形状记忆合金

合集下载

形状记忆合金

形状记忆合金

• Ti-Ni合金中有三种金属化合物:Ti2Ni,TiNi和TiNi3 • 近等原子比的Ti-Ni 合金是最早得到应用的一种记忆合金。 由于其具有优异的形状忆效应、高的耐热性、耐蚀性、高 的强度以及其他合金无法比拟的热疲劳性与良好的生物相 容性以及高阻尼特性等,因而得到广泛的应用。 •
• Ti-Ni 记忆合金的相变温度对成分最敏感,含Ni量每增加 0.1%,就会引起相变温度降低10℃,添加的第三元素对
非热弹性马氏体相变 非热弹性马氏体的热滞后现象严重,连续冷却中不断形成 马氏体,而且每个马氏体片都是以极快的速率长到最后大小, 马氏体量由成核率和马氏体片的大小来确定,与马氏体片的生 长速率无关。
热弹性马氏体相变
热弹性马氏体相变,相变温度滞后很小,马氏体相和母相
间保持着弹性平衡。马氏体片可随着(温度或外应力)驱动 力的改变而反复发生长大或缩小。具有这种特征的马氏体称 为“热弹性马氏体” 。 具有热弹性马氏体转变的合金会产生“超弹性”和“形状
Ti-Ni 合金相变温度的影响也很大。
优缺点
• 具有丰富的相变现象、优异的形状记忆和超弹性性能、良 好的力学性能、耐腐蚀性、生物相容性以及高阻尼特性; • 研究最全面、记忆性好、实用性强的形状记忆合金材料, 是目前应用最为广泛的形状记忆材料; • 缺点:制造过程较复杂,价格较昂贵。
铜系形状记忆合金 与Ti-Ni合金相比,Cu-Zn-Al制造加工容易,价格便宜, 并有良好的记忆性能,相变点可在一定温度范围内调节, 见表3-5,不同成分的Cu-Zn-Al合金相变温度不同。
双程形状记忆效应
形状记忆合金 全程形状记忆效应——当加热时恢复高温相形状,冷 却时变为形状相同而取向相反 的高温相形状的现象。只能在 富镍的Ti- Ni合金中出现。

未来潜力材料之形状记忆合金

未来潜力材料之形状记忆合金

形状记忆合金(shape memory alloys,SMA)是一种由两种以上金属元素构成、能够在温度和应力作用下发生相变的新型功能材料,通过热弹性与马氏体相变及其逆变而具有独特的形状记忆效应、相变伪弹性等特性,广泛应用于航空航天、生物医疗、机械电子、汽车工业、建筑工程等领域。

形状记忆合金按合金种类主要分为镍钛基形状记忆合金(Ni-Ti SMA)、铜基形状记忆合金(Cu SMA)、铁基形状记忆合金(Fe SMA)3类。

其中,镍钛基形状记忆合金包括Ni-Ti-Cu、Ni-Ti-Co、Ni-Ti-Fe、Ni-Ti-Nb等具有较高实用价值的记忆合金;铜基形状记忆合金主要有Cu-Zn、Cu-Zn-Al、Cu-Zn-Sn、Cu-Zn-Si、Cu-Zn-Ga、Cu-Sn等种类;铁基形状记忆合金主要有Fe-Pt、Fe-Mn-Si、Fe-Ni-Co-Ti、Fe-Mn-Al-Ni、Fe-C-Mn-Si-Cr-Ni等种类。

1/形状记忆合金的研究现状形状记忆合金因其独特的形状记忆效应一直是各主要国家的研究热点。

近年来,美国、欧洲、日本等国家和地区针对形状记忆合金制备工艺、成分配比、与先进制造技术结合的研究已取得显著的进展,尤其以4D打印技术为代表的先进制造技术使用形状记忆合金作为原材料,扩展了其在软体机器人、医疗器械、航空航天等领域的应用范围。

(一)中美欧等国开发出多种形状记忆合金制备新工艺,扩大了材料应用范围形状记忆合金/聚合物的制备方法主要有熔炼法、粉末冶金法、喷射沉积工艺、4D打印技术等,再根据应用需求配置后续的锻造、热挤压、轧制、拉拔、冷加工等成型工艺。

其中,熔炼法是传统金属冶金工艺,在真空下将金属原材料通过电子束、电弧、等离子体、高频感应等方式加热后进行熔炼,易产生杂质污染、成分不均匀、能耗高等问题,且需要经过切割加工形成合金产品。

