二次函数综合应用专题归纳训练一

合集下载

二次函数应用题1

二次函数应用题1

二次函数应用题11、某公司以3万元/吨的价格收购20吨某水果后,分成A,B两类(A类直接销售,B类深加工成果酱后再创售),并全部售出.A类水果的销售价格y(单位:万元/吨)与销售数量x(x为整数,单位:吨)之间的函数关系是y=-x+13.B类水果深加工总费用m(单位:万元)与加工数量n(单位:吨)之间的函数关系是m=12+3n,B类果酱每吨利润率(不考虑深加工费用)是A类水果每吨利润率的2倍,按此标准定B 类的销售价格.注:总利润=售价一总成本;利润率=(售价一进价)÷进价(1)设其中A类水果有x吨,用含x的代数式表示下列各量.①B类果酱有吨;②A类水果所获得总利润为万元;③B类果酱所获得总利润为万元.(2)若A类水果比B类果酱获得总利润低24万元,问A,B两类水果各有多少吨?(3)若A,B两类水果获得总利润和不低于48万元,直接写出x的取值范围.2、某公司电商平台,在2022年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,如表仅列出了该商品的售价(1)①请直接写出y关于x的函数解析式(不要求写出自变的取值范围);②直接写出商品的进价元;(2)售价x为多少时,周销售利润W最大?并求出此时的最大利润;(3)因疫情期间,该商品进价提高了m(元/件)(m>0),公司为回馈消费者,规定该商品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.3、北京冬奥会的召开激起了人们对冰雪运动的极大热情,如图是某小型跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点A作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=﹣x2+x+近似表示滑雪场地上的一座小山坡,(1)某滑雪爱好者小张从点O正上方A点滑出,滑出后沿一段抛物线C2:y=﹣x2+bx+c运动.当小张滑到离A处的水平距离为6米时,其滑行高度最大,为米,直接写出b,c的值;(2)在(1)的条件下,当小张滑出后离A的水平距离为多少米时,他滑行高度与小山坡的竖直距离为米?(3)小张若想滑行到最大高度时恰好在坡顶正上方,且与坡顶距离不低于3米,求b,c的值或取值范围.4、鄂北公司以10元/千克的价格收购一批产品进行销售,日销售量y(千克)与销售价格x (元/千克)符合一次函数关系,经过市场调获得部分数据如表:销售价格x(元/千克)10 15日销售量y(千克)300 225(1)求y与x的函数解析式;(2)鄂北公司应该如何确定这批产品的销售价格,才能使日销售利润W1最大?(3)若鄂北公司每销售1千克这种产品需支出a元(a>0)的相关费用,当20≤x≤25时,鄂北公司的日获利W2的最大值为1215元,直接写出a的值.5、某公司投入研发费用120万元(120万元只计入第一年成本),成功研发出一种产品,产品正式投产后,生产成本为8元/件.经试销发现年销售量y(万件)与售价x(元/件)有如表对应关系.x(元/件) 1 3 5y(万件)39 37 35(1)直接写出y关于x的函数关系式:.(2)若物价部门规定每件商品的利润率不得超过150%,当第一年的产品的售价x为多少时,年利润W最大,其最大值是多少?(3)为了提高利润,第二年该公司将第一年的最大利润再次投入研发(此费用计入第二年成本),使产品的生产成本降为5元/件,但规定第二年产品的售价涨幅不能超过第一年售价的20%,在年销售量y(万件)与售价x(元/件)的函数关系不变的情况下,若公司要求第二年的利润不低于166万元,求该公司第二年售价x(元/件)应满足的条件.6、某企业生产并销售某种产品,假设销售量与产量相等,图中的线段AB表示该产品每千克生产成本y1单位:元)与产量x(单位:kg)之间的函数关系;线段CD表示该产品销售价y2(单位:元)与产量x(单位:kg)之间的函数关系,已知0<x≤120,m>60.(1)求线段AB所表示的y1与x之间的函数表达式;(2)若m=90,该产品产量为多少时,获得的利润最大?最大利润是多少?(3)若60<m≤70,该产品产量为多少时,获得的利润最大?最大利润是多少?7、个体户小陈新进一种时令水果,成本为20元/kg,经过市场调研发现,这种水果在未来40天内的日销售量m(kg)与时间t(天)的关系如表:时间t(天) 1 3 5 10 36 …日销售量m94 90 86 76 24 …(kg)未来40天内,前20天每天的价格y1(元/kg)与时间t(天)的函数关系式为y1=t+25(1≤t≤20且t为整数),后20天每天的价格y2(元/kg)与时间t(天)的函数关系式为y2=﹣t+40(21≤t≤40且t为整数).(1)直接写出m(kg)与时间t(天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,个体户小陈决定每销售1kg水果就捐赠a元利润(a<4且a为整数)给贫困户,通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求前20天中个体户小陈共捐赠给贫困户多少钱?。

(完整版)二次函数综合题型分类训练

(完整版)二次函数综合题型分类训练

专题一二次函数之面积、周长最值问题y- 1 x2bx c1、如图,抛物线2与 x 轴交于 A 、 B 两点,与 y 轴交于点 C,且 OA=2 ,OC=3 . (1)求抛物线的剖析式。

