二次根式全章教案设计

合集下载

二次根式教案(优秀8篇)

二次根式教案(优秀8篇)
(二)、探索新知:
本环节通过1个引题,2个例题的活动达到让学生学会从实际问题中抽象出中心对称的基本性质,并会用二次根式的加减法则解决有关实际问题。既培养了学生的观察能力,又培养了学生的有理有据的作图能力。
(三)、巩固练习:
在此环节中,利用课后的练习和选取的课外习题来巩固二次根式的加减,来达到突出重点的目的。
(三)教学手段
采用多媒体教学,通过直观演示图象,更好地教会学生“二次根式的加减的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。
六、说教学过程的设计:
本课共分为五个环节:
(一)、复习引入新课:
利用"同类二次根式的"引入,激发学生好奇心和求知欲,创设情景,旨在引出新课题。既达到了复习的目的,又引出了新课。
(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)
三、课后作业(课后作业见附件2)
教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。
四、板书设计
课题:二次根式(1)
二次根式概念例题例题
二次根式性质
反思:
次根式教案篇六
第十六章二次根式
代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,”;②单个的数字或单个的字母也是代数式
2、会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。
教学重点
最简二次根式的定义。
教学难点
一个二次根式化成最简二次根式的方法。
教学过程
一、复习引入
1、把下列各根式化简,并说出化简的根据:
2、引导学生观察考虑:
化简前后的根式,被开方数有什么不同?
化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。

二次根式教学设计(通用15篇)

二次根式教学设计(通用15篇)

二次根式教学设计〔通用15篇〕篇1:二次根式教学设计【知识与技能】1.理解二次根式的概念,并利用〔a≥0〕的意义解答详细题目.2.理解〔a≥0〕是非负数和( )2=a.3.理解 =a〔a≥0〕并利用它进展计算和化简.【过程与方法】1.提出问题,根据问题给出概念,应用概念解决实际问题.2.通过复习二次根式的概念,用逻辑推理的方法推出〔a≥0〕是一个非负数,用详细数据结合算术平方根的意义导出( )2=a〔a≥0〕,最后运用结论严谨解题.3.通过详细数据的解答,探究并利用这个结论解决详细问题.【情感态度】通过详细的数据体会从特殊到一般、分类的数学思想,理解二次根式的概念及二次根式的有关性质.【教学重点】1.形如〔a≥0〕的式子叫做二次根式.2. 〔a≥0〕是一个非负数;( )2=a〔a≥0〕及其运用.【教学难点】利用“ 〔a≥0〕”解决详细问题.关键:用分类思想的方法导出a〔a≥0〕是一个非负数;用探究的方法导出一、情境导入,初步认识回忆:当a是正数时,表示a的算术平方根,即正数a的正的平方根.当a是零时,等于0,它表示零的平方根,也叫做零的.算术平方根.当a是负数时,没有意义.【教学说明】通过对算术平方根的回忆引入二次根式的概念.二、考虑探究,获取新知概括:〔a≥0〕表示非负数a的算术平方根,也就是说,〔a≥0〕是一个非负数,它的平方等于a.即有:〔1〕≥0;〔2〕( )2=a〔a≥0〕.形如〔a≥0〕的式子叫做二次根式.注意:在中,a的取值必须满足a≥0,即二次根式的被开方数必须是非负数.考虑:等于什么?我们不妨取a的一些值,如2,-2,3,-3等,分别计算对应的的值,看看有什么规律.概括:当a≥0时, =a;当a<0时, =-a.三、运用新知,深化理解1.x取什么实数时,以下各式有意义?2.计算以下各式的值:【教学说明】可由学生抢答完成,再由老师总结归纳.四、师生互动,课堂小结1.师生共同回忆二次根式的概念及有关性质:〔1〕( )2=a〔a≥0〕;〔2〕当a≥0时, =a;当a<0时, =-a.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.【教学说明】老师引导学生回忆知识点,让学生大胆发言,进展知识提炼和知识归纳.1.布置作业:从教材相应练习和“习题21.1”中选取.2.完成练习册中本课时练习的“课时作业”局部.本节课从复习算术平方根入手引入二次根式的概念,再通过特殊数据的计算,理解二次根式的有关性质,经历观察、归纳、分类讨论等思维过程,从中获得数学知识与技能,体验教学活动的方法.篇2:二次根式乘法教学设计两个含有二次根式的代数式相乘,假如他们的积不含有二次根式,那么这两个代数式叫做互为有理化因式。