而粉末冶金法则是利用金属或合金粉末进行热等静压和烧结,制备出最终形状的合金产品。

形状记忆合金

形状记忆合金

浅谈形状记忆合金传统观念认为,只有人和某些动物才有“记忆”的能力,非生物是不可能有这种能力的。

难道合金也会像人一样具有记忆能力吗?答案是肯定的,形状记忆合金就是这样一类具有神奇“记忆”本领的新型功能材料。

形状记忆效应是指具有一定形状的固体材料,在某种条件下经过一定的塑性变形后,加热到一定温度时,材料又完全恢复到变形前原来形状的现象,即它能记忆母相的形状。

具有形状记忆效应的金属一般是两种以上金属元素的合金,这样的合金成为形状记忆合金。

其主要技术指标如下:机械性能:拉伸强度:700-900Mpa(热处理)延伸率:15-30%形状记忆功能:单程(N=1)6-10%,双程(N=10-107)0.5-5%物理性能:密度:约6.5g/cm3.热膨胀系数:10-106/℃.熔点:约1300℃,导弹率:0.209W/cm℃(室温). 比热:6-8Cal/mol℃电阻率:(50-110) ×10-6chm.cm。

那么形状记忆合金是如何被发现,原理是什么,有哪些具体的应用,又经历了怎样的发展呢?在接下来的文字中你将找到答案。

1963年,美国海军军械研究室在一项试验中需要一些镍钛合金丝,他们领回来的合金丝都是弯弯曲曲的。

为了使用方便,于是就将这些弯弯曲曲的细丝一根根地拉直后使用。

在后续试验中一种奇怪的现象出现了:当温度升到一定值的时候,这些已经被拉得笔直的合金丝,突然又魔术般地迅速恢复到原来弯弯曲曲的形状,而且和原来的形状丝毫不差。

再反复多次试验,每次结果都完全一致,被拉直的合金丝只要达到一定温度,便立即恢复到原来那种弯弯曲曲的模样。

就好像在从前被“冻”得失去知觉时被人们改变了形状,而当温度升高到一定值的时候,它们突然“苏醒”过来了,又“记忆”起了自己原来的模样,于是便不顾一切地恢复了自己的“本来面目”。

形状记忆合金可以分为三类:单程记忆合金、双程记忆合金、全程记忆合金。

如图1所示,形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应;某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应;加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。

功能材料第三章形状记忆合金

功能材料第三章形状记忆合金

图19 双程CuZnAl记忆 合金花
这是利用CuZnAl形状记忆合金双程记忆恢复特性制 成的记忆合金花,动作幅度为1800。采用CuZnAl记忆合 金片,以热水或热风为热源,开放温度为65℃~85℃,闭 合温度为室温。花蕾直径80mm,展开直径200mm。
用TiNi─1镍钛记忆合金制作的记忆合金热机实验装置。将 冷热水分别置于两个水槽中,利用冷热水的交替作用,即可使 水槽上方的螺旋 桨转动或停止。
功能材料第三章形状记忆合金
Ti-Ni形状记忆合金制造的人造卫星天线
具有形状记忆效应的材料——形状记忆材料
形状记忆效应(Shape Memory Effect ,简称SME) 形状记忆效应——将材料在一定条件下进行一定限度
以内的变形后,再对材料施加适当 的外界条件,材料的变形随之消失 而回复到变形前的形状的现象。
架植入后患者的进食困难症状明显减轻,由于生物相容性好, 可较长期放置体内。
主要适应症包括:中晚期食道癌、食道癌术后复发和食道 癌放疗后引起的吞咽困难等。治疗后10分钟内可解除吞咽困难, 增加进食量,明显改善生活质量。
图23 Ti-Ni合金制作的多种支架 (a)尿道支架 (b)食道支架 (c)胆道支架 (d)气管支架
本质:应力作用使材料的MS点升高。
图9 应力诱发马氏体相变概念图
应力/MPa 140
120
加载
100
卸载
80
60
40
20
0
270
290 310
MS AS
275K
330 350 温度/K 环境温度
图11 Cu-34.1-Zn-1.8Sn合金Ms与拉伸应力的关系
图10 γ→ε相变晶格变动模型
3.1.3 超弹性(伪弹性)