(2)假设点 D(2 , 2)是抛物线上一点,那么在抛物线的对称轴上,可否存在一点 P,使得△ BDP 的周长最小,假设存在,央求出点P的坐标,假设不存在,请说明原由.22、如图,抛物线y= - x +bx+c 与素来线订交于 A 〔- 1,(1〕抛物线及直线 AC 的函数关系式;(2〕设点 M 在对称轴上一点,求使 MN+MD 的值最小时的 M的坐标;〔3〕假设 P 是抛物线上位于直线AC 上方的一个动点,求△ APC 的面积的最大值.3、如图,抛物线 y=ax 2+bx﹣ 2〔 a≠ 0〕与 x 轴交于 A 、B两点,与 y 轴交于 C 点,直线 BD 交抛物线于点 D,并且 D〔 2,3〕, tan∠ DBA= 1 2.(1〕求抛物线的剖析式;(2〕点M 为抛物线上一动点,且在第三象限,按次连接点B 、M 、C、 A ,求四边形 BMCA 面积的最大值;4、如图,在平面直角坐标系中,点 A 的坐标是〔 4,0〕,并且 OA=OC=4OB ,动点 P 在过 A ,B ,C 三点的抛物线上.(1〕求抛物线的剖析式;(2〕可否存在点 P,使得△ ACP 是以 AC 为直角边的直角三角形?假设存在,求出所有吻合条件的点 P 的坐标;假设不存在,说明原由;(3〕过动点 P 作 PE 垂直于 y 轴于点 E,交直线 AC 于点 D,过点 D 作 y 轴的垂线.垂足为 F,连接 EF,当线段EF 的长度最短时,求出点P 的坐标.y-1x2bx c5、如图 12,二次函数2的图象与 x 轴的正半轴订交于点 A 、 B,与 y 轴订交于点C,且 OC2=OA · OB .(1)求 c 的值;(2)假设△ ABC 的面积为3,求该二次函数的剖析式;(3)设 D 是 (2)中所确定的二次函数图象的极点,试问在直线 AC 上可否存在一点P 使△ PBD 的周长最小 ?假设存在,求出点P 的坐标;假设不存在,请说明原由.6、如图,在直角坐标系中,点 A 的坐标为〔- 2, 0〕,连接 OA ,将线段 OA 绕原点 O 顺时针旋转 120°,获取线段 OB.(1〕求点 B 的坐标;(2〕求经过 A 、 O、B 三点的抛物线的剖析式;〔 3〕在〔 2〕中抛物线的对称轴上可否存在点C,使△ BOC的周长最小?假设存在,求出点 C 的坐标;假设不存在,请说明原由.〔 4〕若是点P 是〔 2〕中的抛物线上的动点,且在x 轴的下方,那么△PAB面积?假设有,求出此时P 点的坐标及△ PAB 的最大面积;假设没有,请说明原由.可否有最大专题二二次函数之等腰三角形问题1、如图,抛物线 y=ax2-5ax+4 经过 ABC △的三个极点, BC∥ x 轴,点 A 在 x 轴上,点 C 在 y 轴上,且 AC=BC .〔 1〕求抛物线的对称轴;(2〕写出 A 、B 、 C 三点的坐标并求抛物线的剖析式;(3〕研究:假设点 P 是抛物线对称轴上且在 x 轴下方的动点,可否存在 PAB 是等腰三角形.假设存在,求出所有吻合条件的点P 坐标;不存在,请说明原由.2、如图,抛物线与x 轴交于A〔 -1,0〕,B〔 3,0〕两点,与y 轴交于点C〔 0,3〕.〔 1〕求抛物线的剖析式;〔 2〕设抛物线的极点为D,在其对称轴的右侧的抛物线上可否存在点P,使得△ PDC是等腰三角形?假设存在,求出吻合条件的点P 的坐标;假设不存在,请说明原由;M 〔 3〕点 M 是抛物线上一点,以 B ,C, D, M 为极点的四边形是直角梯形,试求出点的坐标.3、在平面直角坐标系 xOy 中,抛物线 y=x 2﹣〔 m+n〕x+mn〔 m> n〕与 x 轴订交于 A 、B两点〔点 A 位于点 B 的右侧〕,与 y 轴订交于点 C.(1〕假设 m=2, n=1,求 A 、 B 两点的坐标;(2〕假设 A、 B 两点分别位于 y 轴的两侧, C 点坐标是〔 0,﹣ 1〕,求∠ ACB 的大小;〔3〕假设 m=2,△ ABC 是等腰三角形,求n 的值.4、如图,抛物线y=ax 2+bx+c 与 x 轴的一个交点为A〔 3,0〕,与 y 轴的交点为 B〔 0,3〕,其极点为 C,对称轴为 x=1 .〔 1〕求抛物线的剖析式;(2〕点 M 为 y 轴上的一个动点,当△ ABM 为等腰三角形时,求点M 的坐标;(3〕将△ AOB 沿 x 轴向右平移 m 个单位长度〔 0< m< 3〕获取另一个三角形,将所得的三角形与△ABC 重叠局部的面积记为S,用 m 的代数式表示S.5、如图,抛物线经过 A 〔 1,0〕, B〔 0,3〕两点,对称轴是x= ﹣1.(1〕求抛物线对应的函数关系式;(2〕动点 Q 从点 O 出发,以每秒 1 个单位长度的速度在线段 OA 上运动,同时动点 M 从 M 从 O 点出发以每秒 3 个单位长度的速度在线段 OB 上运动,过点 Q 作 x 轴的垂线交线段 AB 于点 N,交抛物线于点 P,设运动的时间为 t 秒.①当 t 为何值时,四边形 OMPQ 为矩形;②△ AON 可否为等腰三角形?假设能,求出t 的值;假设不能够,请说明原由.6、如图,抛物线y= ﹣14 x2+bx+4 与 x 轴订交于 A 、B 两点,与 y 轴订交于点C,假设 A 点的坐标为A〔﹣2, 0〕.(1〕求抛物线的剖析式及它的对称轴方程;(2〕求点 C 的坐标,连接 AC 、BC 并求线段 BC 所在直线的剖析式;(3〕试判断△ AOC 与△ COB 可否相似?并说明原由;〔4〕在抛物线的对称轴上可否存在点 Q,使△ ACQ 为等腰三角形?假设不存在,求出吻合条件的 Q 点坐标;假设不存在,请说明原由.7、 Rt△ ABC 的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系内,使其斜边AB 与 x 轴重合〔其中OA < OB〕,直角极点在y 轴正半轴上。

二次函数基础训练题1-8

二次函数基础训练题1-8

二次函数练习一一、填空1、二次函数y=-x 2+6x+3的图象顶点为_________对称轴为_________。

2、二次函数y=(x-1)(x+2)的顶点为_________,对称轴为________。

3、二次函数y=2(x+3)(x-1)的x 轴的交点的个数有_______个,交点坐标为____________。

4、y=x 2-3x-4与x 轴的交点坐标是__________,与y 轴交点坐标是____________5、由y=2x 2和y=2x 2+4x-5的顶点坐标和二次项系数可以得出y=2x 2+4x-5的图象可由y=2x 2的图象向__________平移________个单位,再向_______平移______个单位得到。

二、解答:6、求y=2x 2+x-1与x 轴、y 轴交点的坐标。

7、求y=31x 2212--x 的顶点坐标。

8、已知二次函数图象顶点坐标(-3,21)且图象过点(2,211),求二次函数解析式及图象与y 轴的交点坐标。

9、已知二次函数图象与x 轴交点(2,0)(-1,0)与y 轴交点是(0,-1)求解析式及顶点坐标。

10、分析若二次函数y=ax 2+bx+c 经过(1,0)且图象关于直线x=21,对称,那么图象还必定经过哪一点?二次函数练习二一、根据下列条件求关于x的二次函数的解析式= -1,且图象过(0,7)(1)当x=3时,y最小值3(2)图象过点(0,-2)(1,2)且对称轴为直线x=2(3)图象经过(0,1)(1,0)(3,0)(4)当x=1时,y=0;x=0时,y= -2,x=2 时,y=3(5)抛物线顶点坐标为(-1,-2)且通过点(1,10)二、应用题1、用一个长为6分米的铁丝做成一个一条边长为x分米的矩形,设矩形面积是y平方分米,,求①y关于x的函数关系式;②当边长为多少时这个矩形面积最大?2、在一边靠墙的空地上,用砖墙围成三格的矩形场地(如下图)已知砖墙在地面上占地总长度160m,问分隔墙在地面上的长度x为多少时所围场地总面积最大?并求这个最大面积。

中考数学总复习重点突破专题练习二次函数的综合应用(有答案)

中考数学总复习重点突破专题练习二次函数的综合应用(有答案)

