空间后方交会基本原理27页PPT

合集下载

空间后方交会的解算

空间后方交会的解算

空间后方交会的解算一. 空间后方交会的目的摄影测量主要利用摄影的方法获取地面的信息,主要是是点位信息,属性信息,因此要对此进行空间定位和建模,并首先确定模型的参数,这就是空间后方交会的目的,用以求出模型外方位元素。

二. 空间后方交会的原理空间后方交会的原理是共线方程。

共线方程是依据相似三角形原理给出的,其形式如下111333222333()()()()()()()()()()()()A S A S A S A S A S A S AS A S A S A S A S A S a X X b Y Y c Z Z x f a X X a Y Y a Z Z a X X b Y Y c Z Z y f a X X a Y Y a Z Z -+-+-=--+-+--+-+-=--+-+-上式成为中心投影的构线方程,我们可以根据几个已知点,来计算方程的参数,一般需要六个方程,或者要三个点,为提高精度,可存在多余观测,然后利用最小二乘求其最小二乘解。

将公式利用泰勒公式线性化,取至一次项,得到其系数矩阵A ;引入改正数(残差)V ,则可将其写成矩阵形式:V AX L =-其中111333222333[,]()()()()()()()()()()()()()()Tx y A S A S A S x A S A S A S A S A S A S y A S A S A S L l l a X X b Y Y c Z Z l x x x fa X X a Y Y a Z Z a X Xb Y Yc Z Z l y y y fa X X a Y Y a Z Z =-+-+-=-=+-+-+--+-+-=-=+-+-+- 则1()T T X A A A L -=X 为外方位元素的近似改正数,由于采用泰勒展开取至一次项,为减少误差,要将的出的值作为近似值进行迭代,知道小于规定的误差三. 空间后方交会解算过程1. 已知条件近似垂直摄影00253.24mmx y 0f ===2. 解算程序流程图MATLAB 程序format long;s1=xlsread('data.xls');%读取数据a1=s1(1:4,1:2);%影像坐标b1=s1(1:4,3:5);%地面摄影测量坐标a2=s1.*10^-3;%影像坐标单位转化j1=a2(1,:)-a2(2,:);j2=j1(1,1)^2+j1(1,2)^2;lengh_a1=sqrt(j2); %相片某一长度j1=b1(1,:)-b1(1,:);j2=j1(1,1)^2+j1(1,2)^2;lengh_b1=sqrt(j2); %地面对应的长度m=lengh_b1/lengh_a1;%求出比例尺n0=0;p0=0;q0=0;x0=mean(b1(:,1));y0=mean(b1(:,2));f=153.24*10^-3;z0=m*f;x001={x0,x0,x0,x0};X0=cell2mat(x001)';y001={y0,y0,y0,y0};Y0=cell2mat(y001)';z001={z0,z0,z0,z0};Z0=cell2mat(z001)';%初始化外方位元素的值aa1=cos(n0)*cos(q0)-sin(n0)*sin(p0)*sin(q0);aa2=-sin(q0)*cos(n0)-sin(n0)*sin(p0)*cos(q0);aa3=-sin(n0)*cos(p0);bb1=sin(q0)*cos(p0);bb2=cos(q0)*cos(p0);bb3=-sin(p0);cc1=sin(n0)*cos(q0)+sin(p0)*cos(n0)*sin(q0);cc2=-sin(n0)*sin(q0)+sin(p0)*cos(q0)*cos(n0);cc3=cos(n0)*cos(p0);%计算改正数XX1=aa1.*(b1(:,1)-X0)+bb1.*(b1(:,2)-Y0)+cc1.*(b1(:,3)-Z0); XX2=aa2.*(b1(:,1)-X0)+bb2.*(b1(:,2)-Y0)+cc2.*(b1(:,3)-Z0); XX3=aa3.*(b1(:,1)-X0)+bb3.*(b1(:,2)-Y0)+cc3.*(b1(:,3)-Z0); lx=a1(:,1)+f.*(XX1./XX3);ly=a1(:,2)+f.*(XX2./XX3);l={lx',ly'};L=cell2mat(l)';%方程系数A=[-3.969*10^-5 0 2.231*10^-5 -0.2 -0.04 -0.06899;0 -3.969*10^-5 1.787*10^-5 -0.04 -0.18 0.08615;-2.88*10^-5 0 1*10^-5 -0.17 0.03 0.08211;0 -2.88*10^-5 -1.54*10^-5 0.03 -0.2 0.0534;-4.14*10^-5 0 4*10^-6 -0.15 -7.4*10^-3 -0.07663;0 -4.14*10^-5 2.07*10^-5 -7.4*10^-3 -0.19 0.01478;-2.89*10^-5 0 -1.98*10^-6 -0.15 -4.4*10^-3 0.06443;0 -2.89*10^-5 -1.22*10^-5 -4.4*10^-3 -0.18 0.01046];%L=[-1.28 3.78 -3.02 -1.45 -4.25 4.98 -4.72 -0.385]'.*10^-2; %第一次迭代X=inv(A'*A)*A'*L;3.结果X=1492.41127406195-554.4015671761941425.68660973544-0.0383847815608609 0.00911624039769785 -0.105416434087641S=1492.41127406195-554.401567176194 1425.68660973544 38436.9616152184 27963.1641162404-0.105416434087641。