二次根式全章教案

二次根式全章教案

二次根式全章教案教学目标:1. 理解二次根式的概念,并能够正确进行二次根式的运算;2. 掌握二次根式的化简和展开方法;3. 通过各种实际问题的应用,培养学生运用二次根式解决问题的能力;4. 培养学生的逻辑思维和数学推理能力。

教学重点:1. 理解二次根式的含义和性质;2. 掌握二次根式的化简和展开方法。

教学难点:1. 运用二次根式解决实际问题;2. 培养学生数学推理能力。

教学准备:1. 教材《高中数学课程标准实验教科书:二次根式》;2. 教学用黑板、彩色粉笔、纸张。

教学过程:一、导入(5分钟)为了引起学生兴趣,教师可开始一个小游戏。

首先,教师将在黑板上写下几个二次根式,然后让学生竞赛口算这些二次根式的值,计算正确最多的同学获胜。

二、二次根式的概念与性质(10分钟)1. 引导学生回忆一次根式的概念,并与二次根式进行对比,引出二次根式的概念;2. 解释二次根式的含义,即被开方数是一个含有平方数因子的有理数;3. 引导学生发现二次根式的性质,包括非负性、完全性和封闭性。

三、二次根式的运算(30分钟)1. 二次根式的化简a. 介绍化简二次根式的基本步骤,如将根号内的因数分解并利用非负性化简;b. 给学生提供几个例题,引导他们逐步掌握化简的方法;c. 练习化简不同类型的二次根式,巩固所学方法。

2. 二次根式的展开a. 介绍展开二次根式的基本方法,如利用公式进行展开;b. 给学生提供几个例题,引导他们逐步掌握展开的方法;c. 练习展开不同类型的二次根式,巩固所学方法。

四、实际问题的应用(30分钟)1. 老师出示几个实际问题,要求学生分析问题并利用二次根式解决;2. 学生自主解决实际问题,老师进行指导并及时给予反馈;3. 学生展示解题过程,进行互评讨论,加深对二次根式的理解。

五、课堂小结(5分钟)老师对本节课的内容进行总结,并强调重点和难点。

鼓励学生做好复习,巩固所学知识。

六、作业布置(5分钟)布置相应的练习题,要求学生自主完成,并提醒学生及时复习课堂内容。

八年级数学二次根式全章教案4篇

八年级数学二次根式全章教案4篇

八年级数学二次根式全章教案4篇八年级数学二次根式全章教案篇1一、学习目标:1.经历探索平方差公式的过程.2.会推导平方差公式,并能运用公式进行简单的运算.二、重点难点重点:平方差公式的推导和应用难点:理解平方差公式的结构特征,灵活应用平方差公式.三、合作学习你能用简便方法计算下列各题吗?(1)2001×1999 (2)998×1002导入新课:计算下列多项式的积.(1)(x+1)(x-1) (2)(m+2)(m-2)(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)结论:两个数的和与这两个数的差的积,等于这两个数的平方差.即:(a+b)(a-b)=a2-b2四、精讲精练例1:运用平方差公式计算:(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)例2:计算:(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)随堂练习计算:(1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)(4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)五、小结:(a+b)(a-b)=a2-b2第三十五学时:4.2.2. 完全平方公式(一)一、学习目标:1.完全平方公式的推导及其应用.2.完全平方公式的几何解释.二、重点难点:重点:完全平方公式的推导过程、结构特点、几何解释,灵活应用难点:理解完全平方公式的结构特征并能灵活应用公式进行计算三、合作学习Ⅰ.提出问题,创设情境一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,…(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?Ⅱ.导入新课计算下列各式,你能发现什么规律?(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;(5)(a+b)2=________;(6)(a-b)2=________.两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍.(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2四、精讲精练例1、应用完全平方公式计算:(1)(4m+n)2 (2)(y- )2 (3)(-a-b)2 (4)(b-a)2例2、用完全平方公式计算:(1)1022 (2)992随堂练习第三十六学时:14.2.2 完全平方公式(二)一、学习目标:1.添括号法则.2.利用添括号法则灵活应用完全平方公式二、重点难点重点:理解添括号法则,进一步熟悉乘法公式的合理利用难点:在多项式与多项式的乘法中适当添括号达到应用公式的目的.三、合作学习Ⅰ.提出问题,创设情境请同学们完成下列运算并回忆去括号法则.(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)去括号法则:去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不变号;如果括号前是负号,去掉括号后,括号里的各项都要变号。

