履带车辆设计计算说明书
履带车辆设计计算说明

整车参数计算根据《GB/T 3871.2-2006 农业拖拉机试验规程第2 部份:整机参数测量》标准要求进行计算:一、基本参数二、质量参数的计算1、整备质量M0为1825kg ;2、总质量M总M总=M0+M1+ M2 =1825+300+75=2200 kgM1载质量:300kg M2驾驶员质量:75kg3、使用质量:M总=M0+ M2 =1825+75=1900 kg4、质心位置根据《GB/T 3871.15-2006 农业拖拉机试验规程第15部份:质心》标准要求进行计算: 空载时:质心至后支承点的距离A0=830mm质心至前支承点的距离B=610mm 质心至地面的距离h0=450mm满载时:质心至后支承点的距离A0=605mm质心至前支承点的距离B=812mm 质心至地面的距离h0=546mm5、稳定性计算a 、保证拖拉机爬坡时不纵向翻倾的条件是:00h A >δ=0.7 (δ为滑转率)空载时:830/450=1.84>0.7 满载时:605/546=1.11>0.7 满足条件。
b 、保证拖拉机在无横向坡度转弯时,不横向翻倾的条件是:h a2>δ=0.7 a —轨距, a =1200mm h —质心至地面距离mm空载:12002450⨯=1.33>0.7 满载:12002546⨯=1.10>0.7故拖拉机在空、满载运行中均能满足稳定性要求。
三、发动机匹配根据《GB/T 1147.1-2007 中小功率内燃机第1 部份:通用技术条件》标准要求进行计算:XJ —782LT 履带式拖拉机配套用昆明云内发动机,型号为:YN38GB2型柴油机,标定功率为57kW/h ,转速为2600r/min.(1)最高设计车速V max =8 km/h ,所需功率:P emax =n1( p f + p w )kw m k V A C v f g m n max d max ⎥⎦⎤⎢⎣⎡⋅⋅+⋅⋅⋅=)()(761403600133122009.80.0280.9 1.4 1.1580.9360076140⎡⎤⨯⨯⨯⨯⨯⨯=+⎢⎥⎣⎦()() =6.188kW(2)根据柴油机全负荷速度特性,最大扭矩点的低速档行车速度V2=4km/h 。
履带车辆设计计算说明

整车参数计算根据《GB/T 3871.2-2006 农业拖拉机试验规程第2 部份:整机参数测量》标准要求进行计算:一、基本参数二、质量参数的计算1、整备质量M0为1825kg2、总质量M总M总=M0+M1+ M2 =1825+300+75=2200 kgM1载质量:300kg M2驾驶员质量:75kg3、使用质量:M总=M0+ M2 =1825+75=1900 kg4、质心位置根据《GB/T 3871.15-2006 农业拖拉机试验规程第15部份:质心》标准要求进行计算: 空载时:质心至后支承点的距离A0=830mm质心至前支承点的距离B=610mm 质心至地面的距离h0=450mm满载时:质心至后支承点的距离A0=605mm质心至前支承点的距离B=812mm 质心至地面的距离h0=546mm5、稳定性计算a 、保证拖拉机爬坡时不纵向翻倾的条件是:00h A >δ=0.7 (δ为滑转率)空载时:830/450=1.84>0.7 满载时:605/546=1.11>0.7 满足条件。
b 、保证拖拉机在无横向坡度转弯时,不横向翻倾的条件是:h a2>δ=0.7 a —轨距, a =1200mm h —质心至地面距离mm空载:12002450⨯=1.33>0.7 满载:12002546⨯=1.10>0.7故拖拉机在空、满载运行中均能满足稳定性要求。
三、发动机匹配根据《GB/T 1147.1-2007 中小功率内燃机第1 部份:通用技术条件》标准要求进行计算:XJ —782LT 履带式拖拉机配套用昆明云内发动机,型号为:YN38GB2型柴油机,标定功率为57kW/h ,转速为2600r/min.(1)最高设计车速V max =8 km/h ,所需功率:P emax =n1( p f + p w )kw m k V A C v f g m n max d max ⎥⎦⎤⎢⎣⎡⋅⋅+⋅⋅⋅=)()(761403600133122009.80.0280.9 1.4 1.1580.9360076140⎡⎤⨯⨯⨯⨯⨯⨯=+⎢⎥⎣⎦()() =6.188kW(2)根据柴油机全负荷速度特性,最大扭矩点的低速档行车速度V2=4km/h 。