单像空间后方交会

单像空间后方交会
坐标轴与像平面坐标轴平行。
像空间辅助坐标系(u,v,w)
坐标原点位于S,但坐标轴不一定与像平 面坐标轴平行,按需要定义。
像空坐标系与像空辅助坐标系之关系
物方坐标系
地面测量坐标系(Xt,Yt,Zt)
义。
地面摄影测量坐标系(X,Y,Z,)
原点位于地面某一已知点,坐标轴按需要定
地面测量坐标系与摄影测量坐标系之关系
确定像片相对S 的位置。 --焦距 --像主点 在像平面坐标系中 的坐标 例
外方位元素
1、确定S在物方空 间坐标系中位置的元 素(直线元素)。 Xs,Ys,Zs 例 Xs=1140.2m Ys=2003.5m Zs=1035.7m
பைடு நூலகம்2、确定像片在
物方空间坐标系中 位置的元素(角 元素)。 1) 角元素
像方坐标系与物方 坐标系之关系
共线方程线性化:
前式具体化:
即有
'
2
'
2
(5-9a)具体化:
写成

综合上述推导,有共线方程的线性形式:
式中
二.解算中的具体公式
利用(a)式解求外方位元素时,有6个未知数,须用像 片及地面3个点的3对已知的(X,Y,Z)、(x,y)组6个 方程.实用中为提高精度常取多余点多余观测,为此要按 最小二乘平差计算.则平差算式如下:
分)
单像空间后方交会(第五章部
根据单张航测像片上一定数量的已 知点(像片坐标和地面坐标已知),计算该 像片的外方位元素(摄影中心S的坐标 Xs,Ys,Zs,像片的角元素 ).
知道外方位 元素,可用来恢 复像片在摄影时 的空间位置,重 建像片与被摄地 面之间的相互关 系
内方位元素
( X1 , Y1 , Z1 )

单像空间后方交会

单像空间后方交会

单像空间后方交会测绘学院 成晓倩1 概述1.1 定义利用一定数量的地面控制点和对应像点坐标求解单张像片外方位元素的方法称为空间后方交会。

1.2 所需控制点个数与分布共线条件方程的一般形式为:⎪⎪⎩⎪⎪⎨⎧-+-+--+-+--=--+-+--+-+--=-)()()()()()()()()()()()(33322203331110S S S S S S S S S S S S Z Z c Y Y b X X a Z Z c Y Y b X X a f y y Z Z c Y Y b X X a Z Z c Y Y b X X a f x x (1)式中包含有六个外方位元素,即κωϕ、、、、、S S S Z Y X ,只有确定了这六个外方位元素的值,才能利用共线条件方程真正确定一张像片的任一像点与对应地面点的坐标关系。

个数:对任一控制点,我们已知其地面坐标)(i i i Z Y X 、、和对应像点坐标)(i i y x 、,代入共线条件方程可以列出两个方程式,因此,只少需要3个控制点才能解算出六个外方位元素。

在实际应用中,为了避免粗差,应有多余检查点,因此,一般需要4~6个控制点。

分布:为了最有效地控制整张像片,控制点应均匀分布于像片边缘,如下图所示。

由于共线条件方程是非线性的,直接答解十分困难,所以首先将共线方程改化为线性形式,然后再答解最为简单的线性方程组。

2 空间后方交会的基本思路分布合理 分布合理 分布不合理2.1 共线条件方程线性化的基本思路在共线条件方程中,令)()()()()()()()()(333222111S S S S S S S S S Z Z c Y Y b X X a Z Z Z c Y Y b X X a Y Z Z c Y Y b X X a X -+-+-=-+-+-=-+-+-= (2) 则共线方程变为⎪⎪⎩⎪⎪⎨⎧-=--=-ZY fy y Z Xf x x 00 (3) 对上式两侧同乘Z ,并移至方程同侧,则有⎩⎨⎧=-+=-+0)(0)(00Z y y Y f Z x x X f (4) 令⎩⎨⎧-+=-+=Zy y Y f Fy Zx x X f Fx )()(00 (5) 由于上式是共线方程的变形,因此,Fy Fx 、是κωϕ、、、、、S S S Z Y X 的函数。