数学最简二次根式教案(精选7篇)

数学最简二次根式教案(精选7篇)

数学最简二次根式教案(精选7篇)最简二次根式篇一教学建议1.教材分析本节是在前两节的基础上,从实际运算的客观需要出发,引出的概念,然后通过一组例题介绍了化简二次根式的方法。

本小节内容比较少(求学生了解的概念并掌握化简二次根式的方法),但是本节知识在全章中却起着承上启下的重要枢纽作用,二次根式性质的应用、二次根式的化简以及二次根式的运算都需要来联接。

(1)知识结构(2)重难点分析①本节的重点Ⅰ.概念Ⅰ.利用二次根式的性质把二次根式化简为。

重点分析本章的主要内容是二次根式的性质和运算,但自始至终围绕着二次根式的化简和运算。

二次根式化简的最终目标就是;而二次根式的运算则是合并同类二次根式,怎样判定同类二次根式,是在化简为的基础上进行的。

因此本节以二次根式的概念和二次根式的性质为基础,内容虽然简单,在本章中却起着穿针引线的作用,教师在教学中应给于极度重视,不可因为内容简单而采取弱化处理;同时初二学生代数成绩的分化一般是由本节开始的,分化的根本原因就是对概念理解不够深刻,遇到相关问题不知怎样操作,具体操作到哪一步。

②本节的难点是化简二次根式的方法与技巧。

难点分析化简二次根式,实际上是二次根式性质的综合运用。

化简二次根式的过程,一般按以下步骤:把根号下的带分数或绝对值大于1的小数化成假分数,把绝对值小于1的小数化成分数;被开方数是多项式的要因式分解;使被开放数不含分母;将被开方数中能开的尽方的因数或因式用它的算术平方根代替后移到根号外面;化去分母中的根号;约分。

所以对初学者来说,这一过程容易出现符号和计算出错的问题。

熟练掌握化简二次根式的方法与技巧,能够进一步开拓学生的解题思路,提高学生的解题能力。

③重难点的解决办法是对于这一概念,并不要求学生能否背出定义,关键是遇到实际式子能够加以判断。

因此建议在教学过程中对概念本身采取弱化处理,让学生在反复练习中熟悉这个概念;同时教学中应充分对概念理解后应用具体的实例归纳总结出把一个二次根式化为的方法,在观察对比中引导学生总结具体解决问题的方法技巧。

数学二次根式教案【优秀8篇】

数学二次根式教案【优秀8篇】

数学二次根式教案【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!数学二次根式教案【优秀8篇】作为一名为他人授业解惑的教育工作者,就有可能用到教案,教案是备课向课堂教学转化的关节点。

