时,先消去z ,得二元一次方程组,再消去y ,得一元一次方程2x =3,解得x =,从而得y =_____,z =____.19.已知三个方程构成的方程组230xy y x --=,350yz z y --=,520xz x z --=,恰有一组非零解x a =,y b =,z c =,则222a b c ++=________.20.若m 1,m 2,…m 2016是从0,1,2这三个数中取值的一列数,若m 1+m 2+…+m 2016=1546, (m 1﹣1)2+(m 2﹣1)2+…+(m 2016﹣1)2=1510,则在m 1,m 2,…m 2016中,取值为2的个数为____.三、解答题21.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组321327x y x y -=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为 ; (2)如何解方程组()()()()3523135237m n m n ⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m +5,n +3看成一个整体,设m +5=x ,n +3=y ,很快可以求出原方程组的解为 ; (3)由此请你解决下列问题: 若关于m ,n 的方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解,求a 、b 的值.22.阅读下列材料,然后解答后面的问题.已知方程组372041027x y z x y z ++=⎧⎨++=⎩,求x+y+z 的值.解:将原方程组整理得2(3)()203(3)()27x y x y z x y x y z ++++=⎧⎨++++=⎩①②,②–①,得x+3y=7③, 把③代入①得,x+y+z=6.仿照上述解法,已知方程组6422641x y x y z +=⎧⎨--+=-⎩,试求x+2y –z 的值.23.某县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是20040cm cm ⨯的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A 型与B 型两种板材.如图甲所示.(单位cm ) (1)列出方程(组),求出图甲中a 与b 的值;(2)在试生产阶段,若将625张标准板材用裁法一裁剪,125张标准板材用裁法二裁剪,再将得到的A 型与B 型板材做侧面和底面,刚好可以做成图乙的竖式与横式两种无盖礼品盒.求可以做竖式与横式两种无盖礼品盒各多少个?24.泉州市某校准备组织教师、学生、家长到福州进行参观学习活动,旅行社代办购买动车票,动车票价格如下表所示: 运行区间 大人票价 学生票 出发站 终点站 一等座二等座二等座泉州福州65(元) 54(元) 40(元)根据报名总人数,若所有人员都买一等座的动车票,则共需13650元,若都买二等座动车票(学生全部按表中的“学生票二等座”购买),则共需8820元;已知家长的人数是教师的人数的2倍.(1)设参加活动的老师有m 人,请直接用含m 的代数式表示教师和家长购买动车票所需的总费用;(2)求参加活动的总人数;(3)如果二等座动车票共买到x 张,且学生全部按表中的“学生票二等座”购买,其余的买一等座动车票,且买票的总费用不低于9000元,求x 的最大值. 25.某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人.如果两个班都以班为单位分别购票,则一共应付 1172 元,如 果两个班联合起来,作为一个团体购票,则需付 1078 元. (1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮 他们买票呢?请给出最省钱的方案.26.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车. (1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘新工人若干名(新工人人数少于10人)和抽调的熟练工合作,刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】方程组中两方程相减即可求出x+2y 的值. 【详解】211x y x y +=⎧⎨-=-⎩①② ①-②得:x+2y=2, 故选A . 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.B解析:B【解析】把x=2代入x+y=3中,得:y=1,把x=2,y=1代入得:2x+y=4+1=5,故选B.3.A解析:A【分析】根据大小桶所盛酒的数量列方程组即可.【详解】∵5个大桶加上1个小桶可以盛酒3斛,∴5x+y=3,∵1个大桶加上5个小桶可以盛酒2斛,∴x+5y=2,∴得到方程组5352 x yx y+=⎧⎨+=⎩,故选:A.【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键. 4.D解析:D【解析】试题解析:∠A比∠B大30°,则有x=y+30,∠A,∠B互余,则有x+y=90.故选D.5.C解析:C【解析】设耕地面积x平方千米,林地面积为y平方千米,根据题意列方程组18025% x yx y+=⎧⎨=⨯⎩.故选C 6.D解析:D 【分析】设笔记本的单价为x 元,笔的单价为y 元,根据小李身上的总额列出方程,然后变形即可求解. 【详解】设笔记本的单价为x 元,笔的单价为y 元,根据题意得: 25x+30y-30=15x+40y+30 整理得:10x-10y=60,即x-y=6∴()253063055210x x x +--=-,即买55个笔记本缺少210元()256303055120y y y ++-=+,即买55支笔多出120元故选D . 【点睛】本题考查了二元一次方程组,根据题意列出等量关系然后进行推导是本题的关键.7.D解析:D 【分析】根据2x=3y=6z,设x=3k,y=2k,z=k,代入求值即可解题. 【详解】 解:∵2x=3y=6z, ∴设x=3k,y=2k,z=k, ∵x+2y+z=16,即3k+4k+k=16, 解得:k=2,∴642x y z =⎧⎪=⎨⎪=⎩, 故选D. 【点睛】本题考查了三元一次方程组的求解,中等难度,根据等量关系设未知数是解题关键.8.D解析:D 【解析】试题分析:设小长方形的宽为xcm ,则长为3xcm ,根据图示列式为x+3x=60cm ,解得x=15cm ,因此小长方形的面积为15×15×3=675cm 2. 故选D.点睛:此题主要考查了读图识图能力的,解题时要认真读图,从中发现小长方形的长和宽的关系,然后根据关系列方程解答即可.9.A解析:A 【分析】根据二元一次方程的定义即可判断. 【详解】①是分式方程,故不是二元一次方程; ②正确;③是二元二次方程,故不是二元一次方程; ④有3个未知数,故不是二元一次方程; ⑤是一元一次方程,不是二元一次方程. 故选:A . 【点睛】考查二元一次方程的定义,含有2个未知数,未知项的最高次数是1的整式方程就是二元一次方程.10.C解析:C 【分析】根据二元一次方程组的解及解二元一次方程组即可解答. 【详解】解:将21x y =⎧⎨=⎩代入方程组45ax by bx ay +=⎧⎨+=⎩得2425a b b a +=⎧⎨+=⎩解得:1 2a b =⎧⎨=⎩∴a +b =1+2=3. 故选:C . 【点睛】此题主要考查二元一次方程组的解和解二元一次方程组,正确理解二元一次方程组的解和灵活选择消元法解二元一次方程组是解题关键.二、填空题11.40 【分析】根据题中a 、b 的求知范围,可得a+b 的取值范围,分两种情况讨论,由两次门票费用,分别列出方程组,及可求解. 【详解】 解:∵ ,,∴1≤b≤50,51<a≤100, 若a+解析:40 【分析】根据题中a 、b 的求知范围,可得a+b 的取值范围,分两种情况讨论,由两次门票费用,分别列出方程组,及可求解. 【详解】解:∵12903991313= ,129031171111=, ∴1≤b ≤50,51<a ≤100, 若a +b ≤100时,由题意可得:1311129011()990b a a b +=⎧⎨+=⎩,∴60150a b =-⎧⎨=⎩(不合题意舍去),若a +b >100时,由题意可得131112909(990b a a b +=⎧⎨+=⎩),∴7040a b =⎧⎨=⎩,故可70,40. 【点睛】本题主要考查二元一次方程组的应用,根据题意找到等量关系式是解题的关键.12.14600 【分析】根据题意,可以先设A 类组合x 个,B 类组合y 个,C 类组合z 个,然后根据题意可以列出三元一次方程组,从而可以得到x 、z 与y 的关系,然后即可求得需要防寒服多少件,本题得以解决. 【详解析:14600 【分析】根据题意,可以先设A 类组合x 个,B 类组合y 个,C 类组合z 个,然后根据题意可以列出三元一次方程组,从而可以得到x 、z 与y 的关系,然后即可求得需要防寒服多少件,本题得以解决. 【详解】解:设A 类组合x 个,B 类组合y 个,C 类组合z 个,6040401160050507500x y z x ++=⎧⎨+=⎩, 化简,得28022130x yz y =-⎧⎨=-⎩, ∴需要的防寒服为:80x +40y +60z =80(280﹣2y )+40y +60(2y ﹣130)=22400﹣160y +40y +120y ﹣7800=14600, 故答案为:14600. 【点睛】本题考查三元一次方程组的应用,解答本题的关键是明确题意,列出相应的三元一次方程组,利用方程的知识解答.13.62 【分析】设购买甲纪念品x 件,丙纪念品y 件,则购进乙纪念品2y 件,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为非负整数,即可求出x ,y 的值,进而可得出(x+y+2y )解析:62 【分析】设购买甲纪念品x 件,丙纪念品y 件,则购进乙纪念品2y 件,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为非负整数,即可求出x ,y 的值,进而可得出(x +y +2y )的值,取其最大值即可得出答案. 【详解】设购买甲纪念品x 件,丙纪念品y 件,则购进乙纪念品2y 件, 依题意,得:5x +7×2y +10y =346, ∴x =346245y- , ∵x ,y 均为非负整数, ∴346﹣24y 为5的整数倍, ∴y 的尾数为4或9, ∴504x y =⎧⎨=⎩ ,269x y =⎧⎨=⎩,214x y =⎧⎨=⎩, ∴x +y +2y =62或53或44. ∵62>53>44,∴最多可以购买62件纪念品. 