形状记忆合金

形状记忆合金

TiNi形状记忆合金在医学领域的应用现状:
用于医学领域中的记忆合金必须满足化学和生物学等方面可靠性的 要求。实验证明,现有记忆合金中仅有TiNi形状记忆合金满足上述条 件,因此它是目前医学上使用的唯一一种记忆合金。因其具有奇特的形 状记忆效应、生物相容性、超弹性及优良的耐磨性,所以它在临床和医 疗器械等方面获得了广泛的应用。 (1)TiNi形状记忆合金在治疗机械中的应用:从目前的研究成果来看,TiNi形 状记忆合金元件的形状恢复力与其特征尺寸2次方成正比,且特征尺寸减小后 其表面积增加,冷却加快,这些特性使得其在医疗器械领域中得到了较广泛的应 用,主要表现在以下几个方面。
SMART MATERIALS - SHAPE MEMORY ALLOY (SMA)
MUSCLE WIRE
The diagramshows a battery and switch connected to muscle wire. A small weight stretches the muscle wire approximately 3 to 5 percent of its length. However, when a current is applied to the wire, it shortens lifting the weight. This cycle of turning on and off the current has the effect of lifting and then lowering the weight.
SMA的应用
SMA管接头:可以得到比一般接头更好的连接效果。接头内径比被 接管外径小4%。操作时,接头浸内径回复到扩径前的状态,箍紧被接管。 类似的用途还有电源连接器、自紧固螺钉、自紧固夹板、固定销、密封 垫圈、接骨板和脊柱侧弯矫形哈伦顿棒等。

形状记忆合金

形状记忆合金

形状记忆合金的应用
由于SMA具有上述特性, 使得其在许多领域都有
广泛的应用。以下是 SMA的一些典型应用
形状记忆合金的应用
机器人:在机器人领域,SMA可 以用于制作驱动器,用于实现
机器人的自主运动。此外,SMA 还可以用于制作可变形的机器 人手臂和腿部
航空航天:在航空航天领域,SMA 可以用于制作智能驱动器,用于 控制机翼、火箭发动机等的关键 部件。此外,SMA还可以用于制作
形状记忆合金的未来发展趋势
总之,形状记忆合金在未来将会有更广泛的应用和更 重要的价值
x
随着科技的不断进步和创新,我们期待着SMA在更多的 领域中发挥其独特的优势和潜力
-
20XX
THANK YOU
UpSpace PowerPoint Template
形状记忆合金的未来发展趋势
01
与其他材料的结合:未来,SMA 可以与其他材料结合,形成新的 复合材料或功能材料。例如,将 SMA与高分子材料结合,可以制 作出具有形状记忆效应和高强度 的高分子复合材料
智能化应用:随着智能化时代
02 的到来,SMA的智能化应用将 会越来越广泛。例如,将SMA 与传感器结合,可以制作出具 有自适应能力的智能传感器
热敏元件和执行器
智能材料:在智能材料领域, SMA可以用于制作智能驱动器, 用于实现材料的自适应变形。 此外,SMA还可以用于制作温 度敏感材料等
医疗:在医疗领域,SMA可以用 于制作可变形支架,用于治疗动 脉硬化等疾病。此外,SMA还可 以用于制作牙齿矫正器等医疗设 备
形状记忆合金的未来发展趋势
形状记忆 合金
-
1
形状记忆合金的特性
2
形状记忆合金的应用

形状记忆合金

形状记忆合金

形状记忆合金090201 王晓刚20090573引言形状记忆合金(Shape Memory Alloys,SMA)是一种在加热升温后能完全消除其在较低的温度下发生的变形后,通过加热到某一临界温度以上又可恢复其变形前原始形状的合金材料。

除上述形状记忆效应外,这种合金的另一个独特性质是在高温(奥氏体状态)下发生的“伪弹性”(又称“超弹性”,英文pseudoelasticity)行为,表现为这种合金能承载比一般金属大几倍甚至几十倍的可恢复应变。

形状记忆合金的这些独特性质源于其内部发生的一种独特的固态相变——热弹性马氏体相变。

形状记忆合金具有的能够记住其原始形状的功能称为形状记忆效应(Shape Memory Effect SME)。

研究表明,很多合金材料都具有SME,但只有在形状变化过程中产生较大回复应变和较大形状回复力的时候,才具有利用价值。

到目前为止,应用得最多的是Ni2Ti合金和铜基合金(CuZnAl 和CuAlNi)。

形状记忆合金作为一种特殊的新型功能材料,是集感知与驱动于一体的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛应用。