(word完整版)二次根式全章教案

(word完整版)二次根式全章教案

____。
3。题经过计算后回答
3.直角三角形的两条直 65;

4。题学生口答 s 。
边分别为 7 和 4,斜边为
__.
4.正方形的面积为 s,则
请同学们思考:为什
它 的边长为_____。 活动二接触新知 上面 3、4 题的结果是
么一定要加上 a ≥0 这 一条件?引导学生说出 只有正数和零才有平方 根,负数没有平方根.
1、2 两小题检查中等 及以下学生对基础知识 的掌握情况.
3 题检查中等以上学 生是否对二次根式的取 值范围有更深刻的理解。
3.已知 y= x 3 - 3 x , 求 x+y 的值。
(word 完整版)二次根式全章教案
教学过程设计
问题与情境
师生行为
设计意图
活动三。总结收获 1。二次根式的定义及被开方数的 取值范围; 2.被开方数的取值范围在计算中
(3) 6 2a2 .
(word 完整版)二次根式全章教案

知识技 能
使学生初步掌握利用( a )2= a ( a ≥0)进行计算.
数学思 乘方与开方互为逆运算在推导结论( a )2= a ( a ≥0)中的

考 应用.

解决问 题
二次根式的非负性和如何利用( a )2= a ( a ≥0)解题.
板书设计
课题:16。1 二次根式 结论:( a )2= a ( a ≥0)
例 1.
总结收获 课后反思
问题与情境
教学过程设计 师生行为
设计意图
活动一回忆旧知识 问题: 1。 5 , a 有意义吗? 为什么? 2. 5 表示的意义是什
么? 3。 a 表示的意义是什
么? 活动二引入新知识 请同学们想一想 a 有没 有可能小于零?为什 么?

二次根式教案三篇

二次根式教案三篇

二次根式教案三篇二次根式教案三篇二次根式教案篇1 一、内容解析本节教材是在学生学习二次根式概念的根底上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和考虑得到二次根式的两个根本性质.对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过“探究”栏目中给出四个详细问题,让学生学生根据算术平方根的意义,就详细数字进展分析^p 得出结果,再分析^p 这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析^p ,确定本节课的教学重点为:理解二次根式的性质.二、目的和目的解析1.教学目的〔1〕经历探究二次根式的性质的过程,并理解其意义;〔2〕会运用二次根式的性质进展二次根式的化简;〔3〕理解代数式的概念.2.目的解析〔1〕学生能根据详细数字分析^p 和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;〔2〕学生能灵敏运用二次根式的性质进展二次根式的化简;〔3〕学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.三、教学问题诊断分析^p二次根式的性质是二次根式化简和运算的重要根底.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵敏运用二次根式的性质进展二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的.灵敏运用存在一定的困难,打破这一难点需要老师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵敏运用的才能.本节课的教学难点为:二次根式性质的灵敏运用.四、教学过程设计1.探究性质1问题1 你能解释以下式子的含义吗?师生活动:老师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.问题2 根据算术平方根的意义填空,并说出得到结论的根据.师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的根据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.问题3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质:〔≥0〕.【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的才能.例2 计算〔1〕〔2〕师生活动:学生独立完成,集体订正.【设计意图】稳固二次根式的性质1,学会灵敏运用.2.探究性质2问题4 你能解释以下式子的含义吗?师生活动:老师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.问题5 根据算术平方根的意义填空,并说出得到结论的根据.师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的根据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.问题6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质:〔≥0〕【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的才能.例3 计算〔1〕〔2〕师生活动:学生独立完成,集体订正.【设计意图】稳固二次根式的性质2,学会灵敏运用.3.归纳代数式的概念问题7 回忆我们学过的式子,如 ___________〔≥0〕,这些式子有哪些共同特征?师生活动:学生概括式子的共同特征,得得出代数式的概念.【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括才能.4.综合运用〔1〕算一算:【设计意图】设计有一定综合性的题目,考察学生的灵敏运用的才能,第〔2〕、〔3〕、〔4〕小题要特别注意结果的符号.〔2〕想一想:中,的取值范围是什么?当≥0时,等于多少?当时,又等于多少?【设计意图】通过此问题的设计,加深学生对的理解,开阔学生的视野,训练学生的思维.〔3〕谈一谈你对与的认识.【设计意图】加深学生对二次根式性质的理解.5.总结反思〔1〕你知道了二次根式的哪些性质?〔2〕运用二次根式性质进展化简需要注意什么?〔3〕请谈谈发现二次根式性质的考虑过程?〔4〕想一想,到如今为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.6.布置作业:教科书习题16.1第2,4题.二次根式教案篇2 活动1、提出问题一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

