高考物理中的最值问题7(含答案)
高中物理常见临界问题

高中物理常见临界问题(极值问题)分析处理训练一问题概述:当物体由一种运动形式(物理过程与物理状态)变为另一种运动形式(物理过程与物理状态)时,可能存在一个过渡的转折点,即分界限的现象。
这时物体所处的状态通常称为临界状态,与之相关的物理条件则称为临界条件。
这是量变质变规律在物理中的生动表现。
如:力学中的刚好滑动;正常行驶;宇宙速度,共振;电学中电源最大输出功率;光学中的临界角;光电效应中的极限频率等解决临界问题,通常以定理、定律为依据,分析所研究问题的一般规律和一般解的形式及其变化情况,然后找出临界状态,临界条件,从而通过临界条件求出临界值,再根据变化情况,直接写出条件。
所谓极值问题,一般而言,就是在一定条件下求最值结果。
求解极值问题的方法从大的角度可分为物理方法和数学方法。
物理方法即用临界条件求极值。
数学方法包括(1)利用矢量图求极值(2)用三角函数关系求极值;(3)用二次方程的判别式求极值;(4)用不等式的性质求极值。
(5)导数法求解。
一般而言,用物理方法求极值直观、形象,对构建模型及动态分析等方面的能力要求较高,而用数学方法求极值思路严谨,对数学能力要求较高.若将二者予以融合,则将相得亦彰,对增强解题能力大有裨益。
极值问题与临界问题从本质上说是有区别的,但高考中极值问题通常都可用物理临界法求解。
解答临界问题的关键是找临界条件。
许多临界问题,题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词语对临界状态给出了明确的暗示,审题时,一定要抓住这些特定的词语发掘其内含规律,找出临界条件。
有时,有些临界问题中并不显含上述常见的“临界术语”,具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,耐心讨论状态的变化,可用极限法(把物理问题或过程推向极端,从而将临界状态及临界条件显露出来)假设法(即假设出现某种临界状态,物体的受力情况及运动状态与题设是否相符,最后再根据实际情况进行处理。
2019年天津市高考物理试卷-含答案

2019年天津市高考物理试卷副标题一、单选题(本大题共5小题,共30.0分)1.2018年12月8日,肩负着亿万中华儿女探月飞天梦想的嫦娥四号探测器成功发射,“实现人类航天器首次在月球背面巡视探测,率先在月背刻上了中国足迹”。
已知月球的质量为M、半径为R,探测器的质量为m,引力常量为G,嫦娥四号探测器围绕月球做半径为r的匀速圆周运动时,探测器的()A. 周期为B. 动能为C. 角速度为D. 向心加速度为2.2018年10月23日,港珠澳跨海大桥正式通车。
为保持以往船行习惯,在航道处建造了单面索(所有钢索均处在同一竖直面内)斜拉桥,其索塔与钢索如图所示。
下列说法正确的是()A. 增加钢索的数量可减小索塔受到的向下的压力B. 为了减小钢索承受的拉力,可以适当降低索塔的高度C. 索塔两侧钢索对称且拉力大小相同时,钢索对索塔的合力竖直向下D. 为了使索塔受到钢索的合力竖直向下,索塔两侧的钢索必须对称分布3.如图所示,在水平向右的匀强电场中,质量为m的带电小球,以初速度v从M点竖直向上运动,通过N点时,速度大小为2v,方向与电场方向相反,则小球从M运动到N的过程()A. 动能增加B. 机械能增加C. 重力势能增加D. 电势能增加4.笔记本电脑机身和显示屏对应部位分别有磁体和霍尔元件。
当显示屏开启时磁体远离霍尔元件,电脑正常工作;当显示屏闭合时磁体靠近霍尔元件,屏幕熄灭,电脑进入休眠状态。
如图所示,一块宽为a、长为c的矩形半导体霍尔元件,元件内的导电粒子是电荷量为e的自由电子,通入方向向右的电流时,电子的定向移动速度为v。
当显示屏闭合时元件处于垂直于上表面、方向向下的匀强磁场中,于是元件的前、后表面间出现电压U,以此控制屏幕的熄灭。
则元件的()A. 前表面的电势比后表面的低B. 前、后表面间的电压U与v无关C. 前、后表面间的电压U与c成正比D. 自由电子受到的洛伦兹力大小为5.如图为a、b、c三种光在同一光电效应装置中测得的光电流和电压的关系。
第4章 专题强化7 圆周运动的临界问题 2023年高考物理一轮复习(新高考新教材)

专题强化七圆周运动的临界问题目标要求 1.掌握水平面内、竖直面内的圆周运动的动力学问题的分析方法.2.会分析水平面内、竖直面内圆周运动的临界问题.题型一水平面内圆周运动的临界问题1.运动特点(1)运动轨迹是水平面内的圆.(2)合外力沿水平方向指向圆心,提供向心力,竖直方向合力为零,物体在水平面内做匀速圆周运动.2.过程分析重视过程分析,在水平面内做圆周运动的物体,当转速变化时,物体的受力可能发生变化,转速继续变化,会出现绳子张紧、绳子突然断裂、静摩擦力随转速增大而逐渐达到最大值、弹簧弹力大小方向发生变化等,从而出现临界问题.3.方法突破(1)水平转盘上的物体恰好不发生相对滑动的临界条件是物体与盘间恰好达到最大静摩擦力.(2)物体间恰好分离的临界条件是物体间的弹力恰好为零.(3)绳的拉力出现临界条件的情形有:绳恰好拉直意味着绳上无弹力;绳上拉力恰好为最大承受力等.4.解决方法当确定了物体运动的临界状态和临界条件后,要分别针对不同的运动过程或现象,选择相对应的物理规律,然后再列方程求解.例1(2018·浙江11月选考·9)如图所示,一质量为2.0×103kg的汽车在水平公路上行驶,路面对轮胎的径向最大静摩擦力为1.4×104 N,当汽车经过半径为80 m的弯道时,下列判断正确的是()A.汽车转弯时所受的力有重力、弹力、摩擦力和向心力B.汽车转弯的速度为20 m/s时所需的向心力为1.4×104 NC.汽车转弯的速度为20 m/s时汽车会发生侧滑D.汽车能安全转弯的向心加速度不超过7.0 m/s2答案 D解析汽车转弯时所受的力有重力、弹力、摩擦力,向心力是由摩擦力提供的,A错误;汽车转弯的速度为20 m/s时,根据F n=m v2R,得所需的向心力为1.0×104 N,没有超过最大静摩擦力,所以汽车不会发生侧滑,B、C错误;汽车安全转弯时的最大向心加速度为a m=F fm=7.0 m/s2,D正确.例2(多选)如图所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l.木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg答案AC解析小木块a、b做圆周运动时,由静摩擦力提供向心力,即F f=mω2R.当角速度增大时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a:F f a=mωa2l,当F f a=kmg时,kmg=mωa2l,ωa=kgl;对木块b:F f b=mωb2·2l,当F f b=kmg时,kmg=mωb2·2l,ωb=kg2l,kg2l是b开始滑动的临界角速度,所以b先达到最大静摩擦力,即b比a先开始滑动,选项A、C正确;两木块滑动前转动的角速度相同,则F f a=mω2l,则F f b=mω2·2l,F f a<F f b,选项B错误;ω=2kg3l<ωa=kgl,a没有滑动,则F f a′=mω2l=23kmg,选项D错误.