集合与简易逻辑知识点

合集下载

集合与简易逻辑知识点整理

集合与简易逻辑知识点整理

集合与简易逻辑 知识点整理班级: 姓名:1.集合中元素的性质(三要素): ; ; 。

2.常见数集:自然数集 ;自然数集 ;正整数集 ;整数集 ;有理数集 ;实数集 。

3.子集:A B ⊆⇔ ; 真子集:A B ≠⊂⇔ ; 补(余)集:A C B ⇔ ;【注意】空集是任意集合的子集,是任意非空集合的真子集。

4.交集:A B ⋂⇔ ; 并集:A B ⋃⇔ 。

笛摩根定律:()U C A B ⋂= ;()U C A B ⋃= 。

性质:A B A ⋂=⇔ ;A B A ⋃=⇔ 。

5.用下列符号填空: "","","","","",""≠∈∉⊂⊂=≠0 N ;{}0 R ;φ {}0;{}1,2 {}(1,2);{}0x x ≥ {}0y y ≥ 6.含绝对值的不等式的解法:【注意】含等号时端点要取到。

x a < (0)a >的解集是 ;x a > (0)a >的解集是 。

(0)ax b c c +<>⇔ a x b <+<;(0)ax b c c +<<⇔ 或 。

7.【注意】的情况可根据不等式的性质化归为的情况进行讨论。

8.一元二次不等式恒成立问题:【注意】二次项系数为0时的讨论。

一元二次不等式20ax bx c ++<(0)a ≠恒成立⇔ 。

一元二次不等式20ax bx c ++≤(0)a ≠恒成立⇔ 。

一元二次不等式20ax bx c ++>(0)a ≠恒成立⇔ 。

一元二次不等式20ax bx c ++≥(0)a ≠恒成立⇔ 。

9.简单分式不等式的解法:()0()f x g x > ⇔()()0f x g x ⋅>⇔()0()0f x g x >⎧⎨>⎩或()0()0f x g x <⎧⎨<⎩()0()f xg x ≥⇔ ⇔ 。

1集合与简易逻辑知识点梳理.

1集合与简易逻辑知识点梳理.

§1集合与简易逻辑一、理解集合中的有关概念(1)集合中元素的特征:确定性,互异性,无序性。

集合元素的互异性:如:A={x,xy,lg(xy)},B={0,|x|,y},求A;(2)集合与元素的关系用符号∈,∉表示。

(3)常用数集的符号表示:自然数集;正整数集、;整数集;有理数集、实数集。

(4)集合的表示法:列举法,描述法,韦恩图。

说说下列集合的区别:A={x|y;B={y|y=;C={(x,y)|y;D={x|x=;E={(x,y)|y=x∈Z,y∈Z}.(5)空集是指不含任何元素的集合{0}、φ和{φ}的区别;0与三者间的关系;空集是任何集合的子集,是任何非空集合的真子集;注意:条件为A⊆B,在讨论的时候不要遗忘了A=φ的情况,如:A={x|ax2-2x-1=0},如果A R+=φ,求a的取值。

二、集合间的关系及其运算(1)符号“∈,∉”是表示元素与集合之间关系的,如立体几何中的体现点与直线(面)的关系;符号“⊂,⊄”或“⊆,”或“”等是表示集合与集合之间关系的,立体几何中的体现面与直线(面)的关系。

(2)切记:A⊆B⇔A⋂B=A;A⊆B⇔A⋃B=B.(3)集合中元素的个数的计算:若集合A中有n个元素,则集合A的所有不同的子集个数为_ __ ,所有真子集的个数是__ _,所有非空真子集的个数是。