后方交会原理

后方交会原理

后方交会原理
后方交会原理是指在地图上已知两点的坐标,通过测量这两点
到另外一个点的水平角和垂直角,然后计算出该点的坐标的方法。

后方交会原理是实地测量中常用的一种方法,它可以帮助测量员准
确地确定某一点的坐标,为工程测量提供了重要的依据。

在进行后方交会时,首先需要确定已知点的坐标,然后通过测
量仪器测量出待求点到已知点的水平角和垂直角。

接下来,根据已
知点的坐标和测量得到的角度信息,利用三角函数关系进行计算,
最终得出待求点的坐标。

后方交会原理的核心在于角度的测量和三角函数的运用。

测量
角度时需要使用精密的测量仪器,确保测量结果的准确性。

而在计
算坐标时,需要熟练掌握三角函数的运用方法,以及对已知点坐标
的精确掌握。

在实际的工程测量中,后方交会原理被广泛应用于地形测量、
建筑测量、道路测量等领域。

通过后方交会原理,测量员可以快速、准确地确定各个点的坐标,为工程设计和施工提供了可靠的数据支持。

需要注意的是,在进行后方交会时,测量员需要严格按照测量规程进行操作,确保测量的准确性和可靠性。

同时,对于测量仪器的使用和维护也需要进行规范的管理,以保证测量数据的可信度。

总的来说,后方交会原理是一种重要的测量方法,它通过测量角度和运用三角函数,能够准确地确定点的坐标,为工程测量提供了重要的技术支持。

在实际应用中,需要严格按照规程进行操作,确保测量数据的准确性和可靠性,为工程设计和施工提供可靠的数据支持。

空间后方—前方交会的原理

空间后方—前方交会的原理

空间后方—前方交会的原理
以空间后方—前方交会的原理为题,我来为大家描述一下。

空间后方—前方交会是一种用于确定目标位置的方法,常用于航空、导航、测绘等领域。

它利用人眼的立体视觉和视差效应,通过观察目标在不同视角下的位置变化,来推断目标的实际位置。

这种方法可以较精确地确定目标的距离和方位,尤其适用于远距离观测。

在进行空间后方—前方交会时,我们首先需要选择两个观测点,它们之间的距离应足够远,以便产生明显的视差效应。

然后,我们分别在这两个观测点上观察目标,并记录下目标在两个观测点的位置。

接下来,我们需要测量观测点之间的距离,并确定观测点与目标之间的夹角。

这些数据将用于计算目标的实际位置。

通过对两个观测点的位置和距离进行几何分析,我们可以得到目标相对于观测点的位移向量。

然后,我们再将这个位移向量与观测点之间的夹角结合起来,就可以计算出目标相对于观测点的实际位置。

空间后方—前方交会的原理基于视差效应,即当我们观察远处的目标时,由于两只眼睛的视角不同,目标在两只眼睛中的位置也会有所不同。

通过比较这两个位置的差异,我们就可以推断出目标的实际位置。

总的来说,空间后方—前方交会是一种利用视差效应来确定目标位
置的方法。

它可以在远距离观测中提供较为准确的测量结果,具有广泛的应用前景。

五上、数字摄影测量学单片空间后方交会

五上、数字摄影测量学单片空间后方交会

总误差方程
法方程
V Ax L
x (AT A) 1 (AT L)
X s Ys V1 A1 l1 Z V2 A2 l2 s V , A , L , x , Vn An ln T T li xi ( xi ) yi ( yi ) , Vi v xi v yi a11 a12 a13 a14 a15 a16 Ai a21 a22 a23 a24 a25 a26
已知点必须多余点, 数据处理方法采用 最小二乘法!
这是所有测量的一个统一的基本原则! 摄影测量也不例外。
二、误差方程与法方程