16.1 二次根式(第1课时)教学任务分析板书设计课后反思16.1 二次根式(第2课时)教学任务分析板书设计课后反思16.1 二次根式(第3课时)教学任务分析板书设计课后反思教学过程设计教学过程设计教学过程设计16.2 二次根式的乘除第一课时教学容a≥0,b≥0)(a≥0,b≥0)及其运用.教学目标a≥0,b≥0)(a≥0,b≥0),并利用它们进行计算和化简a≥0,b≥0)并运用它进行计算;•(a≥0,b≥0)并运用它进行解题和化简.教学重难点关键(a≥0,b≥0),(a≥0,b≥0)及它们的运用.(a≥0,b≥0).关键:要讲清(a<0,b<0)=a b,如=或.教学过程一、复习引入(学生活动)请同学们完成下列各题.1.填空(1;(2=_______=________.(3.参考上面的结果,用“>、<或=”填空.2.利用计算器计算填空(1,(2(3(4(5老师点评(纠正学生练习中的错误)二、探索新知(学生活动)让3、4个同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.反过来:例1.计算(1(2(3(4分析:(a≥0,b≥0)计算即可.解:(1(2(3=(4例2 化简(1(2(3(4(5(a≥0,b≥0)直接化简即可.解:(1×4=12(2×9=36(3×10=90(4=3xy(5三、巩固练习(1)计算(学生练习,老师点评)①②×(2) 化简:; ;教材P11练习全部四、应用拓展例3.判断下列各式是否正确,不正确的请予以改正:(1=(2=4解:(1)不正确.×3=6(2)不正确.改正:五、归纳小结本节课应掌握:(1(a≥0,b≥0)(a≥0,b ≥0)及其运用.六、布置作业1.课本P151,4,5,6.(1)(2).2.选用课时作业设计.第一课时作业设计一、选择题1,•那么此直角三角形斜边长是().A.cm B.C.9cm D.27cm2.化简).A. D.311x-=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-14.下列各等式成立的是().A..C..二、填空题1.2.自由落体的公式为S=12gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.三、综合提高题1.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?2.探究过程:观察下列各式及其验证过程.(1)验证:==(2)验证:=同理可得:==,……通过上述探究你能猜测出:(a>0),并验证你的结论.答案:一、1.B 2.C 3.A 4.D二、1.2.12s三、1.设:底面正方形铁桶的底面边长为x,则x2×10=30×30×20,x2=30×30×2,.2.验证:==16.2 二次根式的乘除第二课时教学容a≥0,b>0)(a≥0,b>0)及利用它们进行计算和化简.教学目标a≥0,b>0a≥0,b>0)及利用它们进行运算.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.教学重难点关键1a≥0,b>0)a≥0,b>0)及利用它们进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定.教学过程一、复习引入(学生活动)请同学们完成下列各题:1.写出二次根式的乘法规定及逆向等式.2.填空;(1(2=________;;(3=________.(43.利用计算器计算填空:=_________,(2=_________,(3=______,(4=________.(1每组推荐一名学生上台阐述运算结果.(老师点评)二、探索新知刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到:例1.计算:(1(2(3(4分析:上面4a≥0,b>0)便可直接得出答案.解:(1=2(2==(3==2(4例2.化简:(1(2(3(4a≥0,b>0)就可以达到化简之目的.解:(1=(28 3ba =(3=(4=三、巩固练习教材P14 练习1.四、应用拓展例3.=,且x为偶数,求(1+x的值.分析:a ≥0,b>0时才能成立. 因此得到9-x ≥0且x-6>0,即6<x ≤9,又因为x 为偶数,所以x=8.解:由题意得9060x x -≥⎧⎨->⎩,即96x x ≤⎧⎨>⎩ ∴6<x ≤9∵x 为偶数∴x=8∴原式=(1+x=(1+x=(1+x∴当x=8时,原式的值=6.五、归纳小结a ≥0,b>0(a ≥0,b>0)及其运用. 六、布置作业1.教材P 15 习题21.2 2、7、8、9.2.选用课时作业设计.第二课时作业设计一、选择题1 ).A .27B .27C D .7 2.阅读下列运算过程:3==5== 数学上将这种把分母的根号去掉的过程称作“分母有理化”,是( ).A .2B .6C .13 D 二、填空题1.