基础训练一、选择题1.下列表示方法正确的是A.1⊆{0,1,2}D.φ{0}2.已知A={1,2,a2-3a-1},B={1,3},A⋂B={3,1}则a等于B.{1}∈{1,2}C.{0,1,2}⊆{0,1,3}A.-4或1B.-1或4C.-1D.43.设集合M={3,a},N={x|x2-3x﹤0,x∈Z},M⋂N={1},则M⋃N为A.{1,2,a}B.{1,2,3,a}C.{1,2,3}D.{1,3}4.集合P={(x,y)|x-y=2,x∈R},Q={(x,y)|x+y=2,x∈R},则P⋂QA.(2,0)B.{(2,0)}C.{0,2}D.{y|y≤2}n18.设集合A={x|x=,n∈Z},B={x|x=n+,n∈Z},则下列能较准确表示A、B关22 系的是图是11.已知集合M={x|x≤1},P={x|x﹥t},若M⋂P=φ,则实数t满足条件是A.t﹥1B.t≥1C.t<1D.t≤112.当a﹤0时,关于x的不等式x2-4ax-5a2>0的解集是A.{x|x﹥5a或x﹤-a}B.{x|x﹤5a或x﹥-a}C.{x|-a﹤x﹤5a}D.{x|5a﹤x﹤-a}二、填空题:13.集合M中含有8个元素,N中含有13个元素,(1)若M⋂N有6个元素,则M⋃N含有______个元素;(2)当M⋃N含_______个元素时, M⋂N=φ。

集合与常用逻辑用语重要知识点

集合与常用逻辑用语重要知识点

集合与简易逻辑重要知识点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一) 集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用、2. 集合的表示法:列举法、描述法、图形表示法、 集合元素的特征:确定性、互异性、无序性、 集合的性质:①任何一个集合就是它本身的子集,记为A A ⊆; ②空集就是任何集合的子集,记为A ⊆φ; ③空集就是任何非空集合的真子集; 如果B A ⊆,同时A B ⊆,那么A = B 、 如果C A C B B A ⊆⊆⊆,那么,、 [注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集就是一个有限集,则集合A 也就是有限集、(×)(例:S=N; A=+N ,则C s A= {0}) ③ 空集的补集就是全集、④若集合A =集合B ,则C B A = ∅, C A B = ∅ C S (C A B )= D ( 注 :C A B = ∅)、 3、 ①{(x,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集、 ②{(x,y )|xy <0,x ∈R ,y ∈R}二、四象限的点集、③{(x,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集、 [注]:①对方程组解的集合应就是点集、 例: ⎩⎨⎧=-=+1323y x y x 解的集合{(2,1)}、②点集与数集的交集就是φ、 (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =∅)4、 ①n 个元素的子集有2n 个、 ②n 个元素的真子集有2n -1个、 ③n 个元素的非空真子集有2n -2个、5、 ⑴①一个命题的否命题为真,它的逆命题一定为真、 否命题⇔逆命题、 ②一个命题为真,则它的逆否命题一定为真、 原命题⇔逆否命题、 例:①若325≠≠≠+b a b a 或,则应就是真命题、解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真、 ②且21≠≠y x 3≠+y 、 解:逆否:x + y =3x = 1或y = 2、21≠≠∴y x 且3≠+y x ,故3≠+y x 就是21≠≠y x 且的既不就是充分,又不就是必要条件、⑵小范围推出大范围;大范围推不出小范围、 3. 例:若255 x x x 或,⇒、 4. 集合运算:交、并、补、{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 5. 主要性质与运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C(2) 等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C (3) 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:、)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===等幂律:.,A A A A A A ==求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B )6. 有限集的元素个数定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0、基本公式:(1)()()()()(2)()()()()()()()()card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+(3) card ( U A )= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸 1、整式不等式的解法 根轴法(零点分段法)①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x 的系数化“+”后)就是“>0”,则找“线”在x 轴上方的区间;若不等式就是“<0”,则找“线”在x 轴下方的区间、+-+-x 1x 2x 3x m-3x m-2xm-1x mx(自右向左正负相间)则不等式)0)(0(0022110><>++++--a a x a x a x a n n n n 的解可以根据各区间的符号确定、特例① 一元一次不等式ax>b 解的讨论;②一元二次不等式ax 2+box>0(a>0)解的讨论、0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象一元二次方程()的根002>=++a c bx ax有两相异实根 )(,2121x x x x <有两相等实根abx x 221-==无实根的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax{}21x x xx <<∅∅原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互2、分式不等式的解法 (1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f3、含绝对值不等式的解法(1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法、(2)定义法:用“零点分区间法”分类讨论、(3)几何法:根据绝对值的几何意义用数形结合思想方法解题、 4、一元二次方程根的分布一元二次方程ax 2+bx+c=0(a ≠0)(1)根的“零分布”:根据判别式与韦达定理分析列式解之、(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之、 (三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