例3(多选)如图所示,三角形为一光滑锥体的正视图,锥面与竖直方向的夹角为θ=37°.一根长为l=1 m的细线一端系在锥体顶端,另一端系着一可视为质点的小球,小球在水平面内绕锥体的轴做匀速圆周运动,重力加速度g=10 m/s2,sin 37°=0.6,不计空气阻力,则()A .小球受重力、支持力、拉力和向心力B .小球可能只受拉力和重力C .当ω0=52 2 rad/s 时,小球对锥体的压力刚好为零D .当ω=2 5 rad/s 时,小球受重力、支持力和拉力作用 答案 BC解析 转速较小时, 小球紧贴圆锥面,则F T cos θ+F N sin θ=mg ,F T sin θ-F N cos θ=mω2l sin θ,随着转速的增加,F T 增大,F N 减小,当转速达到ω0时支持力为零,支持力恰好为零时有mg tan θ=mω02l sin θ,解得ω0=52 2 rad/s ,A 错误,B 、C 正确;当ω=2 5 rad/s 时,小球已经离开斜面,小球受重力、拉力的作用,D 错误.题型二 竖直面内圆周运动的临界问题1.两类模型对比 轻绳模型(最高点无支撑)轻杆模型(最高点有支撑) 实例球与绳连接、水流星、沿内轨道运动的“过山车”等球与杆连接、球在光滑管道中运动等图示受力示意图F 弹向下或等于零 F 弹向下、等于零或向上力学方程 mg +F 弹=m v 2Rmg ±F 弹=m v 2R临界特征F 弹=0 mg =m v min 2Rv =0 即F 向=0即v min =gR F弹=mg讨论分析(1)最高点,若v≥gR,F弹+mg=mv2R,绳或轨道对球产生弹力F弹(2)若v<gR,则不能到达最高点,即到达最高点前小球已经脱离了圆轨道(1)当v=0时,F弹=mg,F弹背离圆心(2)当0<v<gR时,mg-F弹=mv2R,F弹背离圆心并随v的增大而减小(3)当v=gR时,F弹=0(4)当v>gR时,mg+F弹=mv2R,F弹指向圆心并随v的增大而增大2.解题技巧(1)物体通过圆周运动最低点、最高点时,利用合力提供向心力列牛顿第二定律方程;(2)物体从某一位置到另一位置的过程中,用动能定理找出两处速度关系;(3)注意:求对轨道的压力时,转换研究对象,先求物体所受支持力,再根据牛顿第三定律求出压力.例4如图所示,一小球以一定的初速度从图示位置进入光滑的轨道,小球先进入圆轨道1,再进入圆轨道2,圆轨道1的半径为R,圆轨道2的半径是轨道1的1.8倍,小球的质量为m,若小球恰好能通过轨道2的最高点B,则小球在轨道1上经过其最高点A时对轨道的压力大小为(重力加速度为g)()A.2mg B.3mg C.4mg D.5mg答案 C解析小球恰好能通过轨道2的最高点B时,有mg=m v B21.8R,小球在轨道1上经过其最高点A时,有F N+mg=m v A2R ,根据机械能守恒定律,有1.6mgR=12m v A2-12m v B2,解得F N=4mg,结合牛顿第三定律可知,小球在轨道1上经过其最高点A时对轨道的压力大小为4mg,C正确.例5(2022·山东枣庄八中月考)如图,轻杆长2l,中点装在水平轴O上,两端分别固定着小球A和B,A球质量为m,B球质量为2m,重力加速度为g,两者一起在竖直平面内绕O轴做圆周运动.(1)若A 球在最高点时,杆的A 端恰好不受力,求此时B 球的速度大小;(2)若B 球到最高点时的速度等于第(1)问中的速度,求此时O 轴的受力大小、方向; (3)在杆的转速逐渐变化的过程中,能否出现O 轴不受力的情况?若不能,请说明理由;若能,求出此时A 、B 球的速度大小.答案 (1)gl (2)2mg ,方向竖直向下 (3)能;当A 、B 球的速度大小为3gl 时O 轴不受力 解析 (1)A 在最高点时,对A 根据牛顿第二定律得mg =m v A 2l解得v A =gl因为A 、B 球的角速度相等,半径相等,则v B =v A =gl(2)B 在最高点时,对B 根据牛顿第二定律得2mg +F T OB ′=2m v B 2l代入(1)中的v B ,可得F T OB ′=0 对A 有F T OA ′-mg =m v A 2l可得F T OA ′=2mg根据牛顿第三定律,O 轴所受的力的大小为2mg ,方向竖直向下(3)要使O 轴不受力,根据B 的质量大于A 的质量,设A 、B 的速度为v ,可判断B 球应在最高点对B 有F T OB ″+2mg =2m v 2l对A 有F T OA ″-mg =m v 2l轴O 不受力时F T OA ″=F T OB ″ 可得v =3gl所以当A 、B 球的速度大小为3gl 时O 轴不受力.题型三斜面上圆周运动的临界问题物体在斜面上做圆周运动时,设斜面的倾角为θ,重力垂直斜面的分力与物体受到的支持力相等,解决此类问题时,可以按以下操作,把问题简化.例6(多选)如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴2.5 m处有一小物体与圆盘始终保持相对静止,物体与盘面间的动摩擦因数为32,则以下说2,设最大静摩擦力等于滑动摩擦力,盘面与水平面的夹角为30°,g取10 m/s法中正确的是()A.小物体随圆盘做匀速圆周运动时,一定始终受到三个力的作用B.小物体随圆盘以不同的角速度ω做匀速圆周运动时,ω越大时,小物体在最高点处受到的摩擦力一定越大C.小物体受到的摩擦力可能背离圆心D.ω的最大值是1.0 rad/s答案CD解析当物体在最高点时,可能只受到重力与支持力2个力的作用,合力提供向心力,故A 错误;当物体在最高点时,可能只受到重力与支持力2个力的作用,也可能受到重力、支持力与摩擦力三个力的作用,摩擦力的方向可能沿斜面向上,也可能沿斜面向下,摩擦力的方向沿斜面向上时,ω越大时,小物体在最高点处受到的摩擦力越小,故B错误;当物体在最高点时,摩擦力的方向可能沿斜面向上,也可能沿斜面向下,即可能指向圆心,也可能背离圆心,故C正确;当物体转到圆盘的最低点恰好不滑动时,转盘的角速度最大,此时小物体受竖直向下的重力、垂直于斜面向上的支持力、沿斜面指向圆心的摩擦力,由沿斜面的合力提供向心力,支持力F N=mg cos θ,摩擦力F f=μF N=μmg cos θ,又μmg cos 30°-mg sin 30°=mω2R,解得ω=1.0 rad/s,故D正确.课时精练1.如图所示,杂技演员表演“水流星”节目.一根长为L 的细绳两端系着盛水的杯子,演员握住绳中间,随着演员的抡动,杯子在竖直平面内做圆周运动,杯子运动中水始终不会从杯子中洒出,重力加速度为g ,则杯子运动到最高点的角速度ω至少为( )A.g LB.2g LC.5g LD.10g L答案 B解析 杯子在竖直平面内做半径为L2的圆周运动,使水不流出的临界条件是在最高点水的重力恰好提供向心力,则有mg =mω2L2,可得ω=2gL,故B 正确,A 、C 、D 错误. 2.一汽车通过拱形桥顶时速度为10 m/s ,车对桥顶的压力为车重的34,如果要使汽车在该桥顶对桥面恰好没有压力,车速为( ) A .15 m/s B .20 m/s C .25 m/s D .30 m/s答案 B解析 当F N ′=F N =34G 时,因为G -F N ′=m v 2r ,所以14G =m v 2r ;当F N =0时,G =m v ′2r ,所以v ′=2v =20 m/s ,选项B 正确.3.