分母有理化:(1)=_________;(2)=________;(3) =______.2.已知x=3,y=4,z=5_______.三、综合提高题11,•现用直径为的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少?2.计算(1(m>0,n>0)(2)(a>0)答案:一、1.A 2.C二、1.(1) 6;(2) 6;(3) ==2.3三、1.设:矩形房梁的宽为x (cm ),依题意,得:)2+x 2=(2,4x 2=9×15,x=32cm ),·2=135cm 2).2.(1)原式==-22n n m m =-(2)原式 a16.2 二次根式的乘除(3)第三课时教学容最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算.教学目标理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.重难点关键1.重点:最简二次根式的运用.2.难点关键:会判断这个二次根式是否是最简二次根式.教学过程一、复习引入(学生活动)请同学们完成下列各题(请三位同学上台板书)1.计算(1(2,(35=3=a2.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,•那么它们的传播半径的比是_________..二、探索新知观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点: 1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式.学生分组讨论,推荐3~4个人到黑板上板书.老师点评:不是.2==.例1.(1); (3)例2.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.解:因为AB2=AC2+BC2所以132====6.5(cm)因此AB的长为6.5cm.三、巩固练习教材P14练习2、3四、应用拓展例3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:=121=--1,32=-,从计算结果中找出规律,并利用这一规律计算++))的值.分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的.解:原式=……)=)) =2002-1=2001 五、归纳小结本节课应掌握:最简二次根式的概念及其运用. 六、布置作业1.教材P 15 习题21.2 3、7、10.2.选用课时作业设计.第三课时作业设计 一、选择题1(y>0)是二次根式,那么,化为最简二次根式是( ).A(y>0) B y>0) C (y>0) D .以上都不对2.把(a-1a-1)移入根号得( ).A .. 3.在下列各式中,化简正确的是( )A B ±12C 2D .4的结果是( )A .-3 B .- C .-3 D . 二、填空题1.(x≥0)2._________.三、综合提高题1.已知a为实数,阅读下面的解答过程,请判断是否正确?若不正确,•请写出正确的解答过程:·1a(a-12.若x、y为实数,且y=12x+y x y-的值.答案:一、1.C 2.D 3.C 4.C二、1.2.三、1.不正确,正确解答:因为301aa⎧->⎪⎨->⎪⎩,所以a<0,2a a-a2.∵224040xx⎧-≥⎪⎨-≥⎪⎩∴x-4=0,∴x=±2,但∵x+2≠0,∴x=2,y=14∴===16.3 二次根式的加减(1)第一课时教学容二次根式的加减教学目标理解和掌握二次根式加减的方法.先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简.重难点关键1.重点:二次根式化简为最简根式.2.难点关键:会判定是否是最简二次根式.教学过程一、复习引入学生活动:计算下列各式.(1)2x+3x;(2)2x2-3x2+5x2;(3)x+2x+3y;(4)3a2-2a2+a3教师点评:上面题目的结果,实际上是我们以前所学的同类项合并.同类项合并就是字母不变,系数相加减.二、探索新知学生活动:计算下列各式.(1)(2)(3(4)老师点评:(1x,不就转化为上面的问题吗?=(2+3(2y;(2-3+5(3z;=(1+2+3(4x看为y.=(3-2因此,二次根式的被开方数相同是可以合并的,如但它们可以合并吗?可以的.(板书)所以,二次根式加减时,可以先将二次根式化成最简二次根式,•再将被开方数相同的二次根式进行合并.例1.计算(1(2分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.解:(1(2+3(2(4+8例2.