故答案为:62. 【点睛】本题主要考查二元一次方程的实际应用,根据题意,求出x ,y 的非负整数解,是解题的关键.14.【分析】先将三个方程依次标号,然后相加可得④,由④-①,④-②,④-③即可得出答案.【详解】解:由方程组,可得:,所以④,由可得:,由可得:,由可得综上所述方程组的解是.【点睛】 解析:43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩【分析】 先将三个方程依次标号,然后相加可得11194x y z ++=④,由④-①,④-②,④-③即可得出答案.【详解】 解:由方程组1111121132x y x zy z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩①②③,++①②③可得:111922x y z ⎛⎫++= ⎪⎝⎭, 所以11194x y z ++=④, 由-④①可得:154,45z z =∴=,由-④②可得:11,44y y =∴=,由-④③可得13,4x = 43x ∴= 综上所述方程组的解是43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩.【点睛】本题考查的是三元一次方程组的解法,利用加减消元的思想是解题的关键.15.【分析】设每只雀有x两,每只燕有y两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.【详解】解:设每只雀有x两,每只燕有y两,由题意得,【解析:45561 x y y xx y+=+⎧⎨+=⎩【分析】设每只雀有x两,每只燕有y两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.【详解】解:设每只雀有x两,每只燕有y两,由题意得,45561 x y y xx y+=+⎧⎨+=⎩【点睛】本题考查了有实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.16.m>﹣【分析】利用方程组中两个式子加减可得到和x-3y用m来表示,根据等量代换可得到关于m的一元一次不等式组,解出来即可得到答案【详解】将两个方程相加可得5x﹣y=3m+2,将两个方程相减解析:m>﹣23【分析】利用方程组中两个式子加减可得到5x y-和x-3y用m来表示,根据等量代换可得到关于m的一元一次不等式组,解出来即可得到答案【详解】将两个方程相加可得5x﹣y=3m+2,将两个方程相减可得x﹣3y=﹣m﹣4,由题意得32040 mm+>⎧⎨--<⎩,解得:m >23-, 故答案为:m >23-. 【点睛】此题考查含参数的二元一次方程组与不等式组相结合的题目,注意先观察,通过二元一次方程的加减得到不等式组的相关式子,再进行等量代换17.14或19【解析】【分析】由、、、…、是从1或0中取值的一列数(1和0都至少有一个),设有x 个1,y 个0,则(a1+2)2、(a2+2)2、…、(an+2)2有x 个9,y 个4,列不定方程解答即解析:14或19【解析】【分析】由1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),设有x 个1,y 个0,则(a 1+2)2、(a 2+2)2、…、(a n +2)2有x 个9,y 个4,列不定方程解答即可确定正确的答案.【详解】解:设有x 个1,y 个0,则对应(a 1+2)2、(a 2+2)2、…、(a n +2)2中有x 个9,y 个4, ∵()()()()2222123222281n a a a a ++++++⋯++=,∴9x +4y =81 ∴499y x =-, ∵x ,y 均为正整数,∴y 是9的倍数,∴59x y =⎧⎨=⎩,118x y =⎧⎨=⎩, ∴这列数的个数n =x +y 为14或19,故答案为:14或19.【点睛】本题考查了数字的变化类问题,解题的关键是对给出的式子进行正确的变形,得到不定方程然后求整数解即可.18.76, 56.【解析】【分析】逐项代入求值即可解题.【详解】解:将x =32代入x+3y=5得,y=76,将x =32,y=76代入x+2y-z=3得z=56,∴y=76, 解析:, .【解析】【分析】逐项代入求值即可解题.【详解】解:将x =代入x+3y=5得,y=,将x =,y=代入得z=, ∴y=, z=.【点睛】本题考查了三元一次方程组的求解,中等难度,熟悉代入求值的方法是解题关键. 19.152【解析】【分析】先把xy-2y-3x=0,yz-3z-5y=0,xz-5x-2z=0建立三元方程组,再利用代入法求出x ,y ,z 的值,再根据x=a ,y=b ,z=c 求出a2+b2+c2的值.解析:152【解析】【分析】先把xy-2y-3x=0,yz-3z-5y=0,xz-5x-2z=0建立三元方程组,再利用代入法求出x ,y ,z 的值,再根据x=a ,y=b ,z=c 求出a 2+b 2+c 2的值.【详解】xy 2y 3x 0--=,yz 3z 5y 0--=,xz 5x 2z 0--=组成方程组得230350520xy y x yz z y xz x z --=⎧⎪--=⎨⎪--=⎩①②③, 由①得:x=23y y -④, 把④代入③整理得:-10y+6z=0,∴z=53y,把z=53y代入②得:253y-5y-5y=0,解得:y1=0 (舍去),y2=6,∴z=53×6=10,x=2663⨯-=4,又∵x=a,y=b,z=c,∴a2+b2+c2=x2+y2+z2=42+62+102=16+36+100=152,故答案为152.【点睛】本题考查了解三元方程组;解题的关键是通过建立三元方程组,再运用代入法进行消元求出方程组的解.20.520【解析】试题分析:解决此题可以先设0有a个,1有b个,2有c个,根据据题意列出方程组求解即可.设0有a个,1有b个,2有c个,由题意得,解得,故取值为2的个数为502个考点:(1解析:520【解析】试题分析:解决此题可以先设0有a个,1有b个,2有c个,根据据题意列出方程组求解即可.设0有a个,1有b个,2有c个,由题意得,解得,故取值为2的个数为502个考点:(1)、规律型:(2)、数字的变化类.三、解答题21.(1)12x y =⎧⎨=⎩;(2)41m n =-⎧⎨=-⎩;(3)a =3,b =2. 【分析】(1)利用加减消元法,可以求得;(2)利用换元法,设m+5=x ,n+3=y ,则方程组化为(1)中的方程组,可求得x ,y 的值进一步可求出原方程组的解;(3)把am 和bn 当成一个整体利用已知条件可求出am 和bn ,再把bn 代入2m-bn=-2中求出m 的值,然后把m 的值代入3m+n=5可求出n 的值,继而可求出a 、b 的值.【详解】解:(1)两个方程相加得66x =,∴1x =,把1x =代入321x y -=-得2y =,∴方程组的解为:12x y =⎧⎨=⎩; 故答案是:12x y =⎧⎨=⎩; (2)设m +5=x ,n +3=y ,则原方程组可化为321327x y x y -=-⎧⎨+=⎩, 由(1)可得:12x y =⎧⎨=⎩, ∴m+5=1,n+3=2,∴m =-4,n =-1,∴41m n =-⎧⎨=-⎩, 故答案是:41m n =-⎧⎨=-⎩; (3)由方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解可得方程组71am bn am bn +=⎧⎨-=-⎩, 解得34am bn =⎧⎨=⎩, 把bn =4代入方程2m ﹣bn =﹣2得2m =2,解得m =1,再把m =1代入3m +n =5得3+n =5,解得n =2,把m =1代入am =3得:a =3,把n =2代入bn =4得:b =2,所以a=3,b=2.【点睛】本题主要考查二元一次方程组的解法,重点是考查整体思想及换元法的应用,解题的关键是理解好整体思想.22.3【分析】根据题目的解法,把x+2y-z看成一个整体,进行解方程即可.【详解】解:由题意得,将原方程整理得(2x2y z)+2(2x+z)=22①-3(x+2y-z)+(2x+z)=-1②⎧+-⎨⎩②×2得(6x2y-z)+2(2x+z)=-2-+③①-③得(8x+2y z)=24-解得:x+2y-z=3.【点睛】本题主要考查了解三元一次方程组,解题的关键是要运用整体思维解方程组.23.(1)5040ab;(2)竖式无盖礼品盒200个,横式无盖礼品盒400个.【分析】(1)由图示利用板材的长列出关于a、b的二元一次方程组求解;(2)根据已知和图示计算出两种裁法共产生A型板材和B型板材的张数,然后根据竖式与横式礼品盒所需要的A、B两种型号板材的张数列出关于x、y的二元一次方程组,然后求解即可.【详解】解:(1)由题意得:310200330200a ba b,解得:5040ab,答:图甲中a与b的值分别为:50、40;(2)由图示裁法一产生A型板材为:3×625=1875,裁法二产生A型板材为:1×125=125,所以两种裁法共产生A型板材为1875+125=2000(张),由图示裁法一产生B型板材为:1×625=625,裁法二产生A型板材为,3×125=375,所以两种裁法共产生B型板材为625+375=1000(张),设裁出的板材做成的竖式有盖礼品盒有x个,横式无盖礼品盒有y个,则A型板材需要(4x+3y)个,B型板材需要(x+2y)个,则有43200021000x yx y,解得200400xy.【点睛】本题考查的知识点是二元一次方程组的应用,关键是根据已知先列出二元一次方程组求出a 、b 的值,根据图示列出算式以及关于x 、y 的二元一次方程组.+24.(1)购买一等票为 195m ; 购买二等票为162m ;(2)210;(3)180,193.【分析】(1)求出教师和家长的总人数,根据一等票和二等票两种情况求出代数式.(2)设参加社会实践的老师有m 人,学生有n 人,则学生家长有2m 人,根据若所有人员都买一等座的动车票,则共需13650元,若都买二等座动车票(学生全部按表中的“学生票二等座”购买),则共需8820元,可求出解.(3)由(2)知所有参与人员总共有210人,其中学生有180人,所以买学生票共180张,有(x ﹣180)名大人买二等座动车票,(210﹣x )名大人买一等座动车票,根据票的总费用不低于9000元,可列不等式求解.【详解】解:(1)购买一等票为:65•3m =195m ;购买二等票为:54•3m =162m ,(2)设参加社会实践的老师有m 人,学生有n 人,则学生家长有2m 人,依题意得: 1956513650{543408820m n m n +=⨯+=,解得:10{180m n ==, 则2m =20,总人数为:10+20+180=210(人)经检验,符合题意;答:参加活动的总人数为210人.(3)由(2)知所有参与人员总共有210人,其中学生有180人,所以买学生票共180张,有(x ﹣180)名大人买二等座动车票,(210﹣x )名大人买一等座动车票. ∴购买动车票的总费用=40×180+54(x ﹣180)+65(210﹣x )=﹣11x +11130. 依题意,得:﹣11x +11130≥9000… 解得:719311x ≤, ∵x 为整数,∴x 的最大值是193.【点睛】本题考查理解题意的能力,关键是根据买一等票和二等票的价格做为等量关系求出人数,然后根据实际买票的总费用列出不等式求出解.25.(1)七(1)班有47人,七(2)班有51人;(2) 如果两个班联合起来买票,不可以买单价为9 元的票, 省钱的方法,可以买101张票,多余的作废即可【解析】【分析】(1)由两个班联合起来,作为一个团体购票,则需付 1078 元可知:710879=1209÷可得票价不是9元,所以两个班的总人数没有超过100人,设七(1)班有x 人,七(2)班有y 人,可列方程组,解方程组即可得答案;(2)如果两班联合起来作为一个团体购票,则每张票11元,省钱的方法,可以买101张票,多余的作废即可。