履带车辆设计计算说明

履带车辆设计计算说明 Document number:PBGCG-0857-BTDO-0089-PTT1998整车参数计算根据《GB/T 农业拖拉机试验规程第2 部份:整机参数测量》标准要求进行计算:一、基本参数二、质量参数的计算1、整备质量M0为1825kg ;2、总质量M总M总=M0+M1+ M2 =1825+300+75=2200 kgM1载质量:300kg M2驾驶员质量:75kg3、使用质量:M总=M0+ M2 =1825+75=1900 kg4、质心位置根据《GB/T 农业拖拉机试验规程第15部份:质心》标准要求进行计算: 空载时:质心至后支承点的距离A0=830mm质心至前支承点的距离B=610mm 质心至地面的距离h0=450mm满载时:质心至后支承点的距离A0=605mm质心至前支承点的距离B=812mm 质心至地面的距离h0=546mm5、稳定性计算a 、保证拖拉机爬坡时不纵向翻倾的条件是:00h A >δ= (δ为滑转率)空载时:830/450=> 满载时:605/546=> 满足条件。
b 、保证拖拉机在无横向坡度转弯时,不横向翻倾的条件是:h a2>δ=0.7 a —轨距, a =1200mm h —质心至地面距离mm空载:12002450⨯=> 满载:12002546⨯=>故拖拉机在空、满载运行中均能满足稳定性要求。
三、发动机匹配根据《GB/T 中小功率内燃机第1 部份:通用技术条件》标准要求进行计算:XJ —782LT 履带式拖拉机配套用昆明云内发动机,型号为:YN38GB2型柴油机,标定功率为57kW/h ,转速为2600r/min.(1)最高设计车速Vmax=8 km/h,所需功率:P emax =n1( pf+ pw)kw=(2)根据柴油机全负荷速度特性,最大扭矩点的低速档行车速度V2=4km/h。
选用V2=4km/h,最大爬坡度为25%时,计算所需功率:p emax =n1( pf+ pi+pw)kw=上述两式中:Pf——滚动阻力消耗的功率;Pw——空气阻力消耗的功率;Pi——坡度阻力消耗的功率;η——传动效率系数,取η =;f——滚动阻力系数,取f=;C d ——空气阻力系数,取Cd=;A——拖拉机前进方向迎风面积A=B×H(宽×高)= ×V a ——拖拉机取低档速度Va=4km/h;i max ——最大爬坡坡度,imax=25%;G——拖拉机总质量,G总 =2200kg。
优小型履带式液压挖掘机的行走机构计算说明书

优小型履带式液压挖掘机的行走机构计算说明书标题: 优小型履带式液压挖掘机的行走机构计算说明书
正文:
本文介绍了小型履带式液压挖掘机的行走机构计算的重要性和
方法,包括行走机构的主要部件,行走机构的运动方式以及行走机构
的计算过程。
此外,还详细介绍了行走机构计算的具体步骤,以及如何根据计算结果来优化行走机构的设计。
本文适合用于小型履带式液压挖掘机的设计、制造和调试过程中,有助于提高挖掘机的性能和质量。
读者可以了解如何计算小型履带式液压挖掘机的行走机构,从而更好地设计和控制挖掘机的运动,提高
挖掘机工作效率和性能。
行走机构的主要部件包括液压缸、油缸盖、油缸柱塞、活塞、履带和支撑梁等。
这些部件的运动方式分为三种:
1. 线性运动方式:液压缸活塞来回运动,形成履带上方的位移。
这种运动方式适用于平稳的行走和工作,但是履带受到较大压力,导
致油缸柱塞和支撑梁受损。
2. 螺旋运动方式:液压缸活塞向下运动,履带以一定的速度向上移动。
这种运动方式适用于较陡峭的地形和较大的负载。
3. 螺旋向下运动方式:液压缸活塞向上运动,履带以一定的速度向下移动。
这种运动方式适用于平稳的行走和工作,但是履带受到较大的压力,导致油缸柱塞和支撑梁受损。
因此,在行走机构计算过程中,我们需要确定每种运动方式所需