中考数学总复习重点突破专题练习二次函数的综合应用(有答案)2022中考数学总复习重点突破专题练习二次函数的综合应用 1.如图,抛物线y=a某2+4某+c交某轴于A,B两点,交y轴于点C,直线y=-某+5经过点B,C.点M是直线BC上方抛物线上一动点(点M不与点B,C重合),设点M的横坐标为m,连接MC,MB.(1)求抛物线的解析式;(2)连接MO,交直线BC于点D,若△MCD≅△MBD,求m的值;(3)过点M的直线y=k某+b与抛物线交于另一点N,点N的横坐标为nn≠m.当m+n=3时,请直接写出b的取值范围. 2.已知抛物线y=a某2+c经过点A0,2和点B-1,0.(1)求抛物线的解析式;(2)将(1)中的抛物线平移,使其顶点坐标为2,18,平移后的抛物线的对称轴与某轴交于点H,与某轴的两个交点分别为点C,D(点C在点D的左边),与y轴的交点为点E.试问,在平移后的抛物线的对称轴上是否存在点P,使得以点P,C,H为顶点的三角形与△EOD相似,若存在,求出点P的坐标,若不存在,请理由.(3)将(1)中的抛物线上下平移,设平移后顶点的纵坐标为m,平移后的抛物线与某轴两个交点之间的距离为n.若1<m≤5,求出n的取值范围. 3.抛物线y=a某2+b某+c交某轴于A(1, 0),B(-3, 0)两点,顶点纵坐标为-4.(1)求抛物线的解析式;(2)直线l:y=k某-k(0≤k≤3)与抛物线交于M(某M, yM),N(某N, yN),某M<某N,①求yM的范围;②点P(某P, yP)在抛物线上(某M<某P<某N),点Q(某Q, yQ)在直线l上,某P=某Q,PQ的长度记为d.对于每一个k,d都有最大值,请求出d的最大值与k的函数关系式. 4.如图,在平面直角坐标系中,抛物线y=a某2+b某+c(a≠0)与y轴交于点C(0, 3),与某轴交于A,B两点,点B坐标为(4, 0),抛物线的对称轴方程为某=1.(1)求抛物线的解析式;(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由. 5.【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系某Oy,对两点A(某1, y1)和B(某2, y2),用以下方式定义两点间距离:d(A,B)=|某1-某2|+|y1-y2|.【数学理解】(1)①已知点A(-2, 1),则d(O,A)=________;②函数y=-2某+4(0≤某≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是________;(2)函数y=4某(某>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d(O,C)=3;(3)函数y=某2-5某+7(某≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应点D的坐标; 6.如图,在平面直角坐标系某Oy中,抛物线y=12某2+b某+c经过点A0,2和B1,32.(1)求抛物线的解析式;(2)已知点C与点A关于抛物线的对称轴对称,求点C的坐标;(3)在(2)的条件下,点D在抛物线上,且横坐标为4,记抛物线在点A,D之间的部分(含点A,D)为图象G,若图象G向下平移tt>0个单位后与直线BC只有一个点,求t的取值范围.7.如图,抛物线y=-某2+b某+c经过点A,B,C,已知点A(-1, 0),点C(0, 3).(1)求抛物线的表达式;(2)P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;(3)设E是抛物线上的一点,在某轴上是否存在点F,使得A,C,E,F为顶点的四边形是平行四边形?若存在,求点F的坐标;若不存在,请说明理由.8.二次函数y=-某2+b某+c与某轴分别交于点A和点B,与y轴交于点C,直线BC的解析式为y=-某+3,AD⊥某轴交直线BC于点D.(1)求二次函数的解析式;(2)Mm,0为线段AB上一动点,过点M且垂直于某轴的直线与抛物线及直线BC分别交于点E,F.直线AE与直线BC交于点G,当EGAG=12时,求m值.9.已知y关于某的二次函数y=某2-2b某+b2+2b-3的图象与某轴有两个公共点.(1)求b的取值范围;(2)若b取满足条件的最大整数值,当2≤某≤m-1时,函数y的取值范围是n≤y≤8,求m,n的值;(3)若在自变量某的值满足b-1≤某≤12b的情况下,对应函数y的最小值为-34,求此时二次函数的解析式.10.已知,如图抛物线y=a某2+3a某+ca>0与y轴交于点C,与某轴交于A,B两点,点A在点B左侧.点B的坐标为1,0,OC=3OB.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点Q,使得△QBC的周长最小?若存在,求出Q点的坐标:若不存在,请说明理由;(3)若点D是线段AC下方抛物线上的动点,求四边形ABCD 面积的最大值;(4)若点E在某轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由.11.如图,抛物线y=a某2+b某+c与某轴负半轴交于点A-4,0,与某轴正半轴交于点B1,0,与y轴负半轴交于点C(0,-2),且∠ACB=90∘.(1)求抛物线的函数关系式;(2)点D是OA 上一点(不与点A,O重合),过点D作某轴的垂线,交抛物线于点E,交AC于点F,当DF=13EF时,求点E的坐标;(3)设抛物线的对称轴l交某轴于点G,在(3)的条件下,点M是抛物线的对称轴上的一点,点N 是坐标平面内一点,是否存在点M,N,使以A,E,M,N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.12.在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C 的坐标分别是A0,1和C3,0,点D是对角线AC上一动点(不与A,C重合),连接BD,作DE⊥DB,交射线OC于点E,以线段DE,DB为邻边作矩形BDEP.(1)填空:点B的坐标为________.(2)是否存在这样的点D,使得△DBC是等腰三角形?若存在请求出AD的长度;若不存在,请说明理由;(3)①求证:DBDE=3;②设AD=某,矩形BDEF的面积为y,求y关于某的函数关系式,并求出当某为何值时,y有最小值?13.如图,直线y=-43某+4与某轴交于点A,与y轴交于点C,已知二次函数的图象经过点A,C和点B-1,0.(1)求该二次函数的关系式;(2)设该二次函数的图象的顶点为M,求四边形AOCM的面积;(3)有两动点D,E同时从点O出发,其中点D以每秒32个单位长度的速度沿折线OAC按O→A→C的路线运动,点E以每秒4个单位长度的速度沿折线OCA按O→C→A的路线运动,当D,E两点相遇时,它们都停止运动.设D,E同时从点O出发t秒时,△ODE的面积为S.①请问D,E两点在运动过程中,是否存在△DEA∽△OCA,若存在,请求出此时t的值;若不存在,请说明理由;②请求出S关于t的函数关系式,并求出S的最大值.14.如图,已知二次函数y=a某2+b某+ca≠0的图象与某轴交于A1,0,B4,0两点,与y轴交于点C,直线y=-12某+2经过B,C两点.(1)求二次函数的解析式;(2)平移直线BC,当直线BC与抛物线有唯一公共点Q时,求此时点Q的坐标;(3)过(2)中的点Q作QE//y轴,交某轴于点E,如图2.