人教版七年级数学 下册 第八章 二元一次方程组 单元综合与测试题(含答案)

第八章 二元一次方程组 单元复习与检测题(含答案)一、选择题1、下列方程中,是二元一次方程的是( ) A .3x -2y=4z B .6xy+9=0 C .x1+4y=6 D .4x=42-y2、若│x -2│+(3y+2)2=0,则x+3y 的值是( ) A .-1 B .-2 C .0 D.323、二元一次方程组941611x y x y +=⎧⎨+=-⎩的解满足2x -ky =10,则k 的值等于( )4、对于方程组⎩⎨⎧=--=+ 17y 5x 419y 7x 4,用加减法消去x ,得到的方程是( )A . 2y=-2 B. 2y=-36 C. 12y=-2 D. 12y=-365、今年哥哥的年龄是妹妹的2倍,2年前哥哥的年龄是妹妹的3倍,求2年前哥哥和妹妹的年龄,设2年前哥哥x 岁,妹妹y 岁,依题意,得到的方程组是( )A .23(2),2x y x y +=+⎧⎨=⎩B .23(2),2x y x y -=-⎧⎨=⎩C .22(2),3x y x y+=+⎧⎨=⎩ D .23(2),3x y x y -=-⎧⎨=⎩6、某校150名学生参加竞赛,平均分为55分,其中及格学生平均分为77分,不及格学生平均分为47分,则不及格学生的人数为( )A.49B.101C.40D.1107、若{,554745=+=+y x y x ,则y x +的值是( ) A . 12 B . -2 C .34 D . 438、学校文艺部组织部分文艺积极分子看演出,共够得8张甲票,4张乙票,总计用112远,已知每张甲票比每张乙票贵2元,则甲票、乙票的票价分别是( )A .甲票10元∕张,乙票8元∕张B .甲票8元∕张,乙票10元∕张C .甲票12元∕张,乙票10元∕张D .甲票10元∕张,乙票12元∕张9、已知是二元一次方程组的解,则2m n -的算术平方根为( )A .2±BC .2D .410、若|3a +b +5|+|2a -2b -2|=0,则2a 2-3ab 的值是( ) A.14 B.2 C.-2 D.-4二、填空题11、已知,则xy = . 12、已知,则用x 的代数式表示y 为 .13、已知关于x ,y 的二元一次方程组的解互为相反数,则k 的值是 .14、一张试卷有25道题,做对一道得4分,做错一道扣1分,小明做了全部试题共得70分,则他做对了______道题.15、当m=____时,方程组的解是正整数.三、解答题16、解下列二元一次方程组 (1)33814x y x y -=⎧⎨-=⎩(2)254x y x y +=⎧⎨-=⎩21x y =⎧⎨=⎩81mx ny nx my +=⎧⎨-=⎩2(4)|2|0x y x y +-+--=(3) (4)73100202x y y x+=⎧⎨=-⎩17、解方程组:,试求7y(x ﹣3y)2﹣2(3y ﹣x)3的值.18、若|x+2y -5|+(2y+3z -13)2+(3z+x -10)2=0,试求x ,y ,z 的值.19、某厂第二车间人数比第一车间人数的45少30人,如果从第一车间调10人到第二车间,那么第二车间的人数就是第一车间人数的34,这两个车间各有多少人?20、为迎接“第一届全国青年运动会”,学校组织了飞镖比赛游戏:每位选手朝特制的靶子上各投三次飞镖,在同一圆环内得分相同.如图所示,小明、小君、小红的成绩分别是29分、43分和33分,则小华的成绩是多少分?21、NBA 季后赛正如火如荼地进行着,詹姆斯率领的骑士队在第三场季后赛中先落后 25 分的 情况下实现了大逆转.该场比赛中詹姆斯的技术统计数据如下表所示:(表中投篮次数和投中次数均不包括罚球,个人总得分来自 2 分球和 3 分球的得分以及罚球得分)根据以上信息,求出本场比赛中詹姆斯投中 2 分球和 3 分球的个数.22、倡导健康生活,推进全民健身,某社区要购进A ,B 两种型号的健身器材若干套,A ,B 两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A ,B 两种型号的健身器材共50套,且恰好支出20000元,求A ,B 两种型号健身器材各购买多少套?(2)若购买A ,B 两种型号的健身器材共50套,且支出不超过18000元,求A 种型号健身器材至少要购买多少套?23、在五一期间,小明、小亮等同学随家人一同到江郎山游玩.如图是购买门票时,小明与他爸爸的对话:(1)小明他们一共去了几个成人?几个学生?(2)请你帮小明算一算,用哪种方式买票更省钱?并说明理由.4518549x y x y +=⎧⎨+=⎩参考答案:一、1、D 2、C 3、D 4、A 5、C 6、D 7、C 8、A 9、D 10、D 二、 11、3 12、x+3y=14 13、-1 14、19 15、-4三、16、解:(1)2,1.x y =⎧⎨=-⎩(2)3,1.x y =⎧⎨=-⎩(3)3,6.x y =-⎧⎨=⎩(4)40,60.x y =⎧⎨=-⎩17、解:解方程组得2,1,x y =-⎧⎨=-⎩ ∴原式=-7×(-2+3)²-2(-3+2)³=-5.18、解:∵|x+2y -5|+(2y+3z -13)2+(3z+x -10)2=0,,∴250,23130,3100,x y y z z x +-=⎧⎪+-=⎨⎪+-=⎩解得1,2,3.x y z =⎧⎪=⎨⎪=⎩∴x=1,y=2,z=3.19、解:设第一车间有x 人,第二车间有y 人.由题意得()4305310104y x y x ⎧=-+=⎪⎪-⎪⎨⎪⎩,,解得250170.x y ==⎧⎨⎩,答:第一车间有250人,第二车间有170人.20、解:设小、中、大圆环的得分分别为x 分、y 分、z 分.由题意得229,243,333,y z x z y +=⎧⎪+=⎨⎪=⎩解得18,11,7.x y z =⎧⎪=⎨⎪=⎩则x+y+z=18+11+7=36(分).答:小华的成绩是36分.21、解:设本场比赛中詹姆斯投中 2 分球和 3 分球的个数分别为x 个,y 个.由题意得1423417,x y x y +=+=-⎧⎨⎩,解得86.x y ==⎧⎨⎩,答:本场比赛中詹姆斯投中 2 分球8个, 投中3 分球6个. 22、(1)解:设A ,B 两种型号健身器材各购买x 套,y 套. 由题意得5031046020000,x y x y +=+=⎧⎨⎩,解得2030.x y ==⎧⎨⎩,答:设A ,B 两种型号健身器材各购买20套,30套.(2)A 种型号健身器材购买a 套.由题意得310a+460(50-a)≤18000,解得a ≥3313.∵0<a <50且为整数,∴a 的最小值为34,即A 种型号健身器材至少要购买34套.23、解:(1)设小明他们一共去了x 个成人,y 个学生.由题意得12,350.535350,x y x y +=⎧⎨+⨯=⎩解得84.x y ==⎧⎨⎩,答:小明他们一共去了8个成人,4个学生.(2)买团体票的费用为0.6×35×16=336(元).∵336<350,∴购买团体票更省钱.。
人教版七年级数学下册第八章《二元一次方程组》(附有答案)

2019-2020届七年级数学下册 第八章《二元一次方程组》 考试时间:90分钟 试卷分数:120分姓名:__________班级:__________考号:__________题号 一 二 三 总分 得分一、选择题(本大题共10小题,每小题3分,共30分)1.若{,554745=+=+y x y x ,则y x +的值是( )A . 12B . -2C .34 D .43 2.某校春季运动会比赛中,八(1)班、八(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分,若设(1)班得x 分、(5)班得y 分,根据题意所列的方程组应为( )A .{,56402y x y x =-= B .{,56402y x y x =+=C .{,65402y x y x =+=D .{,65402y x y x =-=3.若{,11=-=m n 是方程032=--k nm 的解,则k 的值是( ) A . 65-B .67 C .61 D . 67-4.在方程41,32,512,12=+=+-=+=+yx xy x x y x 中,是二元一次方程的有( ) A . 1个B . 2个C . 3个D . 4个5.一船顺水航行45km 需要3h ,逆水航行65km 需要5h ,若设船在静水中的速度为x km /h ,水流速度为y km /h ,则x 、y 的值为( )A .{,132==x yB .{,141==x yC .{,151==x yD .{,142==x y6.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%.若设甲、乙两种商品原来的单价分别为x 元、y 元,则下列方程组正确的是( )A .()()()⎩⎨⎧+⨯=-++=+%201100%401%101100y x y xB .()()⎩⎨⎧⨯=++-=+%20100%401%101100y x y xC .()()()⎩⎨⎧+⨯=++-=+%201100%401%101100y x y xD .()()⎩⎨⎧⨯=-++=+%20100%401%101100y x y x7.二元一次方程组10240x y x y +=⎧⎨-+=⎩的解是( )A .28x y =⎧⎨=⎩B .143163x y ⎧=⎪⎪⎨⎪=⎪⎩C .82x y =⎧⎨=⎩D .73x y =⎧⎨=⎩8.解方程组⎪⎩⎪⎨⎧=-+=-+=+-157,1142,323z y x z y x z y x ,若要使运算简便,消元的方法应选取( )A .先消去xB .先消去yC .先消去zD .以上说法都不对9.学校文艺部组织部分文艺积极分子看演出,共够得8张甲票,4张乙票,总计用112远,已知每张甲票比每张乙票贵2元,则甲票、乙票的票价分别是( ) A .甲票10元∕张,乙票8元∕张B .甲票8元∕张,乙票10元∕张C .甲票12元∕张,乙票10元∕张D .甲票10元∕张,乙票12元∕张 10.二元一次方程组10240x y x y +=⎧⎨-+=⎩的解是( )A .28x y =⎧⎨=⎩B .143163x y ⎧=⎪⎪⎨⎪=⎪⎩C .82x y =⎧⎨=⎩D .73x y =⎧⎨=⎩二、填空题(本大题共6小题,每小题3分,共18分) 11.若{,12==x y 与{,3==x c y 都是方程b y x =+的解,则________=c 。