细绳一端系住一个质量为m 的小球,另一端固定在光滑水平桌面上方h 高度处,绳长l 大于h ,使小球在桌面上做如图所示的匀速圆周运动,重力加速度为g .若要小球不离开桌面,其转速不得超过( )A.12πg l B .2πgh C.12πh gD.12πg h答案 D解析 对小球受力分析,小球受三个力的作用,重力mg 、水平桌面支持力F N 、绳子拉力F .小球所受合力提供向心力,设绳子与竖直方向夹角为θ,由几何关系可知R =h tan θ,受力分析可知F cos θ+F N =mg ,F sin θ=m v 2R =mω2R =4m π2n 2R =4m π2n 2h tan θ;当球即将离开水平桌面时,F N =0,转速n 有最大值,此时n =12πgh,故选D. 4.如图所示,两段长均为L 的轻质线共同系住一个质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间距也为L ,今使小球在竖直平面内做圆周运动,当小球到达最高点时速率为v ,两段线中张力恰好均为零,若小球到达最高点时速率为2v ,则此时每段线中张力大小为(重力加速度为g )( )A.3mg B .23mg C .3mg D .4mg答案 A解析 当小球到达最高点速率为v 时,两段线中张力均为零,有mg =m v 2r ,当小球到达最高点速率为2v 时,应有F +mg =m (2v )2r ,所以F =3mg ,此时小球在最高点受力如图所示,所以F T =3mg ,A 正确.5.(2022·四川绵阳市诊断)如图所示,轻杆长3L ,在杆两端分别固定质量均为m 的球A 和B ,光滑水平转轴穿过杆上距球A 为L 处的O 点,外界给系统一定能量后,杆和球在竖直平面内转动,球B 运动到最高点时,杆对球B 恰好无作用力.忽略空气阻力,重力加速度为g ,则球B 在最高点时( )A .球B 的速度为零 B .球A 的速度大小为2gLC .水平转轴对杆的作用力为1.5mgD .水平转轴对杆的作用力为2.5mg 答案 C解析 球B 运动到最高点时,杆对球B 恰好无作用力,即仅重力提供向心力,则有mg =m v B 22L ,解得v B =2gL ,故A 错误;由于A 、B 两球的角速度相等,则球A 的速度大小v A =122gL ,故B 错误;B 球在最高点时,对杆无弹力,此时A 球受到的重力和拉力的合力提供向心力,有F -mg =m v A 2L ,解得:F =1.5mg ,即杆的弹力大小为1.5mg ,根据牛顿第三定律可知,C正确,D 错误.6.(2022·广东省深圳中学模拟)如图所示,小木块a 、b 和c (可视为质点)放在水平圆盘上,a 、b 的质量均为m ,c 的质量为m2,a 与转轴OO ′的距离为l ,b 、c 与转轴OO ′的距离为2l且均处于水平圆盘的边缘.木块与圆盘间的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,下列说法中正确的是( )A .b 、c 所受的摩擦力始终相等,故同时从水平圆盘上滑落B .当a 、b 和c 均未滑落时,a 、c 所受摩擦力的大小相等C .b 和c 均未滑落时线速度一定相同D .b 开始滑动时的角速度是2kgl 答案 B解析 木块随圆盘一起转动,水平方向只受静摩擦力,故由静摩擦力提供向心力,当需要的向心力大于最大静摩擦力时,木块开始滑动.b 、c 质量不等,由F f =mrω2知b 、c 所受摩擦力不等,不能同时从水平圆盘上滑落,A 错误;当a 、b 和c 均未滑落时,a 、b 、c 和圆盘无相对运动,因此它们的角速度相等,F f =mrω2,所以a 、c 所受摩擦力的大小相等,B 正确;b 和c 均未滑落时,由v =rω知线速度大小相等,方向不相同,故C 错误;b 开始滑动时,最大静摩擦力提供向心力,kmg =m ·2lω2,解得ω=kg2l,故D 错误. 7.如图所示,一光滑的圆管轨道固定在竖直平面内,质量为m 的小球在圆管内运动,小球的直径略小于圆管的内径.轨道的半径为R ,小球的直径远小于R ,可以视为质点,重力加速度为g .现从最高点给小球以不同的初速度v ,关于小球的运动,下列说法正确的是( )A .小球运动到最低点时,对外管壁的最小压力为4mgB .若小球从静止沿轨道滑落,当滑落高度为R3时,小球与内、外管壁均没有作用力C .小球能再运动回最高点的最小速度v =gRD .当v >gR 时,小球在最低点与最高点对轨道的压力大小之差为5mg 答案 B解析 当在最高点速度为零时,到达最低点的速度最小,对外管壁的压力最小,则由机械能守恒定律有mg ·2R =12m v 12,在最低点设外管壁对小球的支持力为F ,由牛顿第二定律F -mg=m v 12R ,联立解得F =5mg ,由牛顿第三定律得,小球对外管壁的压力最小为5mg ,故A 错误;小球从静止沿轨道滑落,当滑落高度为R 3时,由机械能守恒定律有mg R 3=12m v 22,设此时重力沿半径方向的分力为F 1,由几何关系得F 1=2mg3,此时所需的向心力为F 向=m v 22R ,联立解得F向=F 1,此时重力沿半径方向的分力恰好提供向心力,所以小球与内、外管壁均没有作用力,故B 正确;因为管内壁可以给小球支持力,所以小球在最高点的速度可以为零,故C 错误;若在最高点速度v >gR ,在最高点时由牛顿第二定律得F 2+mg =m v 2R ,从最高点到最低点由机械能守恒定律得mg ·2R =12m v 32-12m v 2,在最低点时由牛顿第二定律得F 3-mg=m v 32R ,联立解得F 3-F 2=6mg ,所以当v >gR 时,小球在最低点与最高点对轨道的压力大小之差为6mg ,故D 错误.8.如图所示,质量为m 的小球由轻绳a 和b 分别系于一轻质细杆的B 点和A 点,绳a 长为L ,与水平方向成θ角时绳b 恰好在水平方向伸直.当轻杆绕轴AB 以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,a 、b 绳均拉直.重力加速度为g ,则( )A .a 绳的拉力可能为零B .a 绳的拉力随角速度的增大而增大C .当角速度ω>gL sin θ时,b 绳中拉力不为零 D .当角速度ω>gL sin θ时,若a 绳突然被剪断,则b 绳仍可保持水平 答案 C解析 小球做匀速圆周运动,在竖直方向上的合力为零,水平方向上的合力提供向心力,所以a 绳在竖直方向上的分力与小球重力相等,可知a 绳的拉力不可能为零,A 错误;根据竖直方向上受力平衡得F a sin θ=mg ,解得F a =mgsin θ,可知a 绳的拉力不变,与角速度无关,B错误;当b 绳拉力为零时,有mgtan θ=mω2L cos θ,解得ω=g L sin θ,可知当角速度ω>g L sin θ时,b 绳出现拉力,C 正确;若a 绳突然被剪断,则b 绳不能保持水平,D 错误.9.