计算(1)(2))+解:(1)(12-3+6(2))+三、巩固练习教材P 19 练习1、2. 四、应用拓展例3.已知4x 2+y 2-4x-6y+10=0,求(23+y -(x )的值.分析:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=12,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,•再合并同类二次根式,最后代入求值. 解:∵4x 2+y 2-4x-6y+10=0 ∵4x 2-4x+1+y 2-6y+9=0 ∴(2x-1)2+(y-3)2=0∴x=12,y=3原式=23+y -x当x=12,y=3时,原式=12五、归纳小结 本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并. 六、布置作业1.教材P 21 习题21.3 1、2、3、5.2.选作课时作业设计.第一课时作业设计 一、选择题1是( ).A .①和②B .②和③C .①和④D .③和④2.下列各式:①17,其中错误的有( ).A .3个B .2个C .1个D .0个 二、填空题1-2是同类二次根式的有________.2.计算二次根式的最后结果是________. 三、综合提高题1 2.236)-(结果精确到0.01) 2.先化简,再求值.(-(,其中x=32,y=27.答案:一、1.C 2.A二、1.三、1.原式3-4-121515×2.236≈0.452.原式(=(6+3-4-6当x=32,y=27时,原式9216.3 二次根式的加减(2)第二课时教学容利用二次根式化简的数学思想解应用题.教学目标运用二次根式、化简解应用题.通过复习,将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题.重难点关键讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点.教学过程一、复习引入上节课,我们已经讲了二次根式如何加减的问题,我们把它归为两个步骤:第一步,先将二次根式化成最简二次根式;第二步,再将被开方数相同的二次根式进行合并,下面我们讲三道例题以做巩固.二、探索新知例1.如图所示的Rt△ABC中,∠B=90°,点P从点B开始沿BA边以1厘米/•秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为35平方厘米?PQ的距离是多少厘米?(结果用最简二次根式表示)分析:设x秒后△PBQ的面积为35平方厘米,那么PB=x,BQ=2x,•根据三角形面积公式就可以求出x的值.解:设x 后△PBQ的面积为35平方厘米.则有PB=x,BQ=2x依题意,得:12x·2x=35x2PBQ的面积为35平方厘米.===PBQ的面积为35平方厘米,PQ的距离为厘米.例2.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m)?分析:此框架是由AB、BC、BD、AC组成,所以要求钢架的钢材,•只需知道这四段的长度.解:由勾股定理,得===所需钢材长度为AB+BC+AC+BD≈3×2.24+7≈13.7(m)答:要焊接一个如图所示的钢架,大约需要13.7m的钢材.三、巩固练习教材P19 练习3四、应用拓展例3.若最简根式3a求a、b的值.(•同类二次根式就是被开方数相同的最简二次根式)分析:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;•事实上,根式不是最简二次根式,因此把化简成|b|,才由同类二次根式的定义得3a-•b=•2,2a-b+6=4a+3b.由题意得4326 32a b a ba b+=-+⎧⎨-=⎩∴246 32 a ba b+=⎧⎨-=⎩∴a=1,b=1五、归纳小结本节课应掌握运用最简二次根式的合并原理解决实际问题.六、布置作业1.教材P21习题21.3 7.2.选用课时作业设计.作业设计一、选择题1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为().(•结果用最简二次根式)A...以上都不对2.小明想自己钉一个长与宽分别为30cm和20cm的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为()米.(结果同最简二次根式表示)A...二、填空题1.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m2,•鱼塘的宽是_______m.(结果用最简二次根式)2,•那么这个等腰直角三角形的周长是________.(结果用最简二次根式)三、综合提高题1与2n m、n的值.2.