集合与常用逻辑用语重要知识点

集合与常用逻辑用语重要知识点

集合与简易逻辑重要知识点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾: (一) 集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; 如果B A ⊆,同时A B ⊆,那么A = B. 如果C A C B B A ⊆⊆⊆,那么,.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=+N ,则C s A= {0}) ③ 空集的补集是全集.④若集合A =集合B ,则C B A = ∅, C A B = ∅ C S (C A B )= D ( 注 :C A B = ∅). 3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{(x ,y )|xy <0,x ∈R ,y ∈R}二、四象限的点集.③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集. [注]:①对方程组解的集合应是点集. 例: ⎩⎨⎧=-=+1323y x y x 解的集合{(2,1)}.②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =∅)4. ①n 个元素的子集有2n 个. ②n 个元素的真子集有2n-1个. ③n 个元素的非空真子集有2n-2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题. 例:①若325≠≠≠+b a b a 或,则应是真命题.解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真. ②,且21≠≠y x 3≠+y x . 解:逆否:x + y =3x = 1或y = 2.21≠≠∴y x 且3≠+y x ,故3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围. 3. 例:若255 x x x 或,⇒. 4. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 5. 主要性质和运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C(2) 等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C (3) 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===等幂律:.,A A A A A A ==求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B )6. 有限集的元素个数定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0.基本公式:(1)()()()()(2)()()()()()()()()card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+(3) card ( U A )= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法 根轴法(零点分段法)①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.+-+-x 1x 2x 3x m-3x m-2xm-1x mx(自右向左正负相间)则不等式)0)(0(0022110><>++++--a a x a x a x a n n n n 的解可以根据各区间的符号确定.特例① 一元一次不等式ax>b 解的讨论;②一元二次不等式ax 2+box>0(a>0)解的讨论.0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象一元二次方程()的根002>=++a c bx ax有两相异实根 )(,2121x x x x <有两相等实根abx x 221-==无实根的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax{}21x x xx <<∅∅2.分式不等式的解法原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互(1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f3.含绝对值不等式的解法(1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题. 4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a ≠0) (1)根的“零分布”:根据判别式和韦达定理分析列式解之. (2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之. (三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

必修1、选修1-1 集合与简易逻辑

必修1、选修1-1  集合与简易逻辑

作“������或������” ;对于“������ ∨ ������”形式的命题判断真假的方法是:一真则真; (2)且:一般地,用联结词“且”把命题������和命题������联结起来,就得到一个新的命题,记作������ ∧ ������,读 作“������且������” ;对于“������ ∧ ������”形式的命题判断真假的方法是:一假则假; (3)非:一般地,对于一个命题全盘否定,就得到一个新的命题,记作“¬ ������” ,读作“非������”或读作 “������的否定” ;对于“¬ ������”形式的命题判断真假的方法是:真假相对; 4、全称量词与存在量词: (1)全称量词和全称命题: 全称量词:短语“所有的” “任意一个” “任意的”等在逻辑中通常称为全称量词,用符号“∀”表示; 全称命题:含有全称量词的命题称为全称命题; 全称命题的表达形式:������: ∀������ ∈ ������, ������ ������ ; 全称命题的否定形式:¬ ������: ∂������������ ∈ ������, ¬ ������ ������������ ; (全称命题的否定是特称命题) (2)存在量词和特称命题: 存在量词:短语“至少有一个” “存在一个”等在逻辑中通常称为存在量词,用符号“∂”表示; 特称命题:含有存在量词的命题称为特称命题; 特称命题的表达形式:������: ∂������������ ∈ ������, ������ ������������ ; 特称命题的否定形式:¬ ������: ∀������ ∈ ������, ¬ ������ ������ ; (特称命题的否定是全称命题)
(二)集合的运算——交集、并集、补集
1、交集: 一般地, 由所有属于集合������并且属于������的所有元素组成的集合, 称为集合������与集合������的交集, 记作������ ∩ ������, 读作������交������,即������ ∩ ������ = ������ ������ ∈ ������且������ ∈ ������ ;