(多选)如图所示,两个可视为质点的、相同的木块A 和B 放在转盘上,两者用长为L 的水平细绳连接,木块与转盘的最大静摩擦力均为各自重力的K 倍,A 放在距离转轴L 处,整个装置能绕通过转盘中心的转轴O 1O 2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是(重力加速度为g )( )A .当ω>2Kg3L时,A 、B 会相对于转盘滑动 B .当ω>Kg2L ,绳子一定有弹力 C .ω在Kg 2L<ω<2Kg3L范围内增大时,B 所受摩擦力变大 D .ω在0<ω<2Kg3L范围内增大时,A 所受摩擦力一直变大 答案 ABD解析 当A 、B 所受摩擦力均达到最大值时,A 、B 相对转盘即将滑动,则有Kmg +Kmg =mω2L+mω2·2L ,解得:ω=2Kg3L,A 项正确;当B 所受静摩擦力达到最大值后,绳子开始有弹力,即有:Kmg =m ·2L ·ω2,解得ω=Kg2L,可知当ω>Kg2L时,绳子有弹力,B 项正确;当ω>Kg2L时,B 已达到最大静摩擦力,则ω在Kg 2L<ω<2Kg3L范围内增大时,B 受到的摩擦力不变,C 项错误;ω在0<ω<2Kg3L范围内,A 相对转盘是静止的,A 所受摩擦力为静摩擦力,所以由F f -F T =mLω2可知,当ω增大时,静摩擦力也增大,D 项正确.10.(多选)如图所示,竖直平面内有一半径为R =0.35 m 的内壁光滑的圆形轨道,轨道底端与光滑水平面相切,一小球(可视为质点)以v 0=3.5 m/s 的初速度进入轨道,g =10 m/s 2,则( )A .小球不会脱离圆轨道运动B .小球会脱离圆轨道运动C .小球脱离轨道时的速度为72m/s D .小球脱离轨道的位置与圆心连线和水平方向间的夹角为30° 答案 BCD解析 若小球恰能到达最高点,由重力提供向心力,则有:mg =m v 2R ,解得:v =gR =3.5 m/s ,若小球从最低点恰好能到最高点,根据机械能守恒定律得:12m v 0′2=mg ·2R +12m v 2,解得:v 0′=702 m/s>v 0=3.5 m/s ,故小球不可能运动到最高点,小球会脱离圆轨道,故A 错误,B 正确;设当小球脱离轨道时,其位置与圆心连线和水平方向间的夹角为θ,小球此时只受重力作用,将重力分解如图所示.在脱离点,支持力等于0,由牛顿第二定律得:mg sin θ=m v 12R,从最低点到脱离点,由机械能守恒定律得:12=mgR(1+sin θ)+12m v12,联立解得:sin θ=12,即θ=30°,则v1=gR sin θ2m v0=72m/s,故C、D正确.。
高考物理考点《传送带模型和滑块—木板模型中的能量问题》真题练习含答案

高考物理考点《传送带模型和滑块—木板模型中的能量问题》真题练习含答案1.(多选)如图所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平方向射中木块,并最终留在木块中与木块一起以速度v 运动.已知当子弹相对木块静止时,木块前进距离为L ,子弹进入木块的深度为s ,若木块对子弹的阻力F 视为恒定,则下列关系中正确的是( )A .FL =12 M v 2B .Fs =12m v 2C .Fs =12 m v 20-12 (M +m )v 2 D .F (L +s )=12 m v 20 -12 m v 2 答案:ACD解析:以木块为研究对象,根据动能定理得,子弹对木块做功等于木块动能的增加,即FL =12M v 2①,以子弹为研究对象,由动能定理得, F (L +s )=12 m v 20-12 m v 2②,联立①②得, Fs =12 m v 20 -12 (M +m )v 2,故A 、C 、D 正确.2.如图所示,一足够长的木板在光滑的水平面上以速度v 向右匀速运动,现将质量为m 的物体轻轻地放置在木板上的右端,已知物体m 和木板之间的动摩擦因数为μ,为保持木板的速度不变,从物体m 放到木板上到它相对木板静止的过程中,须对木板施一水平向右的作用力F ,那么力F 对木板做功的数值为( )A .m v 24B .m v 22C .m v 2D .2m v 2 答案:C解析:由能量转化和守恒定律可知,拉力F 对木板所做的功W 一部分转化为物体m 的动能,一部分转化为系统内能,故W =12 m v 2+μmg ·s 相,s 相=v t -v 2 t ,v =μgt ,解得W =m v 2,C 正确.3.(多选)如图所示是某地铁站的安检设施,该设施中的水平传送带以恒定速率v 运动,乘客将质量为m 的物品放在传送带上,物品由静止开始加速至速率为v 后匀速通过安检设施,下列说法正确的是( )A .物品先受滑动摩擦力作用,后受静摩擦力作用B .物品所受摩擦力的方向与其运动方向相同C .物品与传送带间动摩擦因数越大,产生热量越多D.物品与传送带间动摩擦因数越大,物品与传送带相对位移越小 答案:BD解析:物品加速时受滑动摩擦力作用,匀速时不受摩擦力,A 错误;物品所受摩擦力的方向与运动方向相同,B 正确;传送带的位移大小x 1=v t ,物品从加速到与其共速,位移大小x 2=v 2 t ,物品与传送带间产生热量Q =f Δx =f (x 1-x 2)=12 m v 2,与动摩擦因数无关,C 错误;物品与传送带间动摩擦因数越大,滑动摩擦力f 越大,相对位移Δx 越小,D 正确.4.[2024·辽宁省高考模拟](多选)如图所示,在匀速转动的电动机带动下,足够长的水平传送带以恒定速率v 1=2 m/s 匀速向右运动,一质量为m =1 kg 的滑块从传送带右端以水平向左的速率v 2=3 m/s 滑上传送带,最后滑块返回传送带的右端.关于这一过程,下列判断正确的有( )A .滑块返回传送带右端的速率为2 m/sB .此过程中传送带对滑块做功为2.5 JC .此过程中滑块与传送带间摩擦产生的热量为12.5 JD .此过程中电动机对传送带多做功为10 J 答案:ACD解析:由于传送带足够长,滑块匀减速向左滑行,直到速度减为零,然后滑块在滑动摩擦力的作用下向右匀加速,v 1=2 m/s<v 2=3 m/s ,当滑块速度增大到等于传送带速度时,物体还在传送带上,之后不受摩擦力,物体与传送带一起向右匀速运动,所以滑块返回传送带右端时的速率等于2 m/s ,A 正确;此过程中只有传送带对滑块做功,根据动能定理得,传送带对滑块做功为W =12 m v 21 -12 m v 22 =-2.5 J ,B 错误;设滑块向左运动的时间为t 1,位移为x 1,则x 1=v 22 t 1,该过程中传送带的位移为x 2=v 1t 1,t 1=v 2μg ,摩擦生热为Q 1=μmg (x 1+x 2)=10.5 J ,返回过程,当物块与传送带共速时v 1=μgt 2,物块与传送带摩擦生热为Q 2=μmg (v 1t 2-v 12 t 2)=2 J ,则此过程中滑块与传送带间摩擦产生的热量为Q =Q 1+Q 2=12.5 J ,C 正确;此过程中电动机对传送带多做功为ΔW =W +Q =10 J ,D 正确.5.