人教版七年级数学下册第八章 二元一次方程组 单元复习测试题(含答案)

人教版七年级数学下册第八章 二元一次方程组 单元复习测试题(含答案)一、选择题(每小题3分,共24分)1. 方程2130,21,328,20,10x y x xy x y x x x x y+=+=+-=-=-+=中,二元一次方程的个数是( )A .1个B .2个C .3个D .4个 2. 方程x +2y =5的非负整数解有( )A.1个B.2个C.3个D.无数个3.方程组224x y x y -=+=⎧⎨⎩,的解是( )A.12x y ==⎧⎨⎩ B.31x y ==⎧⎨⎩ C.02x y ==-⎧⎨⎩ D.20x y ==⎧⎨⎩4.买钢笔和铅笔共30支,其中钢笔的数量比铅笔数量的2倍少3支.若设买钢笔x 支,铅笔y 支,根据题意,可得方程组( ). A .⎩⎨⎧-==+3230x y y xB .⎩⎨⎧+==+3230x y y x C .⎩⎨⎧+==+3230y x y x D . ⎩⎨⎧-==+3230y x y x 5.下列结论正确的是( ).A .方程5=+y x 所有的解都是方程组⎩⎨⎧=+=+1835y x y x 的解B .方程5=+y x 所有的解都不是方程组⎩⎨⎧=+=+1835y x y x 的解C .方程组⎩⎨⎧=+=+1835y x y x 的解不是方程5=+y x 的一个解D .方程组⎩⎨⎧=+=+1835y x y x 的解是方程5=+y x 的一个解6.某商店有两进价不同的耳机都卖64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店( )A .赚8元B .赚32元C .不赔不赚D .赔8元 7.解方程组⎩⎨⎧=-=+534734y x y x 时,较为简单的方法是( )A .代入法B .加减法C .试值法D .无法确定 8.关于x 、y 的方程组⎩⎨⎧=-=+15x y ay x 有正整数解,则正整数a 为( ).A . 1、2B .2、5C .1、5D .1、2、5 二、填空(每小题3分,共24分) 9. 如果⎩⎨⎧-==13y x 是方程3x -ay =8的一个解,那么a =_________.10. 由方程3x -2y -6=0可得到用x 表示y 的式子是_________.11. 请你写出一个二元一次方程组,使它的解为⎩⎨⎧==21y x ,这个方程组是_________.12. 用加减消元法解方程组31,421,x y x y +=-=⎨+⎧⎩①②由①×2-②得__________.13. 方程mx -2y =x +5是关于x 、y 的二元一次方程,则m ________. 14.若2x 7a y b -2与-x 1+2b y a 是同类项,则b =________. 15.如图,宽为50cm 的长方形图案由10个相同的小长方形拼成,求每个小长方形的长为x cm ,宽长为y cm 。
部编数学七年级下册第8章二元一次方程组(解析版)含答案

第8章 二元一次方程组一、单选题1.下列方程组中是二元一次方程组的是( )A .141y x x v ì+=ïíï-=îB .43624x y y z +=ìí+=îC .41x y x y +=ìí-=îD .22513x y x y +=ìí+=î【答案】C【分析】二元一次方程组是由两个未知数且未知数最高次数为一次的两个方程组成;根据二元一次方程组的定义逐项判断即得答案.【详解】解:A 、方程组 141y x x v ì+=ïíï-=î中第一个方程不是整式方程,不是二元一次方程组,所以本选项不符合题意;B 、方程组 中有三个未知数,不是二元一次方程组,所以本选项不符合题意;C 、该方程组是二元一次方程组,所以本选项符合题意;D 、方程组 中第二个方程未知数x 、y 的次数是2,不是二元一次方程组,所以本选项不符合题意.故选:C .【点睛】本题考查了二元一次方程组的定义,属于基础概念题型,熟知二元一次方程组的概念是关键.2.如果方程3x y -=与下面方程中的一个组成的方程组的解为41x y =ìí=î,那么这个方程可以是( )A .3416x y -=B .1254x y +=C .1382x y +=D .2()6x y y-=【答案】D【分析】将解代入每个方程,使若方程两边相等则该组解是该方程的解,即为所求的方程.【详解】解:将41x y =ìí=î依次代入,得:A 、12-4≠16,故该项不符合题意;B 、1+2≠5,故该项不符合题意;C 、2+3≠8,故该项不符合题意;D 、6=6,故该项符合题意;故选:D .【点睛】此题考查二元一次方程的解:使方程两边相等的未知数的值叫做方程的解,正确计算是解题的关键.3.由132x y -=可以得到用x 表示y 的式子为( )A .223x y -=B .223x y =-C .2133x y =-D .223xy =-【答案】B【分析】先移项,后系数化为1,即可得.【详解】解:132x y -=移项,得123y x =-,系数化为1,得223x y =-,故选B .【点睛】本题考查了方程的基本运算技能,解题的关键是熟练掌握方程的基本运算技能.4.某船顺流航行的速度为a ,逆流航行的速度为b ,则水流速度为( )A .2a b+B .2a b-C .-a b D .以上都不对【答案】B【分析】顺流航行的速度等于船在静水中的速度加上水流的速度,逆流航行的速度等于船在静水中的速度减去水流的速度,利用两个公式列方程组,再解方程组即可得到答案.【详解】解:设水流的速度为,x 船在静水中航行的速度为,y 则,a y x b y x =+ìí=-î①②①-②得:2,x a b =-,2a b x -\= 所以水流的速度为:.2a b - 故选:.B 【点睛】本题考查的是二元一次方程组的应用,掌握顺流航行与逆流航行的速度公式是解题的关键.5.将13x y -=-代入21x y -=的可得( )A .1213x x --´=B .()2113x x --=C .2213x x ++=D .2213x x -+=【答案】D【分析】将13x y -=-代入21x y -=,再进行整理,即可得到答案.【详解】解:将13x y -=-代入21x y -=,得:1123-æ=ö--ç÷èøx x ,即122+3-=x x 故选D .【点睛】本题考查的是二元一次方程的解法,先将已知代入方程得出一个关于x 的方程,运用代入法是解二元一次方程常用的方法.6.代数式2x ax b ++,当1x =,2时,其值均为0,则当1x =-时,其值为( )A .0B .6C .6-D .2【答案】B【分析】把x 与y 的两对值代入代数式列出方程组,求出方程组的解即可得到a 与b 的值,再将1x =-代入即可求解.【详解】解:由题意,得10420a b a b ++=ìí++=î①② ,②-①得:30a += ,3a =- ,把3a =-代入①得:()130b +-+= ,2b = ,解得:32a b =-ìí=î ,把32a b =-ìí=î代入代数式2x ax b ++得:232x x -+,当1x =-时,2326x x -+=.故选B .【点睛】此题考查了解二元一次方程组,利用了消元的思想,求出a 与b 的值是解题关键.7.若324432a b a b x y ++--=是关于x ,y 的二元一次方程,则23a b +的值为( )A .0B .3-C .3D .6【答案】A【分析】根据二元一次方程的定义,得=1a b +,324=1+-a b ,即可得到关于a 、b 的方程组,从而解出a ,b .【详解】解:∵324432a b a b x y ++--=是一个关于x ,y 的二元一次方程,∴=1324=1a b a b +ìí+-î,解得:=3=2a b ìí-î,∴23=660+-=a b ,故选:A .【点睛】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程.8.己知方程组42ax by ax by -=ìí+=î的解为21x y =ìí=î,则2a ﹣3b 的值为( )A .4B .6C .﹣4D .﹣6【答案】B【分析】将x 和y 的值代入到方程组,原方程组变成关于a 、b 的方程组.再仔细观察未知数的系数,相同或者相反,可以运用加减消元解题.【详解】解:∵方程组42ax by ax by -=ìí+=î的解为21x y =ìí=î,∴2422a b a b -=ìí+=î①②.由①+②得a =32,②−①得b =−1.将a =32,b =−1代入2a −3b ,即2×32−3×(−1)=3+3=6.故选:B .【点睛】此题主要考查二元一次方程组的代入消元法,灵活运用代入消元或加减消元是解题的关键.9.某年级学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,则下面所列的方程组中符合题意的有( )A .24622x y y x +=ìí=-îB .24622x y x y +=ìí=+îC .21622x y y x +=ìí=+îD .24622x y y x +=ìí=+î【答案】B 【分析】根据“学生共有246人,其中男生人数y 比女生人数x 的2倍少2人”列方程组即可.【详解】解:由题意得24622x y x y +=ìí=+î,故选B .【点睛】本题考查了二元一次方程组的应用,仔细审题,找出题目的已知量和未知量,设两个未知数,并找出两个能代表题目数量关系的等量关系,然后列出方程组求解即可.10.关于x ,y 的二元一次方程组59x y k x y k +=ìí-=î的解也是二元一次方程2x +3y =﹣6的解,则k 的值是( )A .﹣34B .34C .43D .﹣43【答案】A【分析】先用含k 的代数式表示x 、y ,即解关于x ,y 的方程组,再代入2x +3y =﹣6中可得.【详解】解:解方程组 59x y k x y k +=ìí-=î,得:x =7k ,y =﹣2k ,把x ,y 代入二元一次方程2x +3y =﹣6,得:2×7k +3×(﹣2k )=﹣6,解得:k =﹣34,故选:A .