集合与简易逻辑要点

集合与简易逻辑要点

第一章 集合与简易逻辑知识要点复习一、集合:1、集合:某些 的对象集在一起就形成一个集合,简称集。

2、元素:集合中的每个 叫做这个集合的元素。

3、常用数集的记法:N 表示 、*N 表示 、Z 表示 、Q 表示 、R 表示 。

4、a 是集合A 的元素,记做 、a 不是集合A 的元素,记做 。

5、元素性质:集合的元素具有 、 、 。

6、集合的表示方法:常用的有 与 。

7、方程0652=+-x x 的解集,可用描述法表示为 、用列举法表示为 。

8、集合的分类:按元素的多少,集合可分为 、 、 三类。

二、子集、全集、补集9、子集:对于两个集合A 与B ,如果集合A 的 元素都是集合B 的元素,我们就说集合A 集合B ,或集合B 集合A 。

也说集合A 是集合B 的子集。

即:若“B x A x ∈⇒∈”则B A ⊆。

10、任何一个集合是 的子集。

11、空集是 集合的子集。

12、相等:对于两个集合A 与B ,如果集合A 的 元素都是集合B 的元素,同时集合B 的 元素都是集合A 的元素,我们就说A B 。

即:若A B ,且B A ,那么B A =。

13、真子集:对于两个集合A 与B ,如果A B ,并且A B ,我们就说集合A 是集合B 的真子集。

14、空集是 集合的真子集。

15、全集:如果集合S 含有我们所要研究的各个集合的 ,这个集合就可以看作一个全集,全集通常用U 表示。

16、补集:设S 是一个集合,A 是S 的子集,由S 中所有 A 的元素组成的集合,叫做S 中子集A 的补集。

即:=A C S 。

三、交集、并集17、交集:由所有属于集合A 属于集合B 的元素所组成的集合,叫做A 与B 的交集。

即:=B A 。

18、并集:由所有属于集合A 属于集合B 的元素所组成的集合,叫做A 与B 的并集。

即:=B A 。

19、性质:=A A ,=φ A ,=B A ; =A A ,=φ A ,=B A ; A (A C U )= , A (A C U )= ;(A C U ) (B C U )= ,(A C U ) (B C U )= 。

集合与简单逻辑知识点

集合与简单逻辑知识点

一.集合与简单逻辑1.【1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.2】集合间的基本关系(6)子集、真子集、集合相等 名称记号意义性质 示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A(2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B =A(B)或BA真子集A ≠⊂B(或B ≠⊃A )B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂BA集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B (2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.3】集合的基本运算(8)交集、并集、补集名称记号意义性质示意图交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集U Að{|,}x x U x A∈∉且1()UA A=∅ð2()UA A U=ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a<>{|}x a x a-<<||(0)x a a>>|x x a<-或}x a>||,||(0) ax b c ax b c c+<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a>>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-∆>0∆=0∆<二次函数2(0)y ax bx c a=++>的图象O一元二次方程20(0) ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0) ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R ()()()U U UA B A B=痧()()()U U UA B A B=痧20(0)ax bx c a ++<>的解集12{|}x x x x << ∅ ∅2.简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.pqp q ∧p q ∨p ⌝真 真 真 真 假 真 假 假 真 假 假 真 假 真真 假假假假真7、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。

高中数学必修1第一章 集合与简易逻辑

高中数学必修1第一章 集合与简易逻辑

第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。

例如,通常用N ,Z ,Q ,B ,Q +分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用∅来表示。

集合分有限集和无限集两种。

集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。

例如{有理数},}0{>x x 分别表示有理数集和正实数集。

定义2 子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为B A ⊆,例如Z N ⊆。

规定空集是任何集合的子集,如果A 是B 的子集,B 也是A 的子集,则称A 与B 相等。

如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集。

定义3 交集,}.{B x A B A ∈=且I定义4 并集,}.{B x A x x B A ∈∈=或Y定义5 补集,若},{,1A x I x x A C I A ∉∈=⊆且则称为A 在I 中的补集。