[2024·河北省石家庄市教学质检](多选)如图所示,倾斜传送带以恒定速率v 顺时针转动,现将一小物块由静止放于传送带底端,经过一段时间,小物块运动到传送带的顶端且速率恰好达到v ,在整个过程中小物块与传送带之间的摩擦生热为Q ,小物块获得的动能为E k 、重力势能的增加量为E p ,下列说法正确的是( )A .Q =E kB .Q >E kC .Q =E k +E pD .Q <E k +E p 答案:BC解析:设传送带长度为L ,倾角为θ,质量为m ,运动时间为t ,物块受到的摩擦力为f ,根据题意,有x 物=L =v2 t ,x 传=v t ,则有x 传-x 物=L ,解得x 传=2L ,对物块,根据动能定理fL -mg sin θ·L =E k -0,产生的热量为Q =f ΔL =f (2L -L )=fL ,其中mg sin θ·L =E p ,联立解得Q =E k +E p ,则有Q >E k ,B 、C 正确.6.如图甲,长木板A 质量为2 kg 放在光滑的水平面上,质量为m =2 kg 的另一物体B (可看作质点)以水平速度v 0=2 m/s 滑上原来静止的长木板A 的表面.由于A 、B 间存在摩擦,之后A 、B 速度随时间变化情况如图乙所示,则下列说法正确的是(g 取10 m/s 2)( )A .木板获得的动能为2 JB .系统损失的机械能为4 JC .木板A 的最小长度为2 mD .A 、B 间的动摩擦因数为0.1 答案:D解析:由题中图像可知,A 、B 的加速度大小都为1 m/s 2,根据牛顿第二定律知,木板获得的动能为1 J ,A 错误;系统损失的机械能ΔE =12 m v 20 -12 ·2m ·v 2=2 J ,B 错误;由v t 图像可求出二者相对位移为1 m ,C 错误;以B 为研究对象,根据牛顿第二定律,求出μ=0.1,D 正确.7.(多选)如图所示,光滑水平面上放着足够长的木板B ,木板B 上放着木块A ,A 、B 间的接触面粗糙,现用一水平拉力F 作用在A 上,使其由静止开始在木板B 上运动,则下列说法正确的是( )A .拉力F 做的功等于A 、B 系统动能的增加量 B .拉力F 做的功大于A 、B 系统动能的增加量C .拉力F 和B 对A 做的功之和小于A 的动能的增加量D .A 对B 做的功等于B 的动能的增加量 答案:BD 8.[2024·山东省潍坊市期中考试]如图所示,与水平面夹角为θ=37°的倾斜传送带始终绷紧,传送带下端A 点与上端B 点间的距离L =10 m ,传送带以v =2 m/s 的恒定的速率向上传动,现将一质量m =4 kg 的小物体无初速度地放于A 处,已知物体与传送带间的动摩擦因数μ=0.8,重力加速度大小取g =10 m/s 2,求物块从A 运动到B 的过程:(1)所用时间t ;(2)摩擦力对物块做的功W . 答案:(1)7.5 s (2)248 J解析:(1)物体刚放上传送带时受到沿斜面向上的滑动摩擦力,由牛顿第二定律得μmg cos θ-mg sin θ=ma 1设物体经时间t 1加速到与传送带同速,则有 v =a 1t 1,x 1=12 a 1t 2解得t 1=5 s ,x 1=5 m设物体经过时间t 2到达B 端,因μmg cos θ>mg sin θ故当物体与传送带同速后,物体将做匀速运动,则有L -x 1=v t 2 解得t 2=2.5 s故物体由A 端运动到B 端的时间t =t 1+t 2=7.5 s (2)相对滑动过程,摩擦力做功W 1=μmg cos θ·x 1匀速运动过程,摩擦力做功W 2=mg sin θ(L -x 1),W =W 1+W 2 解得W =248 J9.如图所示,一倾角θ=30°的光滑斜面(足够长)固定在水平面上,斜面下端有一与斜面垂直的固定挡板,用手将一质量m =1 kg 的木板放置在斜面上,木板的上端有一质量也为m 的小物块(视为质点),物块和木板间的动摩擦因数μ=235 ,初始时木板下端与挡板的距离L =0.9 m .现将手拿开,同时由静止释放物块和木板,物块和木板一起沿斜面下滑.木板与挡板碰撞的时间极短,且碰撞后木板的速度大小不变,方向与碰撞前的速度方向相反,最终物块恰好未滑离木板.取重力加速度大小g =10 m/s 2,认为最大静摩擦力等于滑动摩擦力.求:(1)木板第一次与挡板碰撞前瞬间,物块的速度大小v 0;(2)从拿开手到木板第二次与挡板碰撞前瞬间,物块相对木板的位移大小x ;(3)木板的长度s 以及从拿开手到木板和物块都静止的过程中,物块与木板间因摩擦产生的热量Q .答案:(1)3 m/s (2)1.5 m (3)54 J解析:(1)从拿开手到木板第一次与挡板碰撞前,对物块与木板整体,根据动能定理有2mgL sin θ=12×2m v 2解得v 0=3 m/s.(2)木板第一次与挡板碰撞后,木板的加速度方向沿斜面向下,设加速度大小为a1,根据牛顿第二定律有mg sin θ+μmg cos θ=ma1解得a1=11 m/s2木板第一次与挡板碰撞后,物块的加速度方向沿斜面向上,设加速度大小为a2,根据牛顿第二定律有μmg cos θ-mg sin θ=ma2解得a2=1 m/s2以沿斜面向下为正方向,设从木板第一次与挡板碰撞后,经时间t木板和物块达到共同速度v,对木板和物块,根据匀变速直线运动的规律分别有v=-v0+a1t,v=v0-a2t解得v=2.5 m/s,v为正值,表示v的方向沿斜面向下设从木板第一次与挡板碰撞后到物块与木板达到共同速度v的过程中,木板沿斜面向上运动的位移大小为x1,根据匀变速直线运动的规律有v20-v2=2a1x1解得x1=0.125 m设该过程中物块沿斜面向下运动的位移大小为x2,根据匀变速直线运动的规律有v20-v2=2a2x2解得x2=1.375 m又x=x1+x2解得x=1.5 m.(3)经分析可知,当木板和物块都静止时,木板的下端以及物块均与挡板接触,从拿开手到木板和物块都静止的过程中,根据能量转化与守恒定律有Q=mgL sin θ+mg(L+s)sin θ又Q=μmgs cos θ解得s=9 m Q=54 J。
2023年重庆市普通高中高考物理调研试卷(七)+答案解析(附后)

2023年重庆市普通高中高考物理调研试卷(七)1. 某收音机中的LC 振荡电路,由固定线圈和可调电容器组成,能够产生频率范围为f 到的电磁振荡。
可调电容器的最大电容和最小电容之比为( )A. B. C. D.k2. 如图所示,一电荷量为Q 的带正电点电荷固定于O 点,边长为L 的正方形abcd 与O 点在同一平面内,O 、a 、d 三点共线,且。
取无穷远处电势为零,与该点电荷相距r 处的电势为静电力常量,则电势差( )A. B. C. D.3. 某均匀介质中,一列简谐横波沿x 轴正方向传播,在时刻和时刻的部分波形图分别如图中实线和虚线所示。
下列说法正确的是( )A. 这列波的波长为6mB. 振源的频率可能为1HzC. 这列波的波速大小可能为D. 质点P 和质点Q 的振动情况完全相同4. 下列核反应为人工核转变的是( )A. B.C.D.5. 如图所示,从一质量为M 、半径为2R 的均匀球体的球心O 处挖出一半径为R 的小球,将其移至两球面相距R 处,已知引力常量为G ,则大球剩余部分和小球间的万有引力大小为( )A. B. C. D.6. 2022年8月,重庆持续高温,多地发生火灾。
为预防火灾,某学习小组设计安装如图所示的简易火灾报警器,其中为定值电阻,为热敏电阻其阻值随温度升高而减小。