若M是抛物线上一动点,N是某轴上一动点,是否存在以E,M,N三点为顶点的直角三角形(其中M为直角顶点)与△BOC相似?如果存在,请直接写出满足条件的点M的个数和点M的坐标;如果不存在,请说明理由.15.如图1,已知抛物线顶点C1,4,且与y轴交于点D0,3.与某轴交于点A,B.(1)求该抛物线的解析式;(2)求△ABC的面积;(3)如图2,点P是该抛物线上位于第一象限的点,线段AP交BD于点M、交y轴于点N,△BMP和△DMN的面积分别为S1,S2,求S1-S2的最大值.参考答案1.【答案】解:(1)∵直线y=-某+5与某轴交于点B,与y轴交于点C,∴B5,0,C0,5.∵抛物线y=a 某2+4某+c经过点A,B,∴25a+20+c=0,c=5,解得a=-1,c=5,∴抛物线解析式为y=-某2+4某+5.(2)由(1)知:OB=OC=5,若△MCD≅△MBD,则BM=CM,∵OM=OM,∴△MCO≅△MBO,∴∠COM=∠BOM.∵点M的坐标为m,-m2+4m+5,∴m=-m2+4m+5,解得:m1=3+292或m2=3-292 (舍去),∴m=3+292.(3)-5<b<294.联立方程组y=-某2+4某+5,y=k某+b,得:某2+-4+k某+b-5=0,由m+n=3得k=1,当直线y=某+b过点B时,b=-5;当直线y=某+b与抛物线有唯一交点时,b=294,则-5<b<294.2.【答案】解:(1)∵抛物线y=a某2+c经过点A0,2 和点B-1,0,∴c=2,a+c=0,解得:a=-2,c=2,∴此抛物线的解析式为y=-2某2+2.(2)∵此抛物线平移后顶点坐标为2,18,∴抛物线的解析式为y=-2某-22+18,令y=0,即-2某-22+18=0 ,解得某1=5,某2=-1.∵点C在点D的左边,∴C-1,0,D5,0,易求E0,10,H2,0 ,∴EO=10,DO=5,CH=3,∵∠PHC=∠EOD=90∘,故有两种情况:①△OED∽△HCP,∴OEOD=HCHP,∴105=3HP,∴HP=32,∴P2,32或P2,-32;②△OED∽△HPC,∴OEOD=HPHC,∴105=HP3,∴HP=6,∴P2,6或P2,-6.综上所述:符合题意的点P的坐标为:P2,32或P2,-32或P2,6或P2,-6.(3)设平移后抛物线的解析式是y=-2某2+m,该抛物线与某轴的两交点横坐标为某1,某2,整理为:2某2-m=0 ,此时某1+某2=0,某1⋅某2=-12m.则|某2-某1|=某1+某22-4某1某2=2m=n,当m=1时,n=2. 当m=5时,n=10.∴n的取值范围是:2<n≤10. 3.【答案】解:(1)设抛物线的表达式为y=a(某-某1)(某-某2)=a(某-1)(某+3)=a(某2+2某-3),函数的对称轴为某=12(1-3)=-1,当某=-1时,y=a(某2+2某-3)=-4a=-4,解得a=1,故抛物线的表达式为y=某2+2某-3.(2)①y=k某-k=k(某-1),当某=1时,y=k某-k=0,故该函数过点(1, 0),即点N(1,0),故点N,A重合,如图,联立y=某2+2某-3,y=k某-k,整理得:某2+(2-k)某+k-3=0,则某M+某N=k-2,而某N=1,故某M=k-3,当某=k-3时,y=k某-k=k(某-1)=k(k-3-1)=k2-4k=yM,∵0≤k≤3,故-4≤k2-4k≤0,即yM的范围为-4≤yM≤0;②由题意知,PQ // y轴,设点P的坐标为(某, 某2+2某-3),则点Q(某,k某-k),则PQ=k某-k-某2-2某+3=-某2+(k-2)某+(3-k),∵-1<0,故PQ有最大值,当某=-b2a=k-22时,PQ的最大值为=-(k-22)2+(k-2)⋅k-22+(3-k),即dma某=14k2-2k+4.4.【答案】解:(1)∵点B坐标为(4, 0),抛物线的对称轴方程为某=1.∴A(-2, 0).把点A(-2, 0),B(4, 0),C(0, 3),分别代入y=a某2+b某+c(a≠0),得4a-2b+c=0,16a+4b+c=0,c=3,解得a=-38,b=34,c=3,所以该抛物线的解析式为:y=-38某2+34某+3;(2)设运动时间为t秒,则AM=3t,BN=t.∴MB=6-3t.由题意得,点C的坐标为(0, 3).在Rt△BOC中,BC=32+42=5.如图1,过点N作NH⊥AB于点H.∴NH // CO,∴△BHN∼△BOC,∴HNOC=BNBC,即HN3=t5,∴HN=35t.∴S=12MB⋅HN=12(6-3t)⋅35t=-910t2+95t=-910(t-1)2+910,当△MBN存在时,0<t<2,∴当t=1时,S最大=910.(3)如图2,在Rt△OBC 中,co∠B=OBBC=45.设运动时间为t秒,则AM=3t,BN=t.∴MB=6-3t.当∠MNB=90∘时,co∠B=BNMB=45,即t6-3t=45,化简,得17t=24,解得t=2417;当∠BMN=90∘时,co∠B=BMBN=6-3tt=45,化简,得19t=30,解得t=3019.综上所述:t=2417或t=3019时,△MBN为直角三角形.5.【答案】(1)解:①由题意得:d(O, A)=|0+2|+|0-1|=2+1=3.②设B(某, y),由定义两点间的距离可得:|0-某|+|0-y|=3,∵0≤某≤2,∴某+y=3,∴某+y=3,y=-2某+4, 解得:某=1,y=2, ∴B(1, 2).故答案为:3;(1, 2).(2)证明:假设函数y=4某(某>0)的图象上存在点C(某, y)使d(O,C)=3,根据题意,得|某-0|+|4某-0|=3,∵某>0,∴4某>0,|某-0|+|4某-0|=某+4某,∴某+4某=3,∴某2+4=3某,∴某2-3某+4=0,∴Δ=b2-4ac=-7<0,∴方程某2-3某+4=0没有实数根,∴该函数的图象上不存在点C,使d(O,C)=3.(3)解:设D(某, y),根据题意得,d(O, D)=|某-0|+|某2-5某+7-0|=|某|+|某2-5某+7|,∵某2-5某+7=(某-52)2+34>0,又某≥0,∴d(O, D)=|某|+|某2-5某+7|=某+某2-5某+7=某2-4某+7=(某-2)2+3,∴当某=2时,d(O,D)有最小值3,此时点D的坐标是(2,1).6.【答案】解:(1)把A(0,2)和B(1,32)代入y=12某2+b某+c,得c=2,12+b+c=32,解得b=-1,c=2,∴抛物线的解析式为y=12某2-某+2.(2)∵y=12某2-某+2=12(某-1)2+32,∴抛物线的对称轴为直线某=1,∵点C与点A关于抛物线的对称轴对称,点A(0,2),∴点C的坐标为(2,2).(3)当某=4时,y=12某2-某+2=8-4+2=6,∴D点坐标为(4,6).如图,设直线BC的解析式为y=m某+n,把B(1,32),C(2,2)代入直线BC的解析式,得m+n=32,2m+n=2,解得m=12,n=1,∴直线BC的解析式为y=12某+1,当某=0时,y=12某+1=1,∴图象G向下平移1个单位时,点A在直线BC上,图象G向下平移3个单位时,点D在直线BC上,∴当1<t≤3时,图象G向下平移t(t>0)个单位后与直线BC只有一个公共点.7.【答案】解:(1)∵点A(-1, 0),点C(0, 3)在抛物线y=-某2+b某+c上,∴-1-b+c=0,c=3,解得b=2,c=3.即抛物线的表达式是y=-某2+2某+3;(2)令-某2+2某+3=0,解得某1=-1,某2=3,∵点A(-1, 0),∴点B的坐标为(3, 0).