定义6 差集,},{\B x A x x B A ∉∈=且。

定义7 集合},,{b a R x b x a x <∈<<记作开区间),(b a ,集合},,{b a R x b x a x <∈≤≤记作闭区间],[b a ,R 记作).,(+∞-∞定理1 集合的性质:对任意集合A ,B ,C ,有:(1));()()(C A B A C B A I Y I Y I = (2))()()(C A B A C B A Y I Y I Y =;(3));(111B A C B C A C I Y = (4)).(111B A C B C A C Y I =【证明】这里仅证(1)、(3),其余由读者自己完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合、简易逻辑
知识梳理:
1、 集合:某些指定的对象集在一起就构成一个集合。

集合中的每一个对象称为该集合的元素。

元素与集合的关系:A a ∈或A a ∉
集合的常用表示法: 列举法 、 描述法 。

集合元素的特征: 确定性 、 互异性 、 无序性 。

常用一些数集及其代号:非负整数集或自然数集N ;正整数集*N ,整数集Z ;有理数集Q ;实数集R
2、子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为A ⊆B
3、真子集:如果A ⊆B ,并且B A ≠,那么集合A 成为集合B 的真子集,记为A ⊄B ,读作“A 真包含于B 或B 真包含A ”,如:}{}{b a a ,⊆。

注:空集是任何集合的子集。

是非空集合的真子集
结论:设集合A 中有n 个元素,则A 的子集个数为n 2个,真子集个数为12-n 个 4、补集:设A ⊆S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为A C s ,读作“A 在S 中的补集”,即A C s =}{A x S x x ∉∈且,|。

5、全集:如果集合S 包含我们所要研究的各个集合,这时S 可以看作一个全集。

通常全集记作U 。

6、交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作B A ⋂即:B A ⋂=}{B x A x x ∈∈且,|。

7、并集:一般地,由所有属于集合A 或属于B 的元素构成的集合,称为A 与B 的并集,记作B A ⋃即:B A ⋂=}{B x A x x ∈∈或,|。

记住两个常见的结论:B A A B A ⊆⇔=⋂;A B A B A ⊆⇔=⋃;
9、命题:可以判断真假的语句叫做命题。

(全称命题 特称命题)
⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;
全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。

⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示;
特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;
10、“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。

构成复合命题的形式:p 或q ;p 且q ;非p(记作┑q) 。

11、“或”、“且”、“非”的真值判断: 非p 与p 真假相反;“p 且q”:同真才真, 一假即假;“p 或q”:同假才假,一真即真 12、命题的四种形式与相互关系: • 原命题:若P 则q ; • 逆命题:若q 则p ; • 否命题:若┑P 则┑q ; • 逆否命题:若┑q 则┑p
• 原命题与逆否命题互为逆否命题,同真假; • 逆命题与否命题互为逆否命题,同真假; 13、从逻辑推理关系上看:
若q p ⇒,则p 是q 的充分条件,q 是p 的必要条件,即“前者为后者的充分,后者为前者的必要”。

若q p ⇔,则p 是q 的充分必要条件,简称p 是q 的充要条件。

若q p ⇒,且q p ,那么称p 是q 的充分不必要条件。

若p q , 且q ⇒p ,那么称p 是q 的必要不充分条件。

若p
q , 且q
p ,那么称p 是q 的既不充分又不必要条件。

从集合与集合之间的关系上看: 条件p 、q 对应集合分别为A 、B ,则
若B A ⊆,则p 是q 的充分条件,若B A ⊂,则p 是q 的充分非必要条件 若B A ⊇,则p 是q 的必要条件,若B A ⊃,则p 是q 的必要非充分条件 若A=B ,则p 是q 的充要条件
若A B B A ⊄⊄且,则p 是q 的非充分必要条件
9.充要条件。