当热敏电阻所在处出现火情时,电流表示数I和电压表示数U的变化情况是( )A. I和U均减小B. I和U均增大C. I增大,U减小D. I减小,U增大7. 如图所示,水平传送带以恒定速率向右运转,一工件最后从右端N从传送带左端M处以水平速度冲上传送带,处离开传送带。
传送带各处粗糙程度相同,则该工件从M运动到N过程中的图像,一定错误的是( )A. B. C. D.8. 如图所示,用力握住一个竖直的瓶子,使瓶子始终处于静止状态。
保持其他条件不变,握力逐渐增大时,下列说法正确的是( )A. 瓶子受到的摩擦力变大B. 瓶子受到的摩擦力不变C. 瓶子受到的合力变大D. 瓶子受到的合力不变9. 如图是用洛埃镜观察光的干涉现象的原理图,其中。
高考物理考点《追及和相遇问题》真题练习含答案

高考物理考点《追及和相遇问题》真题练习含答案1.[2024·湖南省衡阳市月考](多选)如图,一颗松子沿倾斜冰面AB 从顶端A 由静止匀加速滑下,1 s 后,松鼠从倾斜冰面的顶端A 以1.5 m/s 的初速度、3 m/s 2的加速度匀加速追赶松子.追赶过程中,松鼠与松子相隔的最远距离为98 m ,且松鼠恰好在底端B 处追上松子,则( )A .松子沿冰面下滑的加速度大小为2 m/s 2B .冰面AB 的长度为8 mC .松鼠从顶端A 出发后,经过2 s 就追上了松子D .在松鼠与松子相隔最远时,松鼠的速度大小为2 m/s 答案:AC解析:设松子运动的加速度为a ,经过时间t ,松鼠与松子相隔最远,此时松鼠与松子的速度均为v .根据位移—时间公式有v 2 t -v +1.52 (t -1)=98m ,根据匀变速直线运动公式有v =32 +3(t -1),解得t =1.5 s ,v =3 m/s ,故a =v t =2 m/s 2,A 正确,D 错误;设松子运动的时间为t ′时,松鼠追上松子,根据12 ×2t ′2=32 (t ′-1)+12 ×3(t ′-1)2,解得t ′=3 s ,松鼠经过2 s 追上松子,C 正确;倾斜冰面AB 的长度L =12×2t ′2=9 m ,B 错误.2.如图所示,一辆轿车和一辆卡车在同一公路上均由静止开始同时相向做匀加速直线运动,加速度大小分别为7 m/s 2和3 m/s 2,刚开始运动时两车车头相距20 m ,轿车车身全长为5 m ,卡车车身全长为20 m ,则从开始运动到两车分离的时间为( )A .1.0 sB .2.0 sC .3.0 sD .3.5 s 答案:C解析:设经过时间t 后,轿车和卡车车尾分离,轿车的位移x 1=12 a 1t 2,卡车的位移x 2=12a 2t 2,x 1+x 2=45 m. 联立解得t =3.0 s . 3.[2024·广东省广州市月考](多选)某公司为了测试摩托车的性能,让两驾驶员分别驾驶摩托车在一平直路面上行驶,利用速度传感器测出摩托车A 、B 的速度随时间变化的规律并描绘在计算机中,如图所示,发现两摩托车在t =25 s 时同时到达目的地.则下列叙述正确的是( )A .摩托车B 的加速度为摩托车A 的5倍B .两辆摩托车从同一地点出发,且摩托车B 晚出发10 sC .在0~25 s 时间内,两辆摩托车间的最远距离为400 mD .在0~25 s 时间内,两辆摩托车间的最远距离为180 m 答案:AC解析:v t 图像的斜率表示加速度,则A 、B 两车的加速度分别为a A =ΔvΔt =0.4 m/s 2,a B =Δv ′Δt ′ =2 m/s 2,因为a B a A =20.4 =51 ,所以摩托车B 的加速度为摩托车A 的5倍,A 正确;由题图可知,在t =25 s 时两车达到相同的速度,在此之前摩托车A 速度一直大于摩托车B 速度,两辆摩托车距离一直在缩小,所以在t =0时刻,两辆摩托车距离最远,不是从同一地点出发的,B 错误;速度图像和坐标轴围成的面积代表摩托车行驶的位移,因此两辆摩托车间的最远距离Δx =x A -x B =12 ×(20+30)×25 m -12 ×30×(25-10) m =400 m ,C 正确,D 错误.4.[2024·辽宁省朝阳市建平实验中学期中考试]在某次遥控车挑战赛中,若a 、b 两个遥控车从同一地点向同一方向做直线运动,它们的v t 图像如图所示,则下列说法不正确的是( )A .b 车启动时,a 车在其前方2 m 处B .运动过程中,b 车落后a 车的最大距离为1.5 mC .b 车启动3 s 后恰好追上a 车D .b 车超过a 车后,两车不会再相遇答案:A解析:b 车启动时,a 车在其前方距离Δx =12 ×2×1 m =1 m ,A 错误;运动过程中,当两车速度相等时,b 车落后a 车的距离最大,最大距离为Δx m =1+32 ×1 m -12×1×1 m=1.5 m ,B 正确;b 车启动3 s 后,a 车的位移x a =12 ×2×1 m +3×1 m =4 m ,b 车的位移x b =1+32 ×2 m =4 m ,即b 车恰好追上a 车,C 正确;b 车超过a 车后,因b 车速度大于a车,则两车不会再相遇,D 正确.5.[2024·湖南省衡阳市月考](多选)如图,小球a 自地面高h 处做自由落体运动,同时位于小球a 正下方的小球b 自地面以初速度v 0竖直上抛,b 球上升到最高点时恰与a 球相遇,a 、b 均可视为质点,则( )A .a 、b 两球经过时间hv 0 相遇B .a 、b 两球相遇点距地面高度为h2C .a 、b 两球在相遇过程中速度变化量的大小不相等D .a 、b 两球在相遇过程中速度变化量的方向不相同 答案:AB解析:设两者经过时间t 相遇,对小球a ,有h 1=12 gt 2;对小球b ,有h 2=v 0t -12 gt 2,t =v 0g ,且h 1+h 2=h ,联立解得t =h v 0 ,h 1=h 2=h2 ,A 、B 正确;两球在相遇过程中,均做加速度为g 的匀变速运动,速度变化量的大小和方向均相同,C 、D 错误.6.[2024·福建省龙岩市一级校联盟联考]电子设备之间在一定距离范围内可以通过蓝牙连接进行数据交换,已经配对过的两电子设备,当距离小于某一值时,会自动连接;一旦超过该值时,蓝牙信号便会立即中断,无法正常通信.如图所示,甲、乙两辆汽车并排沿平直路面向前行驶,两车车顶O1、O2两位置都装有蓝牙设备,这两个蓝牙设备在5 m以内时能够实现通信.t=0时刻,甲、乙两车刚好位于图示位置,此时甲车的速度为5 m/s,乙车的速度为2 m/s,O1、O2的距离为3 m.从该时刻起甲车以1 m/s2的加速度做匀减速运动直至停下,乙车保持原有速度做匀速直线运动.(忽略信号传递及重新连接所需的时间)求:(1)从t=0时刻起,甲车的运动时间;(2)在甲车停下来之前,两车在前进方向上的最大距离;(3)从t=0时刻起两车能够进行蓝牙通信的总时间.答案:(1)5 s(2)4.5 m(3)6.25 s解析:(1)甲车运动到停止0=v甲+a甲t其中a甲=-1 m/s2,代入数据得t=5 s(2)两车共速时,沿前进方向的距离最大:即v乙=v甲+a甲t′t′=3 s根据位移—时间公式有x甲=v甲t′+12a甲t′2,x乙=v乙t′Δx=x甲-x乙解得Δx=4.5 m(3)根据几何知识可知,当甲车在乙车前方且O1O2=5 m时,有x甲-x乙=4 m根据运动学公式有x甲=v甲t-12at2,x乙=v乙t解得t1=2 s,t2=4 s当0<t<2 s时,有O1O2<5 m,当2 s<t<4 s时,有O1O2>5 mt=t2=4 s时,甲车的速度为v甲1=v甲-at2=1 m/s<v乙t=4 s之后,甲、乙两车的距离不断减小,且甲车能够继续行驶的距离为x甲1=v2甲12a=0.5 m根据几何关系可知,从t=4 s开始到乙车行驶至甲车前方4 m的过程中,O1O2<5 m,这段过程经历的时间为t′=2×4 m+0.5 mv乙=4.25 s所以甲、乙两车能利用蓝牙通信的时间为t总=2 s+4.25 s=6.25 s。