形状记忆合金的发展史最早关于形状记忆效应的报道是由Chang及Read等人在1952年作出的。

他们观察到Au-Cd合金中相变的可逆性。

后来在Cu-Zn合金中也发现了同样的现象,但当时并未引起人们的广泛注意。

直到1962年,Buehler及其合作者在等原子比的TiNi合金中观察到具有宏观形状变化的记忆效应,才引起了材料科学界与工业界的重视。

到70年代初,CuZn、CuZnAl、CuAlNi等合金中也发现了与马氏体相变有关的形状记忆效应。

几十年来,有关形状记忆合金的研究已逐渐成为国际相变会议和材料会议的重要议题,并为此召开了多次专题讨论会,不断丰富和完善了马氏体相变理论。

在理论研究不断深入的同时,形状记忆合金的应用研究也取得了长足进步,其应用范围涉及机械、电子、化工、宇航、能源和医疗等许多领域。

形状记忆合金

形状记忆合金

生物医疗
用于医学领域的 TiNi形状记忆合金,除了利用其形状记忆效应或超弹性外,还应满足化学和生物学等方面 的要求,即良好的生物相容性。TiNi可与生物体形成稳定的钝化膜。在医学上 TiNi合金主要应用有:
(a)牙齿矫形丝用超弹性 TiNi合金丝和不锈钢丝做的牙齿矫正丝,其中用超弹性 TiNi合金丝是最适宜的。 通常牙齿矫形用不锈钢丝 CoCr合金丝,但这些材料有弹性模量高、弹性应变小的缺点。为了给出适宜的矫正力, 在矫正前就要加工成弓形,而且结扎固定要求熟练。如果用 TiNi合金作牙齿矫形丝,即使应变高达10%也不会产 生塑性变形,而且应力诱发马氏体相变(stress-induced martensite)使弹性模量呈现非线型特性,即应变增 大时矫正力波动很少。这种材料不仅操作简单,疗效好,也可减轻患者不适感。
还可用于制造探索宇宙奥秘的月球天线,人们利用形状记忆合金在高温环境下制做好天线,再在低温下把它 压缩成一个小铁球,使它的体积缩小到原来的千分之一,这样很容易运上月球,太阳的强烈的辐射使它恢复原来 的形状,按照需求向地球发回宝贵的宇宙信息。
另外,在卫星中使用一种可打开容器的形状记忆释放装置,该容器用于保护灵敏的锗探测器免受装配和发射 期间的污染。
分类
形状记忆效应
伪弹性
形状记忆效应
单程记忆效应。形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在 的形状记忆现象称为单程记忆效应。
双程记忆效应。某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应。
全程记忆效应。加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。
其它
在工程和建筑领域用 TiNi形状记忆合金作为隔音材料及探测地震损害控制的潜力已显示出来。已试验了桥 梁和建筑物中的应用,因此作为隔音材料及探测损害控制的应用已成为一个新的应用领域。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SMA微型手臂
记忆合金同我们的日常生活已经是休戚相关。仅以记忆合金 制成的弹簧为例,把这种弹簧放在热水中,弹簧的长度立即伸 长,再放到冷水中,它会立即恢复原状。利用形状记忆合记忆” 功能,调节或关闭供水管道,避免烫伤。下图是日本 TOTO公 司生产的智能水温调节器。
智能水温调节器
形状记忆合金血栓过滤器
马氏体的形变与加热后的形状记忆
(a) 原始形状
(b) 拉 直
(c) 加热后恢复
形状记忆效应简易演示实验
形状记忆合金可以分为三种: (1)单程记忆效应 形状记忆合金在较低的温度下变形,加热后可恢复 变形前的形状,这种只在加热过程中存在的形状记忆现 象称为单程记忆效应。 (2)双程记忆效应 某些合金加热时恢复高温相形状,冷却时又能恢复 低温相形状,称为双程记忆效应。 (3)全程记忆效应 加热时恢复高温相形状,冷却时变为形状相同而取 向相反的低温相形状,称为全程记忆效应。 这三种效应的产生与材料的成分、处理工艺等因素 有关。