关键是分清条件和结论(划主谓宾),由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。

从集合角度解释,若B A ⊆,则A 是B 的充分条件;若B A ⊆,则A 是B 的必要条件;若A=B ,则A 是B 的充要条件。

如(1)给出下列命题:①实数0=a 是直线12=-y ax 与322=-y ax 平行的充要条件;②若0,,=∈ab R b a 是b a b a +=+成立的充要条件;③已知R y x ∈,,
“若0=xy ,则0=x 或0=y ”的逆否命题是“若0≠x 或0≠y 则0≠xy ”;④“若a 和b 都是偶数,则b a +是偶数”的否命题是假命题 。

其中正确命题的序号是_______(答:①④);(2)设命题p :|43|1x -≤;命题
q:0)1()12(2
≤+++-a a x a x 。

若┐p 是┐q 的必要而不充分的条件,则实数a 的取值范围是 (答:1
[0,]2

10. 一元一次不等式的解法:通过去分母、去括号、移项、合并同类项等步骤化为ax b >的形
式,若0a >,则b x a >
;若0a <,则b
x a
<;若0a =,则当0b <时,x R ∈;当0b ≥时,x ∈∅。

如已知关于x 的不等式0)32()(<-++b a x b a 的解集为)3
1
,(--∞,则关于x 的不等式
0)2()3(>-+-a b x b a 的解集为_______(答:{|3}x x <-)
11. 一元二次不等式的解集(联系图象)。

尤其当0∆=和0∆<时的解集你会正确表示吗?设
0a >,12,x x 是方程20ax bx c ++=的两实根,且12x x <,则其解集如下表:
如解关于的不等式:01)1(<++-x a ax 。

(答:当时,;当时,或
1x a <
;当01a <<时,11x a <<;当1a =时,x ∈∅;当1a >时,1
1x a
<<) 12. 对于方程02=++c bx ax 有实数解的问题。

首先要讨论最高次项系数a 是否为0,其次若0≠a ,则一定有042≥-=∆ac b 。

对于多项式方程、不等式、函数的最高次项中含有参数时,
你是否注意到同样的情形?如:(1)()()2
22210a x a x -+--<对一切R x ∈恒成立,则a 的取值范围是_______(答:(1,2]);(2)关于x 的方程()f x k =有解的条件是什么?(答:k D ∈,其中D 为()f x 的值域),特别地,若在[0,
]2
π
内有两个不等的实根满足等式
cos 221x x k +=+,则实数k 的范围是_______.(答:[0,1))
13.一元二次方程根的分布理论。

方程2
()0(
0)f x ax bx c a =++=>在),(+∞k 上有两根、在(,)m n 上有两根、在),(k -∞和),(+∞k 上各有一根的充要条件分别是什么?
0()0()0
2f m f n b m a
n ∆≥>><-<⎧⎪⎪
⎨⎪
⎪⎩、()0f k <)。

根的分布理论成立的前提是(0()02f k b
k a
∆≥>->⎧
⎪⎪
⎨⎪⎪⎩、
0)=x 有实数解的情况,可先利用在开区间),(n m 上实根分布的情况,得出结果,再令n x =和m x =检查端点的情况.如实系数方程220x ax b ++=的一根
大于0且小于1,另一根大于1且小于2,则12--a b 的取值范围是_________(答:(4
1
,1))
14.二次方程、二次不等式、二次函数间的联系你了解了吗?二次方程20ax bx c ++=的两个根即为二次不等式2
0(0)ax bx c ++><的解集的端点值,也是二次函数2
y ax bx c =++的图象与x
轴的交点的横坐标。

如(1)32
ax >+的解集是(4,)b ,则a =__________(答:18);(2)
若关于x 的不等式02
<++c bx ax 的解集为),(),(+∞-∞n m ,其中0<<n m ,则关于x 的不等
式02<+-a bx cx 的解集为________(答:),1()1,(+∞---∞n
m );(3)不等式2
3210
x bx -+≤对[1,2]x ∈-恒成立,则实数b 的取值范围是_______(答:∅)。

题型
1.集合
1.1集合本身运算如(子集个数真子集个数,互异性等)
1.2集合间的运算如(交集,并集,补集,)
1,3集合内的运算(一次二次函数分式根式绝对值等)2.简易逻辑
2.1 几种命题
1.1 逆命题,逆否命题,否命题:。

相关文档
最新文档