动量之弹簧类问题

动量之弹簧类问题第一部分弹簧类典型问题1.弹簧类模型的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。
1、最大、最小拉力例1. 一个劲度系数为k=600N/m的轻弹簧,两端分别连接着质量均为m=15kg的物体A、B,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F在物体A上,使物体A开始向上做匀加速运动,经0.5s,B物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g=10m/s2)。
求此过程中所加外力的最大和最小值。
图12、最大高度例2. 如图2所示,质量为m的钢板与直立弹簧的上端连接,弹簧下端。
一物体从钢板正上方距离为固定在地面上,平衡时弹簧的压缩量为x3x的A处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,0它们到达最低点后又向上运动,已知物块质量也为m时,它们恰能回到O 点,若物体质量为2m仍从A处自由下落,则物块与钢板回到O点时还有向上的速度,求物块向上运动到达的最高点与O点的距离。
图23、最大速度、最小速度例3. 如图3所示,一个劲度系数为k 的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m 的平板B 相连而处于静止状态。
今有另一质量为m 的物块A 从B 的正上方h 高处自由下落,与B 发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v 。
图3例4. 在光滑水平面内,有A 、B 两个质量相等的木块,mm k g A B==2,中间用轻质弹簧相连。
现对B 施一水平恒力F ,如图4所示,经过一段时间,A 、B 的速度等于5m/s 时恰好一起做匀加速直线运动,此过程恒力做功为100J ,当A 、B 恰好一起做匀加速运动时撤除恒力,在以后的运动过程中求木块A 的最小速度。
2023年江苏物理高考试题(含(含答案))

2023 年江苏高考物理试题一.单项选择题:此题共5 小题每题3 分,共计15 分。
每题只有一个选项符合题意。
1.我国高分系列卫星的高区分对地观看力气不断提高。
今年5 月9 日放射的“高分五号”轨道高度约为705km,之前已运行的“高分四号”轨道高度约为36000km,它们都绕地球做圆周运动。
与“高分四号”相比,以下物理量中“高分五号”较小的是(A)周期(B)角速度(C)线速度(D)向心加速度2.承受220kV1 高压向远方的城市输电,当输送功率确定时,为使输电线上损耗的功率减小为原来的4 ,输电电压应变为(A)55kV (B)110kV (C)440kV (D)880kV3.某弹射管每次弹出的小球速度相等。
在沿光滑竖直轨道自由下落过程中,该弹射管保持水平,先后弹出两只小球。
无视空气阻力,两只小球落到水平地面的(A)时刻一样,地点一样(B)时刻一样,地点不同(C)时刻不同,地点一样(D)时刻不同,地点不同4.从地面竖直向上抛出一只小球,小球运动一段时间后落回地面。
无视空气阻力,该过程中小球的动能E k 与时间t 的关系图象是5.如以下图,水平金属板A、B分别与电源两极相连,带电油滴处于静止状态。
现将B板右端向下移动一小段距离,两金属板外表仍均为等势面,则该油滴(A)照旧保持静止(B)竖直向下运动(C)向左下方运动(D)向右下方运动二.多项选择题:此题共4 小题,每题4 分,共计16 分。
每题有多个选项符合题意。
全部选对的得4 分,选对但不全的得2 分,错选或不答的得0 分。
6.火车以60m/s的速率转过一段弯道,某乘客觉察放在桌面上的指南针在10s内匀速转过了约10°。
在此10s 时间内,火车(A)运动路程为600m (B)加速度为零(C)角速度约为1rad/s (D)转弯半径约为3.4km 7.如以下图,轻质弹簧一端固定,另一端连接一小物块,O点为弹簧在原长时物块的位置。
物块由A点静止释放,沿粗糙程度一样的水平面对右运动,最远到达B点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理中的磁场、安培力问题 【练习】 1 (2017年4月浙江物理选考)如图所示,两平行直导线cd和ef竖直放置,通以方向相反大小相等的电流,ab两点位于两导线所在的平面内,则 A.b点的磁感应强度为零 B.ef导线在a点产生的磁场方向垂直纸面向里 C.cd导线受到的安培力方向向右 D.同时改变两导线的电流方向,cd导线受到的安培力方向不变
【答案】D 2 (多选)三条在同一平面(纸面)内的长直绝缘导线组成一等边三角形,在导线中通过的电流均为I,方向如图所示.a、b和c三点分别位于三角形的三个顶角的平分线上,且到相应顶点的距离相等.将 a、b和c处的磁感应强度大小分别记为B1、B2和B3,下列说法正确的是( )
A.B1=B2<B3 B.B1=B2=B3 C.a、b处磁场方向垂直于纸面向外,c处磁场方向垂直于纸面向里D.a处磁场方向垂直于纸面向外,b、c处磁场方向垂直于纸面向里
【答案】AC 解:A、B、由题意可知,a点的磁感应强度等于三条通电导线在此处叠加而成,即垂直纸面向外,而b点与a点有相同的情 况,有两根相互抵消,则由第三根产生磁场,即为垂直纸面向外,而c点三根导线产生磁场方向相同,所以叠加而成的磁场最强,故 A正确,B错误; C、 D、由图可知,根据右手螺旋定则可得, a和b处磁场方向垂直于纸面向外,c处磁场方向垂直于纸面向里,故C正确, B错误. 故选:AC . 3 如图,水平桌面上固定有一半径为R的金属细圆环,环面水平,圆环每单位长度的电阻为r,空间有一匀强磁场,磁感应强度大小为B,方向竖直向下;一长度为2R、电阻可忽略的导体棒置于圆环左侧并与环相切,切点为棒的中点.棒在拉力的作用下以恒定加速度 a 从静止开始向右运动,运动过程中棒与圆环接触良好.下列说法正确的是( ). A. 拉力的大小在运动过程中保持不变
B. 棒通过整个圆环所用的时间为aR2
C. 棒经过环心时流过棒的电流为raRB2 D. 棒经过环心时所受安培力的大小为rRaRB282
【答案】D 解:A、棒在拉力的作用下以恒定加速度a从静止开始向右运动,则速度为v=at,因此F=BIL=RatLB22,可知在运动过程 中棒所受安培力变化,则拉力大小也变化,故A错误; B、根据位移公式 2212atR,可得时间为