形状记忆合金(SMA)
形状记忆效应(SME):如果将具有热弹 性转变的合金在一定条件下施加外力或将其 冷却到该合金的Ms点(或Mf)点以下并使 之发生形状改变,如果再将这种合金加热到 高温相状态(即As点以上)使马氏体发生逆 转变,此时合金又会自动地恢复到变形前的 形状。这种现象称为“形状记忆效应”。
非热弹性马氏体相变
非热弹性马氏体的热滞后现象严重,连续冷却中不 断形成马氏体,而且每个马氏体片都是以极快的速率长到 最后大小,马氏体量由成核率和马氏体片的大小来确定, 与马氏体片的生长速率无关。
热弹性马氏体相变 热弹性马氏体相变,相变温度滞后很小,马 氏体相和母相间保持着弹性平衡。马氏体片可 随着(温度或外应力)驱动力的改变而反复发 生长大或缩小。具有这种特征的马氏体称为 “热弹性马氏体” 。 具有热弹性马氏体转变的合金会产生“超弹 性”和“形状记忆效应”。
马氏体相变
当母相奥氏体快速冷却时,奥氏体转变成片状或针状新相,新 相为体心四方结构,与母相的结构不同,但新相与母相的成分却 相同。为了纪念德国冶金专家马丁(A. Martens)在金相研究方 面的贡献,人们把钢经高温淬火后形成的相叫做马氏体相。从奥 氏体到马氏体的转变叫做马氏体相变,马氏体相变是无扩散型相 变。 二十世纪三十年代,人们用X射线结构分析的方法测得钢中马 氏体是碳溶于 α -Fe而形成的过饱和固溶体,马氏体中的固溶碳 即原奥氏体中的固溶碳,因此,曾一度认为“所谓马氏体即碳在 α -Fe中的过饱和固溶”。
(a)预压缩
(b)受热扩张后(c)植入腔道内效果
(a)消化道内支架 (b)血管内支架 (c)胆道内支架 腔内支架临床应用实例
微型手臂
将SMA(Ni-Ti)线外包一层硅橡胶,SMA线在高温下记忆图 (c)的 形状后,在室温下可加工成图(a)的形状。使用时,SMA线可通 电发热,因记忆效应,手臂重新闭合如图(b)形状;冷却对可回 复至张开状态。
铁基形状记忆合金
形状记忆合金的应用
月球上使用的形状记忆合金天线
形状记忆合金铆钉
形状记忆合金管接头
医用腔内支架的应用原理如图所示。记忆合金支架 经过预压缩变形后(a),能够经很小的腔隙安放到人 体血管、消化道、呼吸道、胆道、前列腺腔道以及尿 道等各种狭窄部位。支架扩展后形成如图(b)所示的 记忆合金骨架,在人体腔内支撑起狭小的腔道,如图 (c)所示,这样就能起到很好的治疗效果。
具有形状记忆效应的合金
TiNi合金
要使成型加工后的TiNi合金具有形状记忆功能,必须对合金 进行训练处理,也就是记忆热处理,单程、双程形状记忆材料 的形状记忆处理方法不同。
Cu基合金
形状记忆效应好,价格便宜,易于加工制造,但强度较低, 稳定性及耐疲劳性能差,不具有生物相容性。 Cu基合金的种类: 主要由Cu-Zn和Cu-Al两个二元系发展而来
热弹性马氏体相变
降温过程中,奥氏体将转变成马氏体。马氏体转变开 始和终了温度分别以Ms、Mf表示;加热过程中,马氏体 逆相变开始和终了温度分别以As、Af表示。对于不同材 料,这些特征温度不同。马氏体逆相变中存在热滞后现象, 使得As大于Ms。按As-Ms的大小和马氏体的生长特征将 马氏体相变分成非热弹性马氏体相变和热弹性马氏体相变 两类。
四十年代前后,在Fe-Ni、Fe-Mn合金以及许 多有色金属及合金中也发现了马氏体转变。不仅观 察到冷却过程中发生的马氏体转变;同时也观察到 了在加热过程中所发生的马氏体转变。由于这一新 的发现,人们不得不把马氏体的定义修定为:“在 冷却过程中所发生马氏体转变所得产物统称为马氏 体 ”。 马氏体相变-以晶格畸变为主的位移型无扩散相变统称为马氏 体相变。
相关文档
最新文档