【点睛】本题主要考查二元一次方程组的解法,解题的关键是用含k 的代数式表示x 、y .二、填空题11.用16元钱买了80分、120分的两种邮票共17枚,则买了80分的邮票________枚,120分的邮票________枚.【答案】 11 6【分析】设购买80分的邮票x 枚,购买120分的邮票y 枚,根据题意列方程组得:170.8 1.216x y x y +=ìí+=î,解方程组即可求解.【详解】解:设购买80分的邮票x 枚,购买120分的邮票y 枚,根据题意列方程组得:170.8 1.216x y x y +=ìí+=î①②,由①得:17y x =-,代入②可得:()0.8 1.21716x x +-=,整理可得:0.4 4.4x -=-,解得:11x =,所以17116y =-=.故答案为:11、6.【点睛】本题考查了二元一次方程组的实际应用,解题的关键是准确列出二元一次方程组.12.已知二元一次方程组941175y x x y ì+=ïïíï+=ïî的解为,x a y b ==,则a b -=_____.【答案】11【分析】把a 、b 代入方程组,解方程求解即可得到答案.【详解】解:∵二元一次方程组941175y x x y ì+=ïïíï+=ïî的解为x a y b =ìí=î∴941175b a a b ì+=-ïïíï+=ïî①②,②-①×4得到19195a -=-,解得5a =,把5a =代入①解得16b =∴51611a b -=-=.故答案为:11.【点睛】本题考查二元一次方程组的解和解二元一次方程组,解题的关键在于能够熟练掌握相关知识进行求解..13.若二元一次方程组23151x y ax by -=ìí+=î和51cx dy x y -=ìí+=î同解,则可通过解方程组_____求得这个解.【答案】23151x y x y -=ìí+=î【分析】联立两方程组中不含a 与b 的方程重新组成新的方程组即可.【详解】解:∵二元一次方程组23151x y ax by -=ìí+=î和51cx dy x y -=ìí+=î同解,∴可通过解方程组23151x y x y -=ìí+=î求得这个解,故答案为:23151x y x y -=ìí+=î.【点睛】本题主要考查了二元一次方程组同解的问题,解题的关键在于能够熟练掌握相关知识进行求解.14.已知点()36,415A x y -+,点()5,B y x 关于x 轴对称,则x y +的值是____.【答案】-6【分析】让两点的横坐标相等,纵坐标相加得0,即可得关于x ,y 的二元一次方程组,解值即可.【详解】解:∵点()36,415A x y -+,点()5,B y x 关于x 轴对称,∴3654150x y y x -=ìí++=î;解得:33x y =-ìí=-î,∴=-6+x y ,故答案为-6.【点睛】本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系:关于横轴的对称点,横坐标不变,纵坐标变成相反数.15.若357a b c ==,且3249a b c +-=,则a b c ++=_________.【答案】-15【分析】先设比例系数为k ,代入3a+2b-4c=9,转化为关于k 的一元一次方程解答.【详解】解:设357a b c k ===,则a=3k ,b=5k ,c=7k ,代入3a+2b-4c=9,得9k+10k-28k=9,解得:k=-1,∴a=-3,b=-5,c=-7,于是a+b+c=-3-5-7=-15.故答案为:-15.【点睛】本题主要考查比例的性质,解答此类题关键是灵活运用设“k”法求解代数式的值.16.正数a 的两个平方根是方程322x y +=的一组解,则a =_____.【答案】4【分析】先根据平方根的性质可得0x y +=,再代入方程322x y +=求出x 的值,由此即可得出答案.【详解】由题意得:0x y +=,322x y +=Q ,2()2x x y \++=,将0x y +=代入得:202x +´=,解得2x =,则2224a x ===,故答案为:4.【点睛】本题考查了平方根、二元一次方程的解等知识点,熟练掌握平方根的性质是解题关键.17.若1,2x y =ìí=-î是关于x ,y 的方程1ax by -=的一组解,且3a b +=-,则52a b -的值为______.【答案】-43【分析】要求5a-2b 的值,要先求出a 和b 的值.根据题意得到关于a 和b 的二元一次方程组,再求出a 和b 的值.【详解】解:将1,2x y =ìí=-î代入1ax by -=,得21a b +=,因为3a b +=-,所以得到关于a 和b 的二元一次方程组213a b a b +ìí+-î==两式相减,得4b =,将4b =代入3a b +=-,得7a =-,所以5243a b -=-.【点睛】运用代入法,得关于a 和b 的二元一次方程组,再解方程组求解是解决此类问题的关键.18.对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F (123)=6.(1)计算:F (241)=_________,F (635)=___________ ;(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:()()F skF t=,当F(s)+F(t)=18时,则k的最大值是___.【答案】7 14 5 4【详解】分析: (1)根据F(n)的定义式,分别将n=241和n=635代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k=()()F sF t中,找出最大值即可.详解: :(1)F(241)=(421+142+214)÷111=7;F(635)=(365+536+653)÷111=14.(2)∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=(302+10x+230+x+100x+23)÷111=x+5,F(t)=(510+y+100y+51+105+10y)÷111=y+6.∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴16xy=ìí=î或25xy=ìí=î或34xy=ìí=î或43xy=ìí=î或52xy=ìí=î或61xy=ìí=î.∵s是“相异数”,∴x≠2,x≠3.∴y≠1,y≠5.∴16xy=ìí=î或43xy=ìí=î或52xy=ìí=î,∴()()612F sF tì=ïí=ïî或()()99F sF tì=ïí=ïî或()()108F sF tì=ïí=ïî,∴k=()()F sF t=12或k=()()F sF t=1或k=()()F sF t=54,∴k的最大值为54.点睛: 本题考查了二元一次方程的应用,解题的关键是:(1)根据F(n)的定义式,求出F (241)、F(635)的值;(2)根据s=100x+32、t=150+y结合F(s)+F(t)=18,找出关于x 、y 的二元一次方程.三、解答题19.解下列方程组:(1)4(1)3(1)22423x y y x y --=--ìïí+=ïî; (2)2()1346()4(2)16x y x y x y x y -+ì-=-ïíï+--=î.【答案】(1)1451x y =ìí=î;(2)22x y =ìí=î.【分析】(1)先将原方程的第一个方程去括号、移项、合并同类项,第二个方程去分母,化简成4532144x y x y -=ìí+=î,再利用代入消元法解题;(2)先将原方程的第一个方程去分母、去括号、移项、合并同类项,第二个方程去括号,化简,整理成4532144x y x y -=ìí+=î,再利用代入消元法解题.【详解】解:(1)4(1)3(1)22423x y y x y --=--ìïí+=ïî整理得,4532144x y x y -=ìí+=î①②由①得,45y x =-③把③代入②得,32(45)144x x +-=11154x \=14x \=把14x =代入③得414551y =´-=1451x y =ì\í=î(2)2()1346()4(2)16x y x y x y x y -+ì-=-ïíï+--=î整理得,5111258x y x y -=-ìí-+=î①②由②得,58x y =-③把③代入①得5(58)1112y y --=-1428y\=2y\=把2y=代入③得,5282x=´-=\22xy=ìí=î.【点睛】本题考查代入消元法解二元一次方程组,是重要考点,掌握相关知识是解题关键.20.在等式y=ax2+bx+c中,当x=﹣1时,y=3;当x=0时,y=1,当x=1时,y=1,求这个等式中a、b、c的值.【答案】a=1,b=﹣1,c=1.【分析】根据题意列出三元一次方程组,解方程组即可.【详解】由题意得,311a b cca b c-+=ìï=íï++=î,解得,a=1,b=﹣1,c=1.【点睛】本题考查的是三元一次方程组的解法,解三元一次方程组的一般步骤:①首先利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组.②然后解这个二元一次方程组,求出这两个未知数的值.③再把求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个关于第三个未知数的一元一次方程.④解这个一元一次方程,求出第三个未知数的值,得到方程组的解.21.甲地到乙地全程是3.3km,一段上坡、一段平路、一段下坡.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需51min,从乙地到甲地需53.4 min.从甲地到乙地时,上坡、平路、下坡的路程各是多少?【答案】甲地到乙地,上坡路1.2 km、平路0.6 km、下坡路1.5 km.【分析】设甲地到乙地,上坡、平路、下坡路各是x千米,y千米,z千米,根据全程3.3km,甲到乙要51分钟,乙到甲要53.4分钟.分别列出方程,组成方程组,再求解即可.【详解】解:设甲地到乙地,上坡、平路、下坡路各是xkm,ykm,zkm,根据题意得:3.3513456053.454360x y zx y zx y zìï++=ïï++=íïï++=ïî.解得1.20.61.5xyz=ìï=íï=î.答:甲地到乙地,上坡路1.2 km 、平路0.6 km 、下坡路1.5 km .【点睛】本题考查了三元一次方程组的应用,解答此题的关键是找出题目中的等量关系,列出方程组,用代入消元法或加减消元法求出方程组的解.22.几个人一起买物品,若每人出8元,则盈余3元;若每人出7元,则还差4元,人数和价格各是多少?【答案】共有7人,价格为53元.【分析】设有x 人,物品价格是y 元.根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题.