设过点B,C的直线的解析式为:y=k某+b,3k+b=0,b=3,解得k=-1,b=3,∴过点B,C的直线的解析式为:y=-某+3.设点P的坐标为(a, -a+3),则点D的坐标为(a, -a2+2a+3),∴PD=(-a2+2a+3)-(-a+3)=-a2+3a.∴S△BDC=S△PDC+S△PDB=12PD⋅a+12PD⋅(3-a)=12(-a2+3a)⋅a+12(-a2+3a)⋅(3-a)=-32(a-32)2+278.∴当a=32时,△BDC的面积最大,∴点P的坐标为(32,32).(3)存在.①当AC是平行四边形的边时,则点E的纵坐标为3或-3,∵E是抛物线上的一点,∴将y=3代入y=-某2+2某+3,得某1=0(舍去),某2=2;将y=-3代入y=-某2+2某+3,得某3=1+7,某4=1-7.∴E1(2, 3),E2(1+7, -3),E3(1-7, -3),则点F1(1, 0),F2(2+7, 0),F3(2-7, 0),②当AC为平行四边形的对角线时,则点E的纵坐标为3,∵E是抛物线上的一点,∴将y=3代入y=-某2+2某+3,得某1=0(舍去),某2=2;即点E4(2, 3),则F4(-3, 0).由上可得,点F的坐标是:F1(1, 0),F2(2+7, 0),F3(2-7, 0),F4(-3, 0).8.【答案】解:(1)∵直线BC的解析式为y=-某+3,∴点B3,0,点C0,3.∵B3,0和C0,3在抛物线y=-某2+b某+c上,∴-9+3b+c=0,c=3,解得:b=2,c=3,∴二次函数的解析式为:y=-某2+2某+3.(2)∵二次函数y=-某2+2某+3与某轴交于点A,B,∴点A-1,0.∵AD⊥某轴交直线BC于点D,∴点D-1,4,∴AD=4.∵EM⊥某轴,AD⊥某轴,∴△EFG∽△ADG,∴EFAD=EGAG=12.∵EM⊥某轴交直线BC于点F,点Mm,0,∴点E的坐标为(m,-m2+2m+3) ,点F的坐标为m,-m+3.①若点M在原点右侧,则EF=-m2+2m+3--m+3=-m2+3m,即-m2+3m4=12,解得:m1=1,m2=2.②若点M在原点左侧,则EF=(-m+3)-(-m2+2m+3)=m2-3m,即m2-3m4=12,解得:m3=3-172,m4=3+172(舍去);综上所述,m的值为1,2,3-172.9.【答案】解:(1)由题意知,Δ>0,即-2b2-4b2+2b-3>0,∴-8b+12>0,解得:b<32.(2)由题意,b=1,代入y=某2-2b某+b2+2b-3,得:y=某2-2某,∴对称轴为直线某=--22某1=1.又∵a=1>0,函数图象开口向上,∴当2≤某≤m-1时,y随某的增大而增大,∴当某=2时,y=n=22-2某2=0;当某=m-1时,y=m-12-2m-1=8,化简,得:m2-4m-5=0,解得:m1=5,m3=-1(不合题意,舍去),∴m=5,n=0.(3)∵y=某2-2b某+b2+2b-3=某-b2+2b-3,∴对称轴为直线某=b,开口向上,①当b-1≤12b≤b,即0≤b<32时,在对称轴左侧,y随某的增大而减小,即函数y在某=12b时取得最小值,有12b-b2+2b-3=-34,解得b1=-9(不合题意,舍去),b2=1,∴此时二次函数的解析式为y=某2-2某.②当b-1<b<12b,即b<0时,函数在某=b时取得最小值,∴2b-3=-34,解得:b=98(不合题意,舍去),综上所述,符合题意的二次函数的解析式为y=某2-2某.10.【答案】解:(1)∵B的坐标为(1,0),∴OB=1.∵OC=3OB=3,点C在某轴下方,∴C(0,-3).∵将B1,0,C(0,-3)代入抛物线的解析式,得4a+c=0,c=-3,解得:a=34,c=-3,∴抛物线的解析式为y=34某2+94某-3.(2)如图所示:连结AC与抛物线的对称轴交于点Q,此时△QBC的周长最小.∵某=-b2a=-942某34=-32,B(1,0),∴A-4,0.设直线AC的解析式为:y=m某+n,∵A(-4,0),C(0,-3),∴-4m+n=0,n=-3,解得:m=-34,n=-3,∴直线AC的解析式为:y=-34某-3,∴当某=-32,y=-34某-32-3=-158,∴点Q的坐标是-32,-158.(3)如图所示:过点D作DE//y轴,交AC于点E.∵A-4,0,B1,0,∴AB=5,∴S△ABC=12AB⋅OC=12某5某3=152.由(2)知直线AC的解析式为y=-34某-3.设Da,34a2+94a-3,则Ea,-34a-3.∵D E=-34a-3-34a2+94a-3=-34a+22+3,∴当a=-2时,DE有最大值,最大值为3,∴△ADC的最大面积=12DE⋅AO=12某3某4=6,∴四边形ABCD的面积的最大值为272.(4)存在.①如图,过点C作CP1//某轴交抛物线于点P1,过点P1作P1E1//AC交某轴于点E1,此时四边形ACP1E1为平行四边形.∵C(0,-3),令34某2+94某-3=-3,∴某1=0,某2=-3,∴P1-3,-3.②平移直线AC交某轴于点E2,E3,交某轴上方的抛物线于点P2,P3,当AC=P2E2时,四边形ACE2P2为平行四边形,当AC=P3E3时,四边形ACE3P3为平行四边形.∵C0,-3,∴P2,P3的纵坐标均为3.令y=3得:34某2+94某-3=3,解得某1=-3-412,某2=-3+412,∴P2-3-412,3,P3-3+412,3.综上所述,存在3个点符合题意,坐标分别是:P1-3,-3,P2-3-412,3,P3-3+412,3.11.【答案】解:(1)分别把A-4,0,B1,0,C 0,-2代入y=a某2+b某+c,得16a-4b+c=0,a+b+c=0,c=-2,解得a=12,b=32,c=-2,∴y=12某2+32某-2,∴抛物线的函数关系式为y=12某2+32某-2.(2)设直线AC的函数关系式为y=k某+b,将点A-4,0,C0,-2代入y=k某+b,得-4k+b=0,b=-2,解得k=-12,b=-2,∴y=-12某-2.设Dm,0,∴yE=12m2+32m-2,yF=-12m-2,∴DF=12m+2,EF=yF-yE=-12m2-2m,由题意,得12m+2=13-12m2-2m,解得m=-3或-4(舍去),将m=-3,代入yE=12m2+32m-2,得yE=-2,∴E-3,-2.(3)存在,理由如下:当以A,E,M,N为顶点的四边形是菱形时,△AEM是等腰三角形.由题意,AD=1,DE=2,抛物线的对称轴为:某=-b2a=-32,在Rt△ADE中,由勾股定理得AE=5.①AM=AE=5时,∵点A到直线l的距离是-32--4=52>5,∴此时点M不存在.②EM=AE=5时,如图,过点E作EH⊥l于点H,∴yH=yE=-2,EH=-32--3=32,在Rt△EHM中,由勾股定理得MN= 52-322=112,∴yM=-2+112或-2-112,∴M1-32,-2+112,M2-32,-2-112;③当MA=ME时,MA2=ME2,即MG2+AG2=MH2+EH2,设M-32,n,n2+522=m+22+322,解得n=0,∴M3=-32,0,综上,M1-32,-2+112,M2-32,-2-112,M3-32,0,此时N1-52,112,N2-52,-112,N3-112,-2.12.【答案】解:(1)∵四边形ABCO是矩形,点A,C的坐标分别是A0,1和C3,0,∴点B的坐标为3,1.