的油缸数据和支撑梁数据,并根据行走机构的工作负载和地形条件选择适当的运动方式。
履带车辆设计计算说明书

整车参数计算根拯《GB/T 3871.2-2006农业拖拉机试验规程第2部份:整机参数测量》标准要求进行计算:一. 基本参数二、质量参数的计算1、整备质量Mo为1825kg ;2、总质量懸M总=MO+M1+ M2 二1825+300+75二2200 kg血载质量:300kg M2驾驶员质量:75kg3、使用质M: M总二M0+ M2 =1825+75=1900 kg4、质心位置根据《GB/T 3871. 15-2006农业拖拉机试验规程第15部份:质心》标准要求进行计算: 空载时:质心至后支承点的距离A0二830mm质心至前支承点的距离B二610mm质心至地而的距离h0=450mm满载时:质心至后支承点的距离A0二605mm质心至前支承点的距离B二812mm质心至地而的距离h0二546mm5、稳左性计算a、保证拖拉机爬坡时不纵向翻倾的条件是:% > 戶.7 (§为滑转率)空载时:830/450=1. 84>0.7满载时:605/546=1.11 >0.7满足条件。
b、保证拖拉机在无横向坡度转弯时,不横向翻倾的条件是:/2/1 > =0. 7 a—轨距,a二1200mm h—质心至地而距离mm空载:丿2烈八二1・33>0・72x450满载:J???二I K)〉。
.?2x546故拖拉机在空、满载运行中均能满足稳是性要求。
三、发动机匹配根据《GB/T 1147. 1-2007中小功率内燃机第1部份:通用技术条件》标准要求进行计算: XJ-782LT履带式拖拉机配套用昆明云内发动机,型号为:YN38GB2型柴油机,标圧功率为57kW/h,转速为2600r/min.(1) 最髙设讣车速鼻弐km/h,所需功率: 尸z •二丄(巴+几)kwn 「3 -1 "・g ・f ・V 唤、,Cd-A-V m ax x ; =-( ---- --- ---- )+( ---------- ) kmn[ 3600 761401—而=6.188kW(2) 根据柴油机全负荷速度特性,最大扭矩点的低速档行车速度V2=4km/h 0选用 V2=4km/h,最大爬坡度为25%时,讣算所需功率:=1 "g •八)+宀皿必)胁77 L 3600 3600 76140 _1 r 2200x9.8x0.02x8, z 2200x9.8x0.25x4 x 0.9xl.4xl.l5x43 x 0.9 L 3600 3600 76140=6. 948kw 上述两式中:P.——滚动阻力消耗的功率: P.一一空气阻力消耗的功率:匚一一坡度阻力消耗的功率; n —传动效率系数,取耳二0.9: /一一滚动阻力系数,取£0.02; q ——空气阻力系数,取q 二0.9:A ——拖拉机前进方向迎风而积A=BXH (宽X 髙)二1.40X1. 15y 一一拖拉机取低档速度K=4km/h;1 一一最大爬坡坡度,i =25%;(2200x9g().02xb +(().9xl.4xl.l5x8‘360076140G一一拖拉机总质量,G总二2200kg。
履带车辆设计计算说明

整车参数计算根据《GB/T 3871.2-2006 农业拖拉机试验规程第2 部份:整机参数测量》标准要求进行计算:一、基本参数二、质量参数的计算1、整备质量M0为1825kg ;2、总质量M总M总=M0+M1+ M2 =1825+300+75=2200 kgM1载质量:300kg M2驾驶员质量:75kg3、使用质量:M总=M0+ M2 =1825+75=1900 kg4、质心位置根据《GB/T 3871.15-2006 农业拖拉机试验规程第15部份:质心》标准要求进行计算: 空载时:质心至后支承点的距离A0=830mm质心至前支承点的距离B=610mm 质心至地面的距离h0=450mm满载时:质心至后支承点的距离A0=605mm质心至前支承点的距离B=812mm 质心至地面的距离h0=546mm5、稳定性计算a 、保证拖拉机爬坡时不纵向翻倾的条件是:00h A >δ=0.7 (δ为滑转率)空载时:830/450=1.84>0.7 满载时:605/546=1.11>0.7 满足条件。