【详解】解:设有x 人,物品价格是y 元,由题意可得:8374x y x y -ìí+î==,解得:753x y =ìí=î 答:共有7人,这个物品的价格是53元.【点睛】本题考查了二元一次方程组的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程组.23.材料:解方程组()1045x y x y y --=ìí--=î时,可由①得1x y -=③,然后再将③代入②得415y ´-=,求得1y =-,从而进一步求得01x y =ìí=-î这种方法被称为“整体代入法”请用这样的方法解方程组()()423324x y x y x y -=ìí--=î【答案】7656x y ì=ïïíï=ïî【分析】观察方程组的特点,把2x y -看作一个整体,得到322x y -=,将之代入②,进行消元,得到33422x æö+=ç÷èø,解得76x =,进一步解得56y =,从而得解.【详解】解:()()423324x y x y x y -=ìïí--=ïî①②由①得322x y -=③,把③代入②得33422x æö+´=ç÷èø,解得76x =,把76x =代入③,得73262y ´-=,解得56y =,故原方程组的解为7656x y ì=ïïíï=ïî.【点睛】本题考查了二元一次方程组的特殊解法:整体代入法.解方程(组)要根据方程组的特点灵活运用选择合适的解法.24.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表所示:第一次第二次甲种货车辆数(单位:辆)25乙种货车辆数(单位:辆)36最大运货物吨数(单位:吨)15.535现租用该公司3辆甲种货车及4辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,问货主应付运费多少元?【答案】660元.【分析】设甲种货车每辆运货x 吨,乙种货车每辆运货y 吨,先根据表格建立方程组,求出x 、y 的值,再根据这次租用的甲、乙两种货车的数量和每吨运费列出运算式子,由此即可得.【详解】设甲种货车每辆运货x 吨,乙种货车每辆运货y 吨,由题意得:2315.55635x y x y +=ìí+=î,解得42.5x y =ìí=î,则货主应付运费为()344 2.530660´+´´=(元),答:货主应付运费660元.【点睛】本题考查了二元一次方程组的实际应用,依据题意,正确建立方程组是解题关键.25.在五一期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?并说明理由.【答案】(1)小明他们一共去了8个成人,4个学生;(2)购团体票更省钱.【分析】(1)设去了x个成人,则去了(12−x)个学生,根据爸爸说的话,可确定相等关系为:成人的票价+学生的票价=350元,据此列方程求解;(2)计算团体票所需费用,和350元比较即可求解.【详解】(1)设成人人数为x人,则学生人数为(12-x)人.根据题意,得35x+352(12-x)=350.解得x=8.则12-x=12-8=4.答:小明他们一共去了8个成人,4个学生.(2)如果买团体票,按16人计算,共需费用为35×0.6×16=336(元).因为336<350,所以购团体票更省钱.答:购团体票更省钱.【点睛】考查利用方程模型解决实际问题,关键在于设求知数,列方程.此类题目贴近生活,有利于培养学生应用数学解决生活中实际问题的能力.26.请根据图中提供的信息,回答下列问题.(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.【答案】(1)一个暖瓶30元,一个水杯8元;(2)到乙家商场购买更合算.【分析】(1)等量关系为:2×暖瓶单价+3×(38-暖瓶单价)=84;(2)甲商场付费:暖瓶和水杯总价之和×90%;乙商场付费:4×暖瓶单价+(15-4)×水杯单价.【详解】(1)设一个暖瓶x元,则一个水杯(38-x)元,根据题意得:2x+3(38-x)=84.解得:x=30.一个水杯=38-30=8.故一个暖瓶30元,一个水杯8元;(2)若到甲商场购买,则所需的钱数为:(4×30+15×8)×90%=216元.若到乙商场购买,则所需的钱数为:4×30+(15-4)×8=208元.因为208<216.所以到乙家商场购买更合算.【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出所求量的合适的等量关系.需注意乙商场有4个水杯不用付费.。
2019-2020人教版七年级数学下册第八章二元一次方程组习题(含答案)

第八章二元一次方程组一、单选题1.下列方程中是二元一次方程的是()A.3x+y=0 B.2x﹣1=4 C.2x2﹣y=2 D.2x+y=3z 2.方程2x-y=3和2x+y=9的公共解是()A.1xy=⎧⎨=-⎩B.33xy=⎧⎨=-⎩C.17xy=⎧⎨=⎩D.33xy=⎧⎨=⎩3.某农户,养的鸡和兔一共80只,已知鸡和兔的腿数之和为230条,则鸡的只数比兔多多少只()A.14只B.10只C.8只D.以上都不对4.三元一次方程组156x yy zz x+=⎧⎪+=⎨⎪+=⎩的解是A.15xyz=⎧⎪=⎨⎪=⎩B.12?4xyz=⎧⎪=⎨⎪=⎩C.10?4xyz=⎧⎪=⎨⎪=⎩D.41xyz=⎧⎪=⎨⎪=⎩5.若方程组3,24ax byax by+=⎧⎨+=⎩与方程组23,-0x yx y+=⎧⎨=⎩有相同的解,则a,b的值分别为()A.1,2 B.1,0 C.13,-23D.-13,236.二元一次方程2x+y=7的正整数解有()A.四个B.三个C.二个D.一个7.已知二元一次方程组)(1x y +=⎧⎪⎨⎪⎩的解是23xy=-⎧⎨=⎩,则括号上的方程可能是()A.y﹣4x=﹣5 B.2x﹣3y=﹣13 C.y=2x+5 D.x=y﹣18.若21xy=⎧⎨=⎩是关于x、y的方程组27ax bybx ay+=⎧⎨+=⎩的解,则a+b的值为()A.3 B.-3 C.2 D.-29.楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是()A.+=20{35+70=1225x yx yB.+y=20{70+35=1225xx yC.+=1225{70+35=20x yx yD.+=1225{35+70=20x yx y10.已知一个两位数,十位上的数字x比个位上的数字y大1,若互换个位与十位数字的位置,得到的新数比原数小9,求这个两位数所列出的方程组中,正确的是()A.1()()9x yx y y x-=⎧⎨+++=⎩B.1109x yx y y x=+⎧⎨+=++⎩C.110109x yx y y x+=⎧⎨+=++⎩D.110109x yx y y x=+⎧⎨+=++⎩二、填空题11.若方程4x m-n-5y m+n=6是二元一次方程,则m=______,n=______.12.若12xy=⎧⎨=⎩是方程ax+y=3的解,则a=_____.13.如图,长方形ABCD中放置9个形状、大小都相同的小长方形,相关数据图中所示,则图中阴影部分的面积为_____(平方单位).14.已知关于x,y的二元一次方程组2321x y kx y+=⎧⎨+=-⎩的解互为相反数,则k的值是_________.三、解答题15.解方程组:(1)20328x yx y-=⎧⎨+=⎩;(2)5281432x yx y+=⎧⎪⎨-=-⎪⎩.16.甲、乙两人共同解方程组51542ax yx by+=⎧⎨-=-⎩①②由于甲看错了方程①中的a,得到方程组的解为31xy=-⎧⎨=-⎩,乙看错了方程②中的b,得到方程组的解为54xy=⎧⎨=⎩,试计算20182019(0.1)a b+-的值.17.我国古代数学名著《孙子算经》中记载了一道题,大意如下:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问大马和小马各有多少匹?请解答上述问题.18.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?答案1.A 2.D 3.B 4.A 5.A 6.B 7.B 8.A 9.B 10.D 11.1,0.12.1 13.18 14.-115.(1)解20 328 x yx y-=⎧⎨+=⎩①②令①+②得4x=8,解得x=2,把x=2代入①得y=1,所以方程组的解为21x y =⎧⎨=⎩ (2)解5281432x y x y +=⎧⎪⎨-=-⎪⎩①② 令①×3+②×2得23x=23,解得x=1, 把x=1代入①得y=32故方程组的解为132x y =⎧⎪⎨=⎪⎩16.解:将31x y =-⎧⎨=-⎩代入方程组中的4x-by=-2得:-12+b=-2,即b=10; 将x=5,y=4代入方程组中的ax+5y=15得:5a+20=15,即a=-1, 则a 2018+(-0.1b )2019=1-1=0.故答案为:0.17.设有x 匹大马,y 匹小马,根据题意得100131003x y x y +⎧⎪⎨+⎪⎩==, 解得2575x y ⎧⎨⎩==. 答:有25匹大马,75匹小马.18.解:设需安排x 名工人加工大齿轮,安排y 名工人加工小齿轮,根据题意得:8516:102:3x y x y +=⎧⎨=⎩,解得:2560 xy=⎧⎨=⎩.答:需安排25名工人加工大齿轮,安排60名工人加工小齿轮。
2019—2020学年人教版七年级数学下册 第8章《二元一次方程组》测试卷(附答案)