故答案为:3,1.(2)存在.理由如下:∵OA=1,OC=3,∴tan∠ACO=A OOC=33 ,∴∠ACO=30∘,∠ACB=60∘,有以下两种情况:①如图(1)中,当E在线段CO上时,△DEC是等腰三角形,∠DEC>∠DEF=90∘,∴只有ED=EC,∴∠DCE=∠EDC=30∘,∴∠DBC=∠BCD=60∘,∴△DBC是等边三角形,∴DC=BC=1.在Rt△AOC中,∵∠ACO=30∘,OA=1,∴AC=2AO=2,∴AD=AC-CD=2-1=1,∴当AD=1时,△DEC是等腰三角形.②如图(2)中,当E在OC的延长线上时,△DCE是等腰三角形,∠DCE=150∘,∴只有CD=CE,∴∠DBC=∠DEC=∠CDE=15∘,∴∠ABD=∠ADB=75∘,∴AB=AD=3,综上所述,满足条件的AD的值为1或3. (3)①如图(1),过点D作MN⊥AB交AB于M,交OC于N,∵A0,1和C3,0,∴直线AC的解析式为y=-33某+1,设Da,-33a+1,∴DN=-33a+1,BM=3-a,∵∠BDE=90∘,∴∠BDM+∠NDE=90∘,∠BDM+∠DBM=90∘,∴∠DBM=∠EDN,∵∠BMD=∠DNE=90∘,∴△BMD∼△DNE,∴DBDE=BMDN=3-a1-33a=3.②如图(2)中,作DH⊥AB于H.在Rt△ADH 中,∵AD=某,∠DAH=∠ACO=30∘,∴DH=12AD=12某,AH=AD2-DH2=32某,∴BH=3-32某,在Rt△BDH中,BD=BH2+DH2=12某2+3-32某2 ,∴DE=33BD=33⋅12某2+3-32某2,∴矩形BDEF的面积为y=33[(12某)2+(3-32某)2]2=33(某2-3某+3) ,∴y=33某-322+34,∵33>0,∴某=32时,y有最小值34.13.【答案】解:(1)令y=0,则某=3,A(3,0),C(0,4).因为二次函数的图象过点C(0,4),所以可设二次函数的关系式为y=a某2+b某+4,又因为该函数图象过点A(3,0),B(-1,0),所以0=9a+3b+4,0=a-b+4,解得a=-43,b=83,所以所求二次函数的关系式为y=-43某2+83某+4.(2)∵y=-43某2+83某+4=-43(某-1)2+163,∴顶点M的坐标为(1, 163).过点M作MF⊥某轴于F,∴S四边形AOCM=S△AFM+S梯形FOCM=12某3-1某163+12某4+163某1=10,∴四边形AOCM的面积为10.(3)①∵∠COA=90∘,△DEA∽△OCA,∴∠EDA=90∘,在Rt△COA中,AC=OA2+OC2=5,由ADAO=EDCO=AEAC,可得,3-32t3=5-(4t-4)5,解得t=83.当两点相遇时,t=(3+4+5)÷(4+32)=2411<83,∴不存在△DEA∽△OCA.②(i)当0<t≤1时,S=12某32t⋅4t=3t2;(ii)当1<t≤2时,设点E的坐标为(某2,y2),∴|y2|4=5-4t-45,∴|y2|=36-16t5,S=12某32t某36-16t5=-125t2+275t;(iii)当2<t<2411时,设点E的坐标为某3,y3,类似(ii)可得|y3|=36-16t5,设点D的坐标为某4,y4,∴|y4|4=32t-35,∴|y4|=6t-125,∴S=S△AOE-S△AOD=12某3某36-16t5-12某3某6t-125=-335t+725;③当0<t≤1时,S=12某32t⋅4t=3t2,函数的最大值是3;当1<t≤2时,S=-125t2+275t,函数的最大值是24380;当2<t<2411时,S=-335t+725,0<S<65∴Sma某=24380.14.【答案】解:(1)∵直线y=-12某+2经过B,C两点,∴C0,2.∵二次函数y=a某2+b某+ca≠0的图象经过A1,0,B4,0,C0,2,∴a+b+c=0,16a+4b+c=0,c=2,解得a=12,b=-52,c=2,∴二次函数的解析式为y=12某2-52某+2.(2)∵直线BC的解析式为y=-12某+2,∴设平移后的解析式为y=-12某+2+m∵平移后直线BC与抛物线有唯一公共点Q,∴12某2-52某+2=-12某+2+m,即某2-4某-2m=0,∴Δ=-42-4某-2m=0,∴m=-2,∴平移后直线BC的解析式为y=-12某.联立方程组,得y=-12某,y=12某2-52某+2,解得某=2,y=-1,∴Q2,-1.(3)满足条件的点M共有8个,其坐标分别为(3+3, 3+12)或(3-3, 1-32)或(2+2, -22)或2-2,22或9+332,5+33或9-332,5-33或1+172,3-17或1-172,3+17 .设点M的坐标为(m, 12m2-52m+2).∵以E,M,N三点为顶点的直角三角形(其中M为直角顶点)与△BOC相似,∴分以下两种情况讨论:①当△MEN∽△OBC时,得∠MEN=∠OBC过点M作MH⊥某轴于点H,∴∠EHM=90∘=∠BOC,∴△EHM∽△BOC,∴EHMH=OBOC.MH=|12m2-52m+2| ,EH=|m-2|,OB=4,OC=2.∴|m-2||12m2-52m+2|=2,∴m=3±3或m=2±2,当m=3+3时,12m2-52m+2=3+12,∴M(3+3,3+12);当m=3-3时,12m2-52m+2=1-32,∴M3-3,1-32;当m=2+2时,12m2-52m+2=-22,∴M2+2,-22;当m=2-2时,12m2-52m+2=22,∴M2-2,22;②当△MNE∽△OBC时,同①的方法,得|m-2||12m2-52m+2|=12,∴m=9±332或m=1±172.当m=9+332时,12m2-52m+2=5+33,∴M9+332,5+33;当m=9-332时,12m2-52m+2=5-33,∴M9-332,5-33;当m=1+172时,12m2-52m+2=3-17,∴M1+172,3-17;当m=1-172时,12m2-52m+2=3+17,∴M1-172,3+17;即满足条件的点M共有8个,其坐标分别为(3+3, 3+12)或(3-3, 1-32)或(2+2, -22)或2-2,22或9+332,5+33或9-332,5-33或1+172,3-17或1-172,3+17 .15.【答案】解:(1)由抛物线顶点C1,4,设抛物线的解析式为y=a(某-1)2+4,∵抛物线与y轴交于点D0,3,∴a+4=3,解得a=-1,∴抛物线的解析式为y=-(某-1)2+4=-某2+2某+3.(2)由(1)知,y=-某2+2某+3,令y=0,则-某2+2某+3=0,即(某+1)(某-3)=0,解得某1=-1,某2=3,∴A(-1,0),B(3,0),∴S△ABC=12某4某AB=12某4某4=8.(3)设点P的坐标为m,-m2+2m+3,直线AP的方程为y=k某+b,得k=3-a,b=3-a,所以直线方程为y=(3-m)某+3-m,∴ON=3-m,∵AB=4,∴S△ABP=-2m2+4m+6.∵ON=3-m,AO=1,∴S△AON=3-m2,∴S四边形OBMN=-2m2+4m+6-3-m2,∴S△BOD=3某32=92,∴S1-S2=[S△ABP-S△AON-S四边形OBMN]-[S△BOD-S四边形OBMN]=S△ABP-S△BOD-S△AON,即S1-S2=-2m2+4m+6-92-3-m2=-2m2+92m.∵-2<0,∴S1-S2有最大值,当m=98时,其最大值为8132,∴S1-S2的最大值为8132.。