已知值 x0 , y0 , f ,m, X, Y, Z 观测值 x , y 相应改正数 vx,vy 未知数 Xs, Ys, Zs, , , 泰勒级数展开
四、空间后方交会的精度
求解各未知数的精度可以通过法方程系数矩阵 求逆的方法,解出相应的权倒数 Qii
mi m0 Qii 按下式计算第i未知数的中误差:
式中,m0为单位权中误差,计算公式 为: m [VV ] 0 2n 6 ,其中n为控制点的点数。
空间后方交会用到的已知点越多,空间后方交会 的精度越高,此外空点的分布也空间后方交会计算 的精度。空间后方交会使用的控制点应当避免位于 一个圆柱面上,否则,会出现解不唯一的情况。
偏导数 1
x f X Z 2 ( Z X) X s Z X s X s f 2 ( a1Z a3 X ) Z 1 X (a1 f f a3 ) Z Z 1 (a1 f a3 x) Z
偏导数 2
x f X Z 2 ( Z X) Z

第二章、共线条件方程、像点位移及单张像片的空间后方交会

第二章、共线条件方程、像点位移及单张像片的空间后方交会
2020/5/5
X
像点位移
当地面水平、像片水平时(理想情况),像 片影像在几何形态上与地面景物相似。 像点位移:当地面起伏、像片倾斜时,地面点在 像片上的构像相对理想情况时产生的位置差异。
2020/5/5
一、像片倾斜引起的像点位移
2020/5/5
有关系式:
ra2 f
sinsin
上式中,f为像片主距;
为像片倾角 为,方向角
yf a2(XXs)b2(YYs)c2(ZZs) a3(XXs)b3(YYs)c3(ZZs)
如果已知像点坐标x,y以及一定数量的地面控 制点坐标,根据共线方程,反求每张像片的6个 外方位元素,就能恢复航摄像片与被摄地面之 间的相互关系,重建地面立体模型,这种方法 称为单张像片空间后方交会。
2020/5/5
X
一条空间直
共线方程的解析表达式
线,是由两 个“分式线
xx0
f
a1(XXS)b1(YYS)c1(ZZS) a3(XXS)b3(YYS)c3(ZZS)
性方程”表 示!
yy0
f
a2(XXS)b2(YYS)c2(ZZS) a3(XXS)b3(YYS)c3(ZZS)
x0、 y0 、f-内方位元素
XS、 YS 、 ZS-外方位元素
yf a2(XXs)b2(YYs)c2(ZZs) a3(XXs)b3(YYs)c3(ZZs)
上式中: ➢x,y,-f为像空间坐标,其中f为航摄像 片的主距; ➢Xs,Ys,Zs为摄影中心在地面物方坐标 系里的坐标; ➢X,Y,Z地面点在地面物方坐标系里的 坐标; ➢ai,bi,ci为像片三个外方位角元素组成 的九个方向余弦。
• 单像空间后方交会和立体像对空间前方 交会(多片空间前方交会);

空间后方—前方交会的原理

空间后方—前方交会的原理

空间后方—前方交会的原理空间后方—前方交会是一种导航技术,通过测量目标物体在不同观测点的角度,并利用三角测量原理计算目标物体的位置。

这种技术广泛应用于航空、航天、导航等领域,可以帮助人们准确地确定目标物体的位置和方向。

在空间后方—前方交会中,观测者需要站在不同的位置观测目标物体,并测量目标物体相对于观测点的角度。

观测者需要使用测角仪或其他测量工具来测量角度,并记录下相应的数据。

测量完所有观测点的角度后,观测者需要根据这些角度数据进行三角计算,以确定目标物体的位置。

三角计算是利用三角函数来计算角度和边长的关系,通过已知的角度和边长来计算未知的角度和边长。

观测者需要根据测量得到的角度数据和观测点之间的距离,使用三角函数计算目标物体的位置坐标。

空间后方—前方交会的原理简单明了,但在实际应用中需要考虑一些因素。

首先,观测者需要选择合适的观测点,观测点的位置应尽量避免遮挡物,以确保观测到目标物体的角度准确无误。

其次,观测者需要准确测量角度,并尽量避免误差的产生。

最后,观测者需要进行精确的三角计算,以确保计算出的目标物体位置准确无误。

空间后方—前方交会技术的应用非常广泛。

在航空领域,飞行员可以利用该技术确定飞机的位置和方向,以确保飞行安全。

在航天领域,航天员也可以利用该技术确定航天器的位置和方向,以实现精确的轨道控制。

此外,该技术还可以应用于导航系统中,帮助人们准确导航和定位。

空间后方—前方交会是一种通过测量目标物体在不同观测点的角度,并利用三角计算原理确定目标物体位置的导航技术。

该技术在航空、航天、导航等领域有着广泛的应用,可以帮助人们准确地确定目标物体的位置和方向。

通过合理的观测点选择、准确的角度测量和精确的三角计算,空间后方—前方交会技术可以为人们提供准确可靠的导航和定位服务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档