b 、保证拖拉机在无横向坡度转弯时,不横向翻倾的条件是:h a2>δ=0.7 a —轨距, a =1200mm h —质心至地面距离mm空载:12002450⨯=1.33>0.7 满载:12002546⨯=1.10>0.7故拖拉机在空、满载运行中均能满足稳定性要求。
三、发动机匹配根据《GB/T 1147.1-2007 中小功率燃机第1 部份:通用技术条件》标准要求进行计算:XJ —782LT 履带式拖拉机配套用云发动机,型号为:YN38GB2型柴油机,标定功率为57kW/h ,转速为2600r/min.(1)最高设计车速V max =8 km/h ,所需功率:P emax =n1( p f + p w )kw m k V A C v f g m n max d max ⎥⎦⎤⎢⎣⎡⋅⋅+⋅⋅⋅=)()(761403600133122009.80.0280.9 1.4 1.1580.9360076140⎡⎤⨯⨯⨯⨯⨯⨯=+⎢⎥⎣⎦()() =6.188kW(2)根据柴油机全负荷速度特性,最大扭矩点的低速档行车速度V2=4km/h 。
[精选]履带车辆设计计算说明资料
![[精选]履带车辆设计计算说明资料](https://img.taocdn.com/s3/m/836c1d270b4e767f5acfce57.png)
整车参数计算根据《GB/T 3871.2-2006 农业拖拉机试验规程第2 部份:整机参数测量》标准要求进行计算:一、基本参数二、质量参数的计算1、整备质量M0为1825kg ;2、总质量M总M总=M0+M1+ M2 =1825+300+75=2200 kgM1载质量:300kg M2驾驶员质量:75kg3、使用质量:M总=M0+ M2 =1825+75=1900 kg4、质心位置根据《GB/T 3871.15-2006 农业拖拉机试验规程第15部份:质心》标准要求进行计算: 空载时:质心至后支承点的距离A0=830mm质心至前支承点的距离B=610mm 质心至地面的距离h0=450mm满载时:质心至后支承点的距离A0=605mm质心至前支承点的距离B=812mm 质心至地面的距离h0=546mm5、稳定性计算a 、保证拖拉机爬坡时不纵向翻倾的条件是:00h A >δ=0.7 (δ为滑转率)空载时:830/450=1.84>0.7 满载时:605/546=1.11>0.7 满足条件。
b 、保证拖拉机在无横向坡度转弯时,不横向翻倾的条件是:h a2>δ=0.7 a —轨距, a =1200mm h —质心至地面距离mm空载:12002450⨯=1.33>0.7 满载:12002546⨯=1.10>0.7故拖拉机在空、满载运行中均能满足稳定性要求。
三、发动机匹配根据《GB/T 1147.1-2007 中小功率内燃机第1 部份:通用技术条件》标准要求进行计算:XJ —782LT 履带式拖拉机配套用昆明云内发动机,型号为:YN38GB2型柴油机,标定功率为57kW/h ,转速为2600r/min.(1)最高设计车速V max =8 km/h ,所需功率:P emax =n1( p f + p w )kw m k V A C v f g m n max d max ⎥⎦⎤⎢⎣⎡⋅⋅+⋅⋅⋅=)()(761403600133122009.80.0280.9 1.4 1.1580.9360076140⎡⎤⨯⨯⨯⨯⨯⨯=+⎢⎥⎣⎦()() =6.188kW(2)根据柴油机全负荷速度特性,最大扭矩点的低速档行车速度V2=4km/h 。
履带车辆设计计算说明书