《二元一次方程组》测试卷满分100分姓名:___________班级:___________考号:___________题号一二三总分得分一.选择题(共12小题,满分36分)1.下列方程组中,二元一次方程组是()A.B.C.D.2.若x|2m﹣3|+(m﹣2)y=8是关于x、y的二元一次方程,则m的值是()A.1B.任何数C.2D.1或23.若一个二元一次方程的一个解为,则这个方程可以是()A.y﹣x=1B.x﹣y=1C.x+y=1D.x+2y=14.方程2x﹣y=3和2x+y=9的公共解是()A.B.C.D.5.为了奖励校运会优秀运动员,学校决定用1200元购买篮球和排球两种奖品若干个.其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.1种B.2种C.3种D.4种6.王阿姨以每个m元的价格买进苹果100个,现以每个比进价多20%价格卖出70个后,再以每个比进价低n元的价格将剩下的30个卖出,则全部卖出100个苹果所得的金额是W元,下列方程正确的是()A.70m+30(m﹣n)=WB.70×(1+20%)m+30(m﹣n)=WC.70×(1+20%)m+30n=WD.100×(1+20%)m﹣30(m﹣n)=W7.由方程组,可得x与y的关系是()A.2x+y=﹣4B.2x﹣y=﹣4C.2x+y=4D.2x﹣y=48.若方程组的解中x+y=2019,则k等于()A.2018B.2019C.2020D.20219.如图,将正方形ABCD的一角折叠,折痕为AE,点B恰好落在点B'处,∠B′AD比∠BAE大48°.设∠BAE和∠B′AD的度数分别为x°和y°,那么所适合的一个方程组是()A.B.C.D.10.有一份选择题试卷共六道小题.其得分标准是:一道小题答对得8分,答错得0分,不答得2分.某同学共得了20分,则他()A.至多答对一道小题B.至少答对三道小题C.至少有三道小题没答D.答错两道小题11.某旅行团到森林游乐区参观,如表为两种参观方式与所需的缆车费用.已知旅行团的每个人皆从这两种方式中选择一种,且去程有15人搭乘缆车,回程有10人搭乘缆车.若他们缆车费用的总花费为4100元,则此旅行团共有多少人?()参观方式缆车费用去程及回程均搭乘缆车300元单程搭乘缆车,单程步行200元A.16B.19C.22D.2512.方程组消去字母c后,得到的方程一定不是()A.a+b=1B.a﹣b=1C.4a+b=10D.7a+b=19二.填空题(共7小题,满分21分)13.已知3x2m﹣2y n=1是关于x、y的二元一次方程,则mn=.14.二元一次方程x+y=5的正整数解个数有个.15.若2x+y=3,用含x的代数式表示y,则y=.16.把一根长9m的钢管截成2m长和1m长两种规格的钢管,要求不造成浪费,则不同的截法有种.17.二元一次方程组的解是,则b﹣a=.18.若方程组是关于x,y的二元一次方程组,则代数式a+b+c的值是.19.如图所示的各图表示由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数为s,按此规律推断,以s,n为未知数的二元一次方程为s=.三.解答题(共7小题)20.(5分)解方程组:.21.(5分)方程mx+ny=1的两个解是,,求m和n的值.22.(6分)已知甲种物品毎个重4kg,乙种物品毎个重7kg,现有甲种物品x个,乙种物品y个,共重76kg.(1)列出关于x,y的二元一次方程;(2)若x=12,则y=.(3)若乙种物品有8个,则甲种物品有个.23.(6分)请你设计一个问题情境:使该问题可以用二元一次方程组来解决.24.(6分)某校组织八年级师生共420人参观纪念馆,学校联系租车公司提供车辆,该公司现有A,B两种座位数不同的车型,如果租用A种车3辆,B种车5辆,则空余15个座位:如果租用A种车5辆,B种车3辆,则有15个人没座位(1)求该公司A,B两种车型各有多少个座位?(2)若A种车型的日租金为260元/辆,B种车型的日租金为350元/辆,怎样租车能使得座位恰好坐满且租金最少?最少租金是多少?(请直接写出答案)25.(7分)若关于x,y的二元一次方程组与方程组有相同的解.(1)求这个相同的解;(2)求m﹣n的值.26.(8分)小林在某商店购买商品A,B共三次,只有其中一次购买时,商品A、B同时打折,其余两次的均按标价购买,三次购买商品A,B的数量和费用如下表所示购买商品A的数量/个购买商品B的数量/个购买总费用/元第一次购物651140第二次购物371110第三次购物981062(1)在这三次购物中,第次购物打了折扣;(2)求出商品A,B的标价.(3)若商品A,B的折扣相同,问商店是打几折出售这两种商品?参考答案一.选择题(共12小题)1.下列方程组中,二元一次方程组是()A.B.C.D.【解答】解:A、是二元二次方程组,不合题意;B、,是二元一次方程组,符合题意;C、,是二元二次方程组,不合题意;D、,第2个方程不是整式方程,不合题意.故选:B.2.若x|2m﹣3|+(m﹣2)y=8是关于x、y的二元一次方程,则m的值是()A.1B.任何数C.2D.1或2【解答】解:根据题意可知:|2m﹣3|=1,解得:m=2或m=1,m﹣2≠0,m≠2,∴m=1.故选:A.3.若一个二元一次方程的一个解为,则这个方程可以是()A.y﹣x=1B.x﹣y=1C.x+y=1D.x+2y=1【解答】解:A、把代入方程得:左边=﹣1﹣2=﹣3,右边=1,左边≠右边,不是方程的解,不符合题意;B、把代入方程得:左边=2+1=3,右边=1,左边≠右边,不是方程的解,不符合题意;C、把代入方程得:左边=2﹣1=1,右边=1,左边=右边,是方程的解,符合题意;D、把代入方程得:左边=2﹣2=0,右边=1,左边≠右边,不是方程的解,不符合题意,故选:C.4.方程2x﹣y=3和2x+y=9的公共解是()A.B.C.D.【解答】解:联立得:,①+②得:4x=12,解得:x=3,把x=3代入①得:y=3,则方程组的解为,故选:D.5.为了奖励校运会优秀运动员,学校决定用1200元购买篮球和排球两种奖品若干个.其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.1种B.2种C.3种D.4种【解答】解:设购买篮球x个,排球y个,依题意得:120x+90y=1200.整理,得x=10﹣y.因为x、y都是正整数,所以x=7,y=4或x=4,y=8或x=1,y=12.所以共有3种购买方案.故选:C.6.王阿姨以每个m元的价格买进苹果100个,现以每个比进价多20%价格卖出70个后,再以每个比进价低n元的价格将剩下的30个卖出,则全部卖出100个苹果所得的金额是W元,下列方程正确的是()A.70m+30(m﹣n)=WB.70×(1+20%)m+30(m﹣n)=WC.70×(1+20%)m+30n=WD.100×(1+20%)m﹣30(m﹣n)=W【解答】解:依题意得,先卖70个苹果的单价是m(1+20%)元,剩下的30个苹果卖出的单价是(m﹣n)元,∴全部苹果共卖得金额是:70×(1+20%)×m+30(m﹣n)元.∴70×(1+20%)m+30(m﹣n)=W故选:B.7.由方程组,可得x与y的关系是()A.2x+y=﹣4B.2x﹣y=﹣4C.2x+y=4D.2x﹣y=4【解答】解:,把②代入①得:2x+y﹣3=1,整理得:2x+y=4,故选:C.8.若方程组的解中x+y=2019,则k等于()A.2018B.2019C.2020D.2021【解答】解:,①+②得,5x+5y=5k﹣5,即:x+y=k﹣1,∵x+y=2019,∴k﹣1=2019∴k=2020,故选:C.9.如图,将正方形ABCD的一角折叠,折痕为AE,点B恰好落在点B'处,∠B′AD比∠BAE大48°.设∠BAE和∠B′AD的度数分别为x°和y°,那么所适合的一个方程组是()A.B.C.D.【解答】解:设∠BAE和∠B′AD的度数分别为x°和y°,根据题意可得:.故选:D.10.有一份选择题试卷共六道小题.其得分标准是:一道小题答对得8分,答错得0分,不答得2分.某同学共得了20分,则他()A.至多答对一道小题B.至少答对三道小题C.至少有三道小题没答D.答错两道小题【解答】解:设答对x题,答错的有y题,不答的有z题.依题意得,满足且6≥x≥0,6≥y≥0,6≥z≥0都为整数当x=0时,z=10,不合题意舍去;当x=1时,z=6,y=﹣1,不合题意舍去;当x=2时,z=2,y=2.故选:D.11.某旅行团到森林游乐区参观,如表为两种参观方式与所需的缆车费用.已知旅行团的每个人皆从这两种方式中选择一种,且去程有15人搭乘缆车,回程有10人搭乘缆车.若他们缆车费用的总花费为4100元,则此旅行团共有多少人?()参观方式缆车费用去程及回程均搭乘缆车300元单程搭乘缆车,单程步行200元A.16B.19C.22D.25【解答】解:设此旅行团有x人单程搭乘缆车,单程步行,其中去程及回程均搭乘缆车的有y人,根据题意得,,解得,,则总人数为7+9=16(人)故选:A.12.方程组消去字母c后,得到的方程一定不是()A.a+b=1B.a﹣b=1C.4a+b=10D.7a+b=19【解答】解:,②﹣①得:3a+3b=3,即a+b=1,③﹣①得:24a+6b=60,即4a+b=10,③﹣②得:21a+3b=57,即7a+b=19,故选:B.二.填空题(共7小题)13.已知3x2m﹣2y n=1是关于x、y的二元一次方程,则mn=0.5.【解答】解:∵3x2m﹣2y n=1是关于x、y的二元一次方程,∴2m=1,n=1,∴m=0.5,∴mn=0.5×1=0.5,故答案为:0.5.14.二元一次方程x+y=5的正整数解个数有4个.【解答】解:方程x+y=5,解得:y=﹣x+5,当x=1时,y=4;x=2时,y=3;x=3时,y=2;x=4时,y=1,则方程的正整数解个数有4个,故答案为:415.若2x+y=3,用含x的代数式表示y,则y=3﹣2x.【解答】解:移项得:y=3﹣2x,故答案为:y=3﹣2x.16.把一根长9m的钢管截成2m长和1m长两种规格的钢管,要求不造成浪费,则不同的截法有4种.【解答】解:截下来的符合条件的钢管长度之和刚好等于总长9米时,不造成浪费,设截成2米长的钢管x根,1米长的y根,由题意得,2x+y=9,因为x,y都是正整数,所以符合条件的解为:,,,,则有4种不同的截法.故答案是:4.17.二元一次方程组的解是,则b﹣a=2.【解答】解:∵二元一次方程组的解是,∴,①+②,可得:2b﹣2a=4,∴b﹣a=4÷2=2.故答案为:2.18.若方程组是关于x,y的二元一次方程组,则代数式a+b+c的值是﹣2或﹣3.【解答】解:若方程组是关于x,y的二元一次方程组,则c+3=0,a﹣2=1,b+3=1,解得c=﹣3,a=3,b=﹣2.所以代数式a+b+c的值是﹣2.或c+3=0,a﹣2=0,b+3=1,解得c=﹣3,a=2,b=﹣2.所以代数式a+b+c的值是﹣3.故答案为:﹣2或﹣3.19.如图所示的各图表示由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数为s,按此规律推断,以s,n为未知数的二元一次方程为s=3(n﹣1).【解答】解:根据图案组成的是三角形的形状,则其周长等于边长的3倍,所以s=3(n﹣1).故答案为:3(n﹣1).三.解答题(共7小题)20.解方程组:.【解答】解:①×2+②,可得5x=5,解得x=1,把x=1代入①,解得y=﹣1,∴原方程组的解是.21.方程mx+ny=1的两个解是,,求m和n的值.【解答】解:分别把,代入方程mx+ny=1得:,解得:,即m的值为﹣,n的值为.22.已知甲种物品毎个重4kg,乙种物品毎个重7kg,现有甲种物品x个,乙种物品y个,共重76kg.(1)列出关于x,y的二元一次方程;(2)若x=12,则y=4.(3)若乙种物品有8个,则甲种物品有5个.【解答】解:(1)由题意知4x+7y=76;(2)当x=12时,48+7y=76,解得y=4,故答案为:4;(3)当y=8时,4x+56=76,解得:x=5,即甲种物品有5个,故答案为:5.23.请你设计一个问题情境:使该问题可以用二元一次方程组来解决.