同学们,我们以前学过完全平方公式a2±2ab+b2=(a±b)2,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=2,5=2,你知道是谁的二次根式呢?下面我们观察:)2=)2-2·1+12反之,+1=-1)2∴-1)2-1求:(1(2(3(4,则m 、n 与a 、b 的关系是什么?并说明理由.答案:一、1.A 2.C二、1..三、1.依题意,得2223241012m m n ⎧-=-⎪⎨-=⎪⎩ ,2283m n ⎧=⎪⎨=⎪⎩,m n ⎧=±⎪⎨=⎪⎩所以m n ⎧=⎪⎨=⎪⎩m n ⎧=-⎪⎨=⎪⎩或m n ⎧=⎪⎨=⎪⎩或m n ⎧=-⎪⎨=⎪⎩2.(1+1 (2(3=(4)m n amn b+=⎧⎨=⎩ 理由:两边平方得a ±=m+n ±所以a m n b mn =+⎧⎨=⎩16.3 二次根式的加减(3)第三课时教学容含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用.教学目标含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.重难点关键重点:二次根式的乘除、乘方等运算规律;难点关键:由整式运算知识迁移到含二次根式的运算.教学过程一、复习引入学生活动:请同学们完成下列各题:1.计算(1)(2x+y)·zx (2)(2x2y+3xy2)÷xy2.计算(1)(2x+3y)(2x-3y)(2)(2x+1)2+(2x-1)2老师点评:这些容是对八年级上册整式运算的再现.它主要有(1)•单项式×单项式;(2)单项式×多项式;(3)多项式÷单项式;(4)完全平方公式;(5)平方差公式的运用.二、探索新知如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?•仍成立.整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,•当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.例1.计算:(1)(2)()÷分析:刚才已经分析,二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律.解:(1)解:()÷÷÷32例2.计算(1))((2)))分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.解:(1))(2+(2)))=2- 2=10-7=3三、巩固练习课本P20练习1、2.四、应用拓展例3.已知x ba-=2-x ab-,其中a、b是实数,且a+b≠0,分析))=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可.解:原式22=(x+1)=4x+2∵x ba-=2-x ab-∴b (x-b )=2ab-a (x-a )∴bx-b 2=2ab-ax+a 2∴(a+b )x=a 2+2ab+b 2∴(a+b )x=(a+b )2∵a+b ≠0∴x=a+b∴原式=4x+2=4(a+b )+2五、归纳小结本节课应掌握二次根式的乘、除、乘方等运算.六、布置作业1.教材P 21 习题21.3 1、8、9.2.选用课时作业设计.作业设计一、选择题1.的值是( ).A .203.23C .2.202 ).A .2B .3C .4D .1二、填空题1.(-1+2)2的计算结果(用最简根式表示)是________.2.()(-(-1)2的计算结果(用最简二次根式表示)是_______.3.若-1,则x 2+2x+1=________.4.已知,,则a 2b-ab 2=_________.三、综合提高题12.当时,求的值.(结果用最简二次根式表示)课外知识1.同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,•这些二次根式就称为同类二次根式,就是本书中所讲的被开方数相同的二次根式. 练习:下列各组二次根式中,是同类二次根式的是( ).A .C2.互为有理化因式:•互为有理化因式是指两个二次根式的乘积可以运用平方差公式(a+b)(a-b)=a2-b2,同时它们的积是有理数,不含有二次根式:如练习的有理化因式是________;_________._______.3.分母有理化是指把分母中的根号化去,通常在分子、•分母上同乘以一个二次根式,达到化去分母中的根号的目的.练习:把下列各式的分母有理化(1;(2;(3(4.4.其它材料:如果n==________=_______.答案:一、1.A 2.D二、1...2 4.三、1=-2=222(1)()21x x xx+++⨯+=2(1)(1)1x x xx++++= 2(2x+1)∵+1 原式=2()+6.。

相关文档
最新文档