整车参数计算根据《GB/T 3871.2-2006 农业拖拉机试验规程第2 部份:整机参数测量》标准要求进行计算:一、基本参数二、质量参数的计算1、整备质量M0为1825kg ;2、总质量M总M总=M0+M1+ M2 =1825+300+75=2200 kgM1载质量:300kg M2驾驶员质量:75kg3、使用质量:M总=M0+ M2 =1825+75=1900 kg4、质心位置根据《GB/T 3871.15-2006 农业拖拉机试验规程第15部份:质心》标准要求进行计算: 空载时:质心至后支承点的距离A0=830mm质心至前支承点的距离B=610mm 质心至地面的距离h0=450mm满载时:质心至后支承点的距离A0=605mm质心至前支承点的距离B=812mm 质心至地面的距离h0=546mm5、稳定性计算a 、保证拖拉机爬坡时不纵向翻倾的条件是:00h A >δ=0.7 (δ为滑转率)空载时:830/450=1.84>0.7 满载时:605/546=1.11>0.7 满足条件。
b 、保证拖拉机在无横向坡度转弯时,不横向翻倾的条件是:h a2>δ=0.7 a —轨距, a =1200mm h —质心至地面距离mm空载:12002450⨯=1.33>0.7 满载:12002546⨯=1.10>0.7故拖拉机在空、满载运行中均能满足稳定性要求。
三、发动机匹配根据《GB/T 1147.1-2007 中小功率内燃机第1 部份:通用技术条件》标准要求进行计算:XJ —782LT 履带式拖拉机配套用昆明云内发动机,型号为:YN38GB2型柴油机,标定功率为57kW/h ,转速为2600r/min.(1)最高设计车速V max =8 km/h ,所需功率:P emax =n1( p f + p w )kw m k V A C v f g m n max d max ⎥⎦⎤⎢⎣⎡⋅⋅+⋅⋅⋅=)()(761403600133122009.80.0280.9 1.4 1.1580.9360076140⎡⎤⨯⨯⨯⨯⨯⨯=+⎢⎥⎣⎦()() =6.188kW(2)根据柴油机全负荷速度特性,最大扭矩点的低速档行车速度V2=4km/h 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整车参数计算根据《GB/T 3871.2-2006 农业拖拉机试验规程第2 部份:整机参数测量》标准要求进行计算:一、基本参数二、质量参数的计算1、整备质量M0为1825kg ;2、总质量M总M总=M0+M1+ M2 =1825+300+75=2200 kgM1载质量:300kg M2驾驶员质量:75kg3、使用质量:M总=M0+ M2 =1825+75=1900 kg.... 4、质心位置根据《GB/T 3871.15-2006 农业拖拉机试验规程第15部份:质心》标准要求进行计算: 空载时:质心至后支承点的距离A0=830mm质心至前支承点的距离B=610mm 质心至地面的距离h0=450mm满载时:质心至后支承点的距离A0=605mm质心至前支承点的距离B=812mm 质心至地面的距离h0=546mm5、稳定性计算a 、保证拖拉机爬坡时不纵向翻倾的条件是:00h A >δ=0.7 (δ为滑转率)空载时:830/450=1.84>0.7 满载时:605/546=1.11>0.7 满足条件。
b 、保证拖拉机在无横向坡度转弯时,不横向翻倾的条件是:h a2>δ=0.7 a —轨距, a =1200mm h —质心至地面距离mm空载:12002450⨯=1.33>0.7 满载:12002546⨯=1.10>0.7故拖拉机在空、满载运行中均能满足稳定性要求。
三、发动机匹配根据《GB/T 1147.1-2007 中小功率燃机第1 部份:通用技术条件》标准要求进行计算:XJ —782LT 履带式拖拉机配套用云发动机,型号为:YN38GB2型柴油机,标定功率为.. 57kW/h ,转速为2600r/min.(1)最高设计车速V max =8 km/h ,所需功率:P emax =n1( p f + p w )kw m k V A C v f g m n max d max ⎥⎦⎤⎢⎣⎡⋅⋅+⋅⋅⋅=)()(761403600133122009.80.0280.9 1.4 1.1580.9360076140⎡⎤⨯⨯⨯⨯⨯⨯=+⎢⎥⎣⎦()() =6.188kW(2)根据柴油机全负荷速度特性,最大扭矩点的低速档行车速度V2=4km/h 。