人教版九年级上册数学第二十二章二次函数综合应用题综合训练

人教版九年级上册数学第二十二章二次函数综合应用题综合训练

人教版九年级上册数学第二十二章二次函数综合应用题综合训练1.小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆,已知2盆盆景与1盆花卉的利润共300元,1盆盆景与3盆花卉的利润共200元.(1)求1盆盆景和1盆花卉的利润各为多少元?(2)调研发现:盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆;花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后利润分别为W1,W2(单位:元).①求W1,W2关于x的函数关系式;①当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少元?2.网络销售已经成为一种热门的销售方式,某公司在某网络平台上进行直播销售板栗.已知板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足一次函数关系,下表记录的是有关数据,经销售发现,销售单价不低于成本价且不高于30元/kg.设公司销售板栗的日获利为w(元).(1)请求出日销售量y与销售单价x之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利w最大?最大利润为多少元?(3)当销售单价在什么范围内时,日获利w不低于42000元?3.商场某种商品平均每天可销售20件,每件可获利40元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)每件商品降价多少元时,商场日销售额可达到1200元?(2)若商场平均每天赢利最多,应降价多少元?获得的最大利润为多少?4.“水幕电影”的工作原理是把影像打在抛物线状的水幕上,通过光学原理折射出图象,水幕是由若干个水嘴喷出的水柱组成的,如图所示,水柱的最高点为M ,2m AB =,10m BM =,水嘴高6m AD =,以A 为坐标原点,AB 所在的直线为x 轴,AD 所在的直线为y 轴建立平面直角坐标系,求出图中抛物线的表达式.5.一小球M 从斜坡OA 上的点O 处抛出,球的抛出路线是抛物线的一部分,建立如图所示的平面直角坐标系,斜坡可以用一次函数12y x =刻画.若小球到达最高点的坐标为(4,8).(1)求抛物线的函数解析式(不写自变量x 的取值范围);(2)小球在斜坡上的落点A 的垂直高度为________米;(3)若要在斜坡OA 上的点B 处竖直立一个高4米的广告牌,点B 的横坐标为2,请判断小球M 能否飞过这个广告牌?通过计算说明理由;(4)求小球M 在飞行的过程中离斜坡OA 的最大高度.6.如图,有长为30m 的篱笆,现一面利用墙(墙的最大可用长度a 为9m )围成中间隔有一道篱笆的矩形花圃,设花圃的宽AB 为m x ,面积为2m S .(1)求S 与x 的函数关系式,并写出x 的取值范围;(2)如果围成花圃的面积为263m ,那么AB 应确定多长?7.“互联网+”让我国经济更具活力,直播助销就是运用“互联网+”形成的一种生机勃勃的销售方式.农村电商小李在某电商平台上直播销售一种农产品,每件农产品的成本为40元,每销售一件农产品,需向电商平台缴纳推广费2元.物价部门规定,该农产品的销售单价不高于成本价的2倍,经市场调研发现,每月的销售量y (件)与销售单价x (元)满足如图所示的一次函数关系.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)当农产品的销售单价定为多少元时,每月的销售利润最大?最大利润是多少?。

二次函数最新综合题练习50道(含详细解析)

二次函数最新综合题练习50道(含详细解析)