aRt4 ,故B错误; C、当棒运动到环中
心时,由于棒将金属细圆环分开的两部分的电
阻并联,则电路总电阻为2Rr,速度大小为aRv2, 产生感应电动势RaRBBLvE22,所以产生感应电流大小为
rRaBrREI242,故C错误;
D、棒经过环心时所受安培力的大小为F=BIL=rRaRB282,故D正确.故选:D. 4 如图所示条形磁铁放在水平桌面上,在其正中央的上方固定一根长直导线,导线与磁铁垂直,给导线通以垂直纸面向里的电流,用F表示磁铁对桌面的压力,用f表示桌面对磁铁的摩擦力,导线中通电后与通电前相比较( ) A F减小,f = 0 B F减小,f ≠ 0 C F增大,f = 0 D F增大,f ≠ 0
【答案】C 解:(1)磁铁的磁感线在它的外部是从N极到S极,因为长直导线在磁铁的中央上方,所以此处的磁感线是水平的,电流 的方向垂直与纸面向里,根据左手定则,导线受磁铁给的“安培力”方向竖直向上,如下图所示:
(2)长直导线是固定不动的,根据物体间力的作用是相互的,导线给磁铁的反作用力方向就是竖直向下的; (3)因此磁铁对水平桌面的压力除了重力之外还有通电导线的作用力,压力是增大的;因为这两个力的方向都是竖直向下的,所以磁铁不会发生相对运动,也就不会产生摩擦力. 故选:C. 【同类题】如图所示,条形磁铁放在水平桌面上,在桌正中央偏右的上方固定一根直导线,导线与磁铁垂直,给导线通以垂直纸面向里的电流时,则( ) A磁铁对桌面的压力不变 B磁铁对桌面的压力减小 C磁铁相对桌面存在向右的运动趋势 D磁铁相对桌面存在向左的运动趋势
【答案】D 解:以导线为研究对象,由左手定则判断得知导线所受安培力方向斜向右上方,根据牛顿第三定律得知,导线对磁铁的安培力方向斜向左下方,磁铁有向左运动的趋势,受到向右的摩擦力,同时磁铁对地的压力增大.故D正确,ABC错误. 故选:D. 【同类题】如图所示,放在台秤上的条形磁铁两极未知,为了探明磁铁的极性,在它中央的正上方固定一导线,导线与磁铁垂直,给导线通以垂直纸面向外的电流,则( ) A.如果台秤的示数增大,说明磁铁左端是北极 B.如果台秤的示数增大,说明磁铁右端是北极 C.无论如何台秤的示数都不可能变化 D.以上说法都不正确
【答案】A 5 在等边三角形的三个顶点a、b、c处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流方向如图。过c点的导线所受安培力的方向( ) A. 与ab边平行,竖直向上 B. 与ab边平行,竖直向下 C. 与ab边垂直,指向右边 D. 与ab边垂直,指向左边 【答案】D 解:试题分析:先根据右手定则判断各个导线在c点的磁场方向,然后根据平行四边形定则,判断和磁场方向,最后根据左手定则判断安培力方向 导线a在c处的磁场方向垂直ac斜向下,b在c处的磁场方向垂直bc斜向上,两者的和磁场方向为竖直向下,根据左手定则可得c点所受安培力方向为与ab边垂直,指向左边,D正确; 6 如图所示,一边长为L、底边BC的电阻RBC是两腰AB、AC的电阻RAB、RAC的两倍(RBC=2RAB=2RAC)的正三角形金属框放置在磁感应强度为B的匀强磁场中,若通以图示方向的电流,且已知从B端流入的总电流强度为I,则金属框受到的总磁力大小为( ) A 0 B BIL C 34BIL D 2BIL 【答案】B 解:由题意可知,电阻RAB、RAC之间相串联后与RBC并联,由串并联知识,可知,通过BC与从B经过A到C的电流相等,即为2I;根据左手定则可知,各段受到的安培力如图所示, 再对正三角形金属框受力分析,并根据力的平行四边形定则,
7 如图所示,在倾角为α的光滑斜面上,垂直纸面放置一根长为L,质量为m的直导体棒,导体棒中的电流I垂直纸面向里,欲使导体棒静 止在斜面上,可施加一个平行于纸面的匀强磁场,匀强磁场的磁感应强度为B。当匀强磁场的方向由竖直向上沿逆时针转至水平向左的过程中,下列关于B的大小变化的说法中,正确的是( ) A. 逐渐增大 B. 逐渐减小 C. 先减小后增大 D. 先增大后减小 【答案】C 解:对导体棒受力分析,受重力G、支持力FN和安培力FA,三力平衡,合力为零,将支持力FN和安培力FA合成,合力与重力相平衡,如图。从图中可以看出,安培力FA先变小后变大,由于FA= BIL,其中电流I和导体棒的长度L均不变,故磁感应强度先变小后变大,故选项C正确。 8 如图所示,电源电动势3 V,内阻不计,导体棒质量60 g,长1 m,电阻1.5Ω放在两个固定光滑绝缘环上,若已知绝缘环半径0.5 m.空间存在竖直向上匀强磁场,B=0.4 T。当开关闭合后,则(sin37。=0.6) 。 A. 棒能在某一位置静止,在此位置上棒对每一只环的压力为1N B. 棒从环的底端静止释放能上滑至最高点的高度差是0.2m C. 棒从环的底端静止释放上滑过程中最大动能是0.2J D. 棒从环的底端静止释放上滑过程中速度最大时对两环的压力为1 N
【答案】A 解:金属棒受到的安培力为:8.0RBELBILFN ; 对金属棒进行受力分
析,金属棒受到重力、安培力和两个环的支持力,如图。 因为金属棒静止,根据平衡条件得每个环对棒的支持力5.0)(2122mgFFN N ,选项A错误;由于:mgFtan 所
以:θ=53° 所以金属棒上升的高度为:h=2( r-rcosθ)=0.4m,选项B错误; 由动能定理得:F•Rsinθ-mgR(1-cosθ) =Ekm=21mvm2
代入数据得:Ekm=0.2J ;3152vm/s 根据牛顿定律:RvmFFNmN222 解得:FmN=0.9N,故选项C正确,D错误;故选C. 9 如图所示,蹄形磁体用悬线悬于O点,在磁体的正下方有一水平放置的长直导线,当导线通以由左向右的电流时,蹄形磁体的运动情况将是 ( )
A、静止不动 B、向纸外运动 C、N极向纸外转动,S级向纸内转动 D、N极向纸内转动,S级向纸外转动
【答案】C
10 (多选) 超导是当今高科技的热点.当一块磁体靠近超导体时,超导体会产生强大的电流,对磁体有排斥作用.这种排斥力可以使磁体悬浮于空中,磁悬浮列车就采用了这种技术.关于磁体悬浮,下列说法中正确的是( ) (A) 超导体中电流产生的磁场方向与磁体的磁场方向相反 (B) 超导体中电流产生的磁场方向与磁体的磁场方向相同
(C) 超导体对磁体的力与磁体的重力平衡 (D) 超导体使磁体处于失重状态
【答案】AC 解:AB、超导体中电流产生的磁场方向与磁体的磁
场方向相反,产生了排斥力,这种排斥力可以使磁体悬浮于空中,A正确B错误; CD、排斥力可以使磁体悬浮于空中,所以超导体对磁体的力与磁体的重力平衡,C正确D错误; 故选:AC. 11 (浙江2018年11月选考)电流天平是一种测量磁场力的装量,如图所示。两相距很近的通电平行线圈Ⅰ和Ⅱ,线圈Ⅰ固定,线圈Ⅱ置于天平托盘上。当两线圈均无电流通过时,天平示数恰好为零。下列说法正确的是( )
A. 当天平示数为负时,两线圈电流方向相同 B. 当天平示数为正时,两线圈电流方向相同 C. 线圈Ⅰ对线圈Ⅱ的作用力大于线圈Ⅱ对线圈Ⅰ的作用力 D. 线圈Ⅰ对线圈Ⅱ的作用力与托盘对线圈Ⅱ的作用力是一对相互作用力