选用V2=4km/h ,最大爬坡度为25%时,计算所需功率:p emax =n1( p f + p i +p w )kw a3max 1k 3600360076140a d a m g i v C A V m g f v m n ⎡⎤⋅⋅⋅⋅⋅⋅⋅⋅⋅=++⎢⎥⎣⎦)()()3122009.80.02822009.80.2540.9 1.4 1.1540.93600360076140⎡⎤⨯⨯⨯⨯⨯⨯⨯⨯⨯=++⎢⎥⎣⎦()()()=6.948kw 上述两式中:P f ——滚动阻力消耗的功率; P w ——空气阻力消耗的功率; P i ——坡度阻力消耗的功率;η——传动效率系数,取η =0.9;f ——滚动阻力系数,取f =0.02; C d ——空气阻力系数,取C d =0.9;A——拖拉机前进方向迎风面积A=B×H(宽×高)= 1.40×1.15V a ——拖拉机取低档速度Va=4km/h;i max ——最大爬坡坡度,imax=25%;G——拖拉机总质量,G总 =2200kg。
(注:表示履拖在工作状态)经计算拖拉机组满载时以最高时速行驶所需功率Pe max和低档速度爬25%的坡时,所需功率均小于YN38GB2柴油机的标定功率57kW,并有一定功率储备,故能够满足设计要求。
五、履带式底盘的设计与确定1、履带底盘的说明:底盘是拖拉机的重要部件,它对整个装置起着支撑作用。
所以根据农用履带式拖拉机对整个装置进行较完整的配合与加工等一系列的设计。
履带行走装置有“四轮一带”(驱动轮,支重轮,导向轮,拖带轮或紧轮,以及履带),紧装置和行走机构组成。
机械行走时,驱动轮在履带紧边产生一个拉力,力图把履带从支重轮下拉出。
出于支重轮下的履带与地面有足够的附着力,阻止履带的拉出,迫使驱动轮卷绕履带向前滚动,导向轮把履带铺设到地面,从而使机体借支重轮沿履带轨道向前运行。
大功率轮式拖拉机机重一般在5500~8500kg, 接地面积比履带拖拉机小,因此接地压力较大。
经数年耕作后, 在土壤的耕层下面将生成硬底层, 不利于土壤的蓄水保墒和作物的生长。
即使经过深度翻耙, 依然会保持碎小的板结硬块,土壤的显微结构遭到了破坏。
附着性能差, 滑转率高。
橡胶履带拖拉机牵引力大, 适合重负荷作业( 如耕、耙等) , 接地比压小,对农田压实、破坏程度轻, 特别适合在低、湿地作业, 而且除田间作业外, 还在农田基本建设和小....型水利工程中用作推土机, 综合利用程度较高。
依据轮式与大功率履带机械的特点,以其以上所叙述的比较分析,综合考虑后得出采用:三角形式的“四轮一带”橡胶履带行走装置。
履带整机参数初步确定以后,应进行计算该履带机械的基本性能是否满足预期要求,整机参数选择是否合理。
这里主要是关于牵引性能的计算。
2、牵引功率计算:根据《GB/T 3871.9-2006 农业拖拉机试验规程第9部份:牵引功率试验》标准要求进行计算:计算工况:计算时所用的工况一般为:在使用重量状态与水平区段的茬地上(对旱地是适耕适度的茬地,对水田是中等泥脚深度的茬地),带牵引负荷(牵引线与地面平行)全油门等速行驶。
(1) 履带式传动的驱动力P q 履带传动ηdqe cq m i p r =kgf 式中: M e ——发动机转矩kgf ; i ——各档总传动比; n c ——各档总传动效率; r dq ——驱动轮动力半径m ;n q ——履带驱动段半径效率,计算时一般去取n q =0.95。
G s max =2L o b q p ; G s max =1.5P TN ; P TN =(1.1-1.2)P T 。
式中:G s max --—最大使用重量;L o ——履带接地长度;∑.. b ——履带板宽度;q p ——一般为0.35~0.5 kgf/cm 2; P TN ——额定牵引力; P T ——牵引力。
根据(2)中的活动阻力P f ,经计算即可得P q ) 经计算后得结果P q =12.775KN. (2) 履带式传动的活动阻力P fP f=f G s kgf式中: G s ——使用重量(kgf);f ——履带式一般取0.1。
经计算后得结果P f =1.90KN(3) 行驶速度v 理论速度h km i r n v dq e /377.0∑1=实际速度v =v l (1-δ) km/h式中: n e ——发动机转速;r dq ——驱动轮动力半径;i Σ——驱动轮轮滑转率(履带式一般取0.07)。