【解答】问:某文具的出售一批笔记本及圆珠笔,若购买1本笔记本及5支圆珠笔需要13元;购买3本笔记本及4支圆珠笔需要17元,求笔记本及圆珠笔的单价?解:设笔记本的单价为x元,圆珠笔的单价为y元,依题意,得:.24.某校组织八年级师生共420人参观纪念馆,学校联系租车公司提供车辆,该公司现有A,B两种座位数不同的车型,如果租用A种车3辆,B种车5辆,则空余15个座位:如果租用A种车5辆,B种车3辆,则有15个人没座位(1)求该公司A,B两种车型各有多少个座位?(2)若A种车型的日租金为260元/辆,B种车型的日租金为350元/辆,怎样租车能使得座位恰好坐满且租金最少?最少租金是多少?(请直接写出答案)【解答】解:(1)设公司A、B两种车型各有x个座位和y个座位,根据题意得:解得答:公司A、B两种车型各有45个座位和60个座位,(2)设公司A、B两种车型各有a辆和b辆,租金为w元,根据题意得:∴w=﹣a+2450∵45a+60b=420∴a=∵a,b为正整数∴b=1,a=8,b=4,a=4∴当a=8时,w的值最小,即W=﹣20+2450=2430∴租该公司A、B两种车型各有8辆和1辆租金最少,最少租金为2430元.25.若关于x,y的二元一次方程组与方程组有相同的解.(1)求这个相同的解;(2)求m﹣n的值.【解答】解:(1)∵关于x,y的二元一次方程组与方程组有相同的解,∴解得∴这个相同的解为(2)∵关于x,y的二元一次方程组与方程组有相同的解,∴解得∴m﹣n=3﹣2=1.答:m﹣n的值为1.26.小林在某商店购买商品A,B共三次,只有其中一次购买时,商品A、B同时打折,其余两次的均按标价购买,三次购买商品A,B的数量和费用如下表所示购买商品A的数量/个购买商品B的数量/个购买总费用/元第一次购物651140第二次购物371110第三次购物981062(1)在这三次购物中,第三次购物打了折扣;(2)求出商品A,B的标价.(3)若商品A,B的折扣相同,问商店是打几折出售这两种商品?【解答】解:(1)观察表格中的数据,可知:第三次购物,购进的数量更多,总价更低,∴第三次购物打了折扣.故答案为:三.(2)设商品A的标价为x元,商品B的标价为y元,依题意,得:,解得:.答:商品A的标价为90元,商品B的标价为120元.(3)设商店是打m折出售这两种商品,依题意,得:(90×9+120×8)×=1062,解得:m=6.答:商店是打6折出售这两种商品.。
七年级初一数学 第八章 二元一次方程组练习题含答案

七年级初一数学 第八章 二元一次方程组练习题含答案 一、选择题 1.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了minx,下坡用了miny,根据题意可列方程组( )
A.35120016xyxy B.
351.2606016xyxy
C.351.216xyxy D.
351200606016xyxy
2.已知方程组221xykxy的解满足3xy,则k的值为( ) A.2 B.2 C.1 D.
1
3.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( ) A.4种 B.5种 C.6种 D.7种
4.下列各组数中①22xy; ②21xy;③22xy;④16xy是方程410xy的解的有( ) A.1个 B.2个 C.3个 D.4个
5.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第 2020 秒时跳蚤所在位置的坐标是( )
A.(5,44) B.(4,44) C.(4,45) D.(5,45) 6.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现有m张正方形纸板和n张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m+n的值可能是( )
A.200 B.201 C.202 D.203 7.已知方程组21119xykxky的解满足 x+y=3,则 k 的值为( ) A.k=-8 B.k=2 C.k=8 D.k=﹣2 8.甲、乙两人共同解关于x,y的方程组,甲正确地解得乙看错
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年春七年级下册第八章期末复习卷
二元一次方程组
(总分:150分,考试时间:120分钟)
题号 一 二 三 四 五 总分
得分
一、选择题(每小题3分,共24分)
1. 方程2130,21,328,20,10xyxxyxyxxxxy中,二元一次方程
的个数是( )
A.1个 B.2个 C.3个 D.4个
2. 方程x+2y=5的非负整数解有( )
A.1个 B.2个 C.3个 D.无数个
3.方程组224xyxy,的解是( )
A.12xy B.31xy C.02xy D.20xy
4.买钢笔和铅笔共30支,其中钢笔的数量比铅笔数量的2倍少3支.若设买钢笔x支,铅
笔y支,根据题意,可得方程组( ).
A.3230xyyx B.3230xyyx C.3230yxyx D. 3230yxyx
5.下列结论正确的是( ).
A.方程5yx所有的解都是方程组1835yxyx的解
B.方程5yx所有的解都不是方程组1835yxyx的解
C.方程组1835yxyx的解不是方程5yx的一个解
得分
阅卷人
班
级
:
姓
名
:
学
号
:
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
密
封
线
内
不
要
答
题
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
D.方程组1835yxyx的解是方程5yx的一个解
6.某商店有两进价不同的耳机都卖64元,其中一个盈利60%,另一个亏本20%,在这次
买卖中,这家商店( )
A.赚8元 B.赚32元 C.不赔不赚 D.赔8元
7.解方程组534734yxyx 时,较为简单的方法是( )
A.代入法 B.加减法 C.试值法 D.无法确定
8.关于x、y的方程组15xyayx有正整数解,则正整数a为( ).
A. 1、2 B.2、5 C.1、5 D.1、2、5
二、填空(每小题3分,共24分)
9. 如果13yx是方程3x-ay=8的一个解,那么a=_________.
10. 由方程3x-2y-6=0可得到用x表示y的式子是_________.
11. 请你写出一个二元一次方程组,使它的解为21yx ,这个方程组是_________.
12. 用加减消元法解方程组31,421,xyxy①②由①×2-②得__________.
13. 方程mx-2y=x+5是关于x、y的二元一次方程,则m________.
14.若2x7ayb-2与-x1+2bya是同类项,则b=________.
15.如图,宽为50cm的长方形图案由10个相同的小长方形
拼成,求每个小长方形的长为x cm,宽长为y cm。根据题意
可列方程组:
16.对于有理数,规定新运算:x※y=ax+by+xy,其中a 、b是常数,等式右边的是通常
的加法和乘法运算。 已知:2※1=7 ,(-3)※3=3,可得到方程组:
三、解方程组(每题5分,共15分)
17.233511xyxy 18.32522(32)28xyxxyx
2x
y
4y
3
2-332
-3
图(1)
图(2)
19.244263nmnm
四、解答题(每题7分,共21分)
20. 已知y=x2+px+q,当x=1时,y的值为2;当x=-2时,y的值为2.求当x=-3时,y的
值.
21. 若方程组 275xykxyk 的解x与y是互为相反数,求k的值。
22. 如图,在3×3的方格内,填写了一些代数式和数
(1)在图中各行、各列及对角线上三个数之和都相等,请你求出x,y的值。
(2)把满足(1)的其它6个数填入图(2)中的方格内。
五、列方程(组)解应用题(每题8分,共16分)
23. 在学校组织的游艺晚会上,掷飞标游艺区游戏规则如下:如图掷到A 区和B 区的得分不
同,A区为小圆内部分,B 区为大圆内小圆外的部分(掷中一次记一个点).现统计小华、小芳
和小明掷中与得分情况如下:
小华:77分 小芳:75分 小明:? 分
(1)求掷中A 区、B 区一次各得多少分?
(2)依此方法计算小明的得分为多少分?
24. 小王购买了一套经济适用房,他准备将地面铺上地砖,地面
结构如图所示.根据图中的数据(单位:m),解答下列问题:
(1)用含x,y的式子表示地面总面积;
(2)已知客厅面积比卫生间面积多21 m2,且地面总面积是卫
生间面积的15倍.若铺1 m2地砖的平均费用为80元,那么铺地
砖的总费用为多少元?
附加题:
1.若关于x,y 的二元一次方程组316215xayxby的解是71xy,则关于x, y 的方程组
3()()162()()15xyaxyxybxy
的解是多少? 此题解法上的技巧是什么? 试根据两个方程组的特
点加以分析并求解。
2. 若a为常数,且方程组1)1(153)35(yaaxayxa至多有一组解,则a的取值范围是
参考答案:
1. B 2.C 3.D 4.A 5.D 6.A 7.B 8.D
9. 1 10. 362xy 11. 31xyxy 等 12. 23x 13. 3
14. 1 15. yxyx450 16. 2273393abab
17. 21xy 18. 1232xy 19. 44mn
20. 6 21. k=-6 22. (1) 11xy (2)
23.解:(1)设掷到A区和B区的得分分别为x、y分,依题意得:
53773575xyxy
解得109xy
答:掷中A区、B区一次各得10,9分.
(2)由(1)可知:4x+4y=76,
答:依此方法计算小明的得分为76分.
24、解:(1)地面总面积为:6x+2y+18(m2).
(2)由题意,得6221,6218152.xyxyy解得4,3.2xy
∴地面总面积为:6x+2y+18=6×4+2×32+18=45(m2).
-2 3 2
5 1 -3
0 -1 4
∴铺地砖的总费用为:45×80=3 600(元).
附加题
1. 43xy
2. 法一:由aaaa1335得85a,此时方程组有唯一解;由aaaa1335得85a,此时
115513a
a
,方程组无解;综上,a为任何数时,原方程组至多有一组解。
法二:至多有一组解,也就是不会有无数解.由11535aa得185a;由11513aa得65a;故不
论a取何值,1151335aaaa都不成立。即a为任何数时,原方程组至多有一组解。
法三:①+②×3,得5x+3y=18,把x=(18-3y)/5代入②,整理得aya5181)581(.
0581a
时,方程组有唯一解;0581a时,05181a,方程组无解;综上,a为任何数时,原方程
组至多有一组解。