经计算后得结果v =(1.15~6)km/h(4)履带式传动的牵引效率n T 式中: n c ——各档的总传动效率;n f ——滚动效率; n δ——滑转效率;n——履带驱动带效率(一般取0.95)。
经计q=0.75算后得结果nT(5) 履带机械的附着力PΨδ(要求:附着力应大于或等于履带行走机构的牵引力且大于等于各阻力之和。
)PΨδ =ΨδGΨ式中:Ψδ——一般取0.75;GΨ——取1900KG。
经计算后得结果PΨδ=14.25KN (符合要求)3、转向最大驱动力矩的分析与计算:根据《GB/T 15833-1995 林业轮式和履带式拖拉机试验方法》标准要求进行计算:(1) 履带转向时驱动力说明:履带行走装置在转向时, 需要切断一边履带的动力并对该履带进行制动, 使其静止不动, 靠另一边履带的推动来进行转向, 或者将两条履带同时一前一后运动, 实现原地转向, 但两种转向方式所需最大驱动力一样。
因此以机器单条履带制动左转为例, 见图:Array图5-2 履带转左向示意图左边的履带处于制动状态,右边履带的推动下,整台机器绕左边履带的中心C1点旋转,产生转向阻力矩Mr,右边履带的行走阻力Fr/2 。
一般情况,履带接地长度L和履带轨距B 的比值L/ B≤1.6。
同时, L/ B 值也直接影响转向阻力的大小,在不影响机器行走的稳定性及接地比压的要求下,应尽量取小值,也就是尽量缩短履带的长度,可以降低行走机构所需驱动力。
....(2) 转向驱动力矩的计算转向阻力矩是履带绕其本身转动中心O 1(或O 2)作相对转动时,地面对履带产生的阻力矩,如图所示,O 1、O 2 分别为两条履带的瞬时转向中心。
为便于计算转向阻力矩M r 的数值,作如下两点假设:(1)机体质量平均分配在两条履带上,且单位履带长度上的负荷为: Lmq 2=式中:M-总质量(kg ); L-履带接地长度(m)。
经过计算:1900593.75(/)22 1.6G q kg m L ===⨯ 形成转向阻力矩M u 的反力都是横向力且是均匀分布的。
履带拖拉机牵引负荷在转向时存在横向分力,在横向分力的影响下,车辆的转向轴线将由原来通 过履带接地几何中心移至O 1O 2 ,移动距离为x 0 。
图5-3 履带转向受力图根据上述假设,转向时地面对履带支承段的反作用力的分布为矩形分布。
在履带支承面上任何一点到转动中心的距离为x , 则微小单元长度为dx ,分配在其上的车体重力为qdx ,总转向阻力矩可按下式:⎪⎪⎭⎫ ⎝⎛+=⎰⎰-+x x Lx x L u uqxd uqxd M 0000222 式中:U-转向阻力系数。
.. 45.015.085.0max=+=BRu u式中: -车辆作急转弯时转弯的转向阻力系数; B —履带轨距。
)将式⎪⎪⎭⎫ ⎝⎛+=⎰⎰-+x x Lx x L u uqxd uqxd M 0000222代入上式积分得并简化得:4uGL M u = 即:0.451900 1.6342.44u uGL M N m ⨯⨯=== (3)转向驱动力矩(假设机器重心与履带行走装置几何中心相重合)把转向半径2≥B R 和02≤B R分别考虑。
1)当转向半径2≥BR 如下图所示,两侧履带都向前运动,此时两侧履带受地面摩擦阻力朝同一方向(即行驶的反方向),外侧、侧履带受力分别为:图5-4 右转向示意图2)当转向半径0 ≤2≤BR 如下图所示,此时两侧履带受地面摩擦阻力朝反 方向,外侧、侧履带受力分别为:max u ≤..图5-5 左转向示意图式中: F f 1,F f 1 -分别为侧前进阻力和驱动力;F q1,F q 2 -分别为外侧前进阻力和驱动力。
考虑机体的重心在中心位置,所以履带的前进阻力 为:F f 1 =F f 2 =G21f 式中:f — 履带滚动阻力系数 (即F f 1 =F f 2 =21Gf =1460 N ) 转向时的最大驱动力矩为:M max =maxr F F q2q1⨯}{, 式中:r —驱动轮节圆直径。