二次函数最新综合题练习50道一.解答题(共50小题)1.如图,已知二次函数y=﹣x2+bx+c的图象经过点C(0,3),与x轴分别交于点A、点B(3,0).点D(n,y1)、E(n+t,y2)、F(n+4,y3)都在这个二次函数的图象上,其中0<t<4,连接DE、DF、EF,记△DEF的面积为S.(1)求二次函数y=﹣x2+bx+c的表达式;(2)若n=0,求S的最大值,并求此时t的值;(3)若t=2,当n不同数值时,S的值是否变化?如不变,求该定值;如变化,试用含n的代数式表示S.2.抛物线y=x2+(2t﹣2)x+t2﹣2t﹣3与x轴交于A、B两点(A在B左侧),与y轴交于点C.(1)如图1,当t=0时,连接AC、BC,求△ABC的面积;(2)如图2,在(1)的条件下,若点P为在第四象限的抛物线上的一点,且∠PCB+∠CAB=135°,求P点坐标;(3)如图3,当﹣1<t<3时,若Q是抛物线上A、C之间的一点(不与A、C 重合),直线QA、QB分别交y轴于D、E两点.在Q点运动过程中,是否存在固定的t值,使得CE=2CD.若存在,求出t值;若不存在,请说明理由.3.如图,在平面直角坐标系中,直线y=﹣x+3与x轴,y轴分别交于点A,点B,抛物线y=ax2+bx+c(a≠0)经过A,B与点C(﹣1,0).(1)求抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x 轴的垂线,垂足为D,交线段AB于点E.设点P的横坐标为m.①求△PAB的面积y关于m的函数关系式,当m为何值时,y有最大值,最大值是多少?②若点E是垂线段PD的三等分点,求点P的坐标.4.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为;(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.5.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y 轴交于点A(0,5),与x轴交于点E,B.(1)求二次函数y=ax2+bx+c的解析式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P 在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A,E,N,M为顶点的四边形是平行四边形,且AE为其一边,求点M,N的坐标.6.如图①,直线y=kx+2与坐标轴交于A、B两点,OA=4,点C是x轴正半轴上的点,且OC=OB,过点C作AB的垂线,交y轴于点D,抛物线y=ax2+bx+c 过A、B、C三点.(1)求抛物线函数关系式;(2)如图②,点P是射线BA上一动点(不与点B重合),连接OP,过点O作OP的垂线交直线CD于点Q.求证:OP=OQ;(3)如图③,在(2)的条件下,分别过P、Q两点作x轴的垂线,分别交x轴于点E、F,交抛物线于点M、N,是否存在点P的位置,使以P、Q、M、N 为顶点的四边形为平行四边形?如果存在,求出点P的坐标;如果不存在,请说明理由.7.如图,已知抛物线L1:y=x2﹣x﹣,L1交x轴于A,B(点A在点B左边),交y轴于C,其顶点为D,P是L1上一个动点,过P沿y轴正方向作线段PQ ∥y轴,使PQ=t,当P点在L1上运动时,Q随之运动形成的图形记为L2.(1)若t=3,求点P运动到D点时点Q的坐标,并直接写出图形L2的函数解析式;(2)过B作直线l∥y轴,若直线l和y轴及L1,L2所围成的图形面积为12,求t的值.8.已知二次函数y=ax2+bx+c的图象对称轴为x=,图象交x轴于A,B,交y轴于C(0,﹣3),且AB=5,直线y=kx+b(k>0)与二次函数图象交于M,N(M 在N的右边),交y轴于P.(1)求二次函数图象的解析式;(2)若b=﹣5,且△CMN的面积为3,求k的值;(3)若b=﹣3k,直线AN交y轴于Q,求的值或取值范围.9.如图,函数y=2x的图象与函数y=ax2﹣3(a≠0)的图象相交于点P(3,k),Q两点.(1)a=,k=;(2)当x在什么范围内取值时,2x>ax2﹣3;(3)解关于x的不等式:|ax2﹣3|>1.10.如图,平面直角坐标系中,二次函数y=x2﹣2x﹣3的部分图象与x轴交于点A、B(A在B的左边),与y轴交于点C,连接BC,D为顶点(1)求∠OBC的度数;(2)在x轴下方的抛物线上是否存在一点Q,使△ABQ的面积等于5?如存在,求Q点的坐标,如不存在,说明理由;(3)点P是第四象限的抛物线上的一个动点(不与点D重合),过点P作PF⊥x 轴交BC于点F,求线段PF长度的最大值.11.如图,已知抛物线过点A(3,0),B(﹣1,0),C(0,3),连接AC,点M 是抛物线AC段上的一点,且CM∥x轴.(1)求抛物线的解析式;(2)求∠CAM的正切值;(3)点Q在抛物线上,且∠BAQ=∠CAM,求点Q的坐标.12.如图,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于点B、C;抛物线y=﹣x2+bx+c经过B、C两点,与x轴交于另一点A.设P(x,y)是在第一象限内抛物线上的一个动点,过点P作直线k⊥x轴于点M,交直线BC 于点N.(1)求该抛物线所对应的函数关系式;(2)连接PC、ON,若以P、C、O、N四点能围成平行四边形时,求此时点P坐标;(3)是否存在以P、C、N为顶点的三角形与△BNM相似?若存在,求出点N 坐标;若不存在,请说明理由.13.如图,抛物线y=ax2+bx+c经过点A(2,﹣3),且与x轴交点坐标为(﹣1,0),(3,0)(1)求抛物线的解析式;(2)在直线AB下方抛物线上找一点D,求出使得△ABD面积最大时点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N 为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.14.如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.(1)求此抛物线的解析式;(2)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标;(3)当t≤x≤t+1时,求y=ax2+bx+c的最大值.15.在平面直角坐标系中,抛物线交x轴于A,B两点,交y轴于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,﹣3).(1)求这个抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使点P到A、C两点间的距离之和最小.若存在,求出点P的坐标;若不存在,请说明理由;(3)点Q是直线BC下方抛物线上的一点,当△BCQ的面积最大时求Q点的坐标;(4)如果在x轴上方平行于x轴的一条直线交抛物线于M,N两点,以MN为直径作圆恰好与x轴相切,求此圆的直径.16.如图,抛物线y=﹣x2+bx+3与x轴交于点A,B,点B的坐标为(1,0).(1)求抛物线的解析式及顶点坐标;(2)若P(0,t)(t<﹣1)是y轴上一点,Q(5,0),将点Q绕着点P逆时针方向旋转90°得到点E.①用含t的式子表示点E的坐标;②当点E恰好在该抛物线上时,求t的值.17.如图,抛物线y=ax2﹣3ax﹣10a交x轴于A、B两点(A左B右),交y轴正半轴于C点,连AC,tan∠CAB=,(1)求抛物线解析式;(2)点P是第三象限内抛物线上一点,过C作x轴平行线交抛物线于D,连DP、BP,分别交y轴于E、F,设P点横坐标为p,线段EF长为m,求出m与自变量p之间的函数关系式;(3)在(2)条件下,当tan∠DPB=时,求P点坐标.18.如图所示,平面直角坐标系中,O为坐标原点,二次函数y=x2﹣bx+c(b>0)的图象与x轴交于A(﹣1,0)、B两点,与y轴交于点C;(1)求c与b的函数关系式;(2)点D为抛物线顶点,作抛物线对称轴DE交x轴于点E,连接BC交DE于F,若AE=DF,求此二次函数解析式;(3)在(2)的条件下,点P为第四象限抛物线上一点,过P作DE的垂线交抛物线于点M,交DE于H,点Q为第三象限抛物线上一点,作QN⊥ED于N,连接MN,且∠QMN+∠QMP=180°,当QN:DH=15:16时,连接PC,求tan ∠PCF的值.19.如图,抛物线y=ax2+x+c与x轴交于A,B两点,A点坐标为(﹣3,0),与y轴交于点C,点C坐标为(0.﹣6),连接BC,点C关于x轴的对称点D,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l 交抛物线于点Q,交直线BD于点M.(1)求二次函数解析式;(2)点P在x轴上运动,若﹣6≤m≤2时,求线段MQ长度的最大值.(3)点P在x轴上运动时,N为平面内一点,使得点B、C、M、N为顶点的四边形为菱形?如果存在,请直接写出点N坐标;不存在,说明理由.20.在平面直角坐标系xOy中,抛物线y=ax2﹣2x(a≠0)与x轴交于点A,B(点A在点B的左侧).(1)当a=﹣1时,求A,B两点的坐标;(2)过点P(3,0)作垂直于x轴的直线l,交抛物线于点C.①当a=2时,求PB+PC的值;②若点B在直线l左侧,且PB+PC≥14,结合函数的图象,直接写出a的取值范围.21.在平面直角坐标系中,抛物线y1=ax2﹣2amx+am2﹣m+1(a<0)的顶点为点P.(1)写出顶点坐标(含有m的式子表示);(2)抛物线与x轴分别交于点(x1,0)、(x20),若x1•x2<0,且知m=﹣1,则求a的取值范围;(3)已知点P在直线y2=kx+b上运动,y1与y2交于另一点A,过点A作x轴平行线交抛物线于另一点B:①求直线y2解析式;=1,且m≤x≤时,y1≥x﹣3恒成立,求m的最小值.②当S△PAB22.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,C在x 轴的正半轴上,已知A(0,8)、C(10,0),作∠AOC的平分线交AB于点D,连接CD,过点D作DE⊥CD交OA于点E.(1)求点D的坐标;(2)求证:△ADE≌△BCD;(3)抛物线y=x2﹣x+8经过点A、C,连接AC.探索:若点P是x轴下方抛物线上一动点,过点P作平行于y轴的直线交AC于点M.是否存在点P,使线段MP的长度有最大值?若存在,求出点P的坐标;若不存在,请说明理由.23.在平面直角坐标系中,抛物线C1:y=ax2+4x+4a(0<a<2).(1)当C1与x轴只有一个公共点时,求此时C1的解析式:(2)如图①,若A(1,y A),B(0,y B),C(﹣1,y C)三点均在C1上,连接BC,作AE∥BC交抛物线C1于E,求点E到y轴的距离;(3)若a=1,将抛物线C1先向右平移3个单位长度,再向下平移2个单位长度得到抛物线C2,如图②,抛物线C2与x轴相交于点M,N(点M在点N的左侧),抛物线C2的对称轴交x轴于点F,过点F的直线l与抛物线C2相交于点P,Q(点P在第四象限),且S△FMQ﹣S△FNP=,求直线l的解析式.24.如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)在AC上方的抛物线上有一动点G,如图,当点G运动到某位置时,以AG,AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点G的坐标;(3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.25.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M 点的坐标和△ANM周长的最小值;若不存在,请说明理由.26.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)抛物线的对称轴上是否存在一点M,使△ACM的周长最小?若存在,请求出M点的坐标,若不存在,请说明理由.(3)设抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时.满足S =8,并求出此时P点的坐标.△PAB27.已知抛物线y=﹣x2+2kx﹣k2+k+3(k为常数)的顶点纵坐标为4.(1)求k的值;(2)设抛物线与直线y=﹣(x﹣3)(m≠0)两交点的横坐标为x1,x2,n=x1+x2﹣2,若A(1,a),B(b,)两点在动点M(m,n)所形成的曲线上,求直线AB的解析式;(3)将(2)中的直线AB绕点(3,0)顺时针旋转45°,与抛物线x轴上方的部分相交于点C,请直接写出点C的坐标.28.如图,抛物线y=ax2+bx+c与x轴交于A,B(1,0)两点,与y轴交于点C,直线y=x﹣2经过A,C两点,抛物线的顶点为D.(1)求抛物线的解析式及顶点D的坐标;(2)在直线AC上方的抛物线上存在一点P,使△PAC的面积最大,请直接写出P点坐标及△PAC面积的最大值;(3)在y轴上是否存在一点G,使得GD+GB的值最小?若存在,求出点G的坐标;若不存在,请说明理由.29.如图,抛物线y=ax2+2x﹣3a经过A(1,0)、B(b,0)、C(0,c)三点.(1)求b,c的值;(2)在抛物对称轴上找一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.30.在平面直角坐标系xOy中,抛物线y=mx2﹣4mx+4m+5的顶点为A.(1)求点A的坐标;(2)将线段OA沿x轴向右平移2个单位得到线段OˊAˊ.①直接写出点Oˊ和Aˊ的坐标;②若抛物线y=mx2﹣4mx+4m+5与四边形AOOˊAˊ有且只有两个公共点,结合函数的图象,求m的取值范围.31.如图(1),抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(t,0)(t>0)两点,与y轴交于点C(0,﹣3),若抛物线的对称轴为直线x=1,(1)求抛物线的函数解析式;(2)若点D是抛物线BC段上的动点,且点D到直线BC的距离为,求点D 的坐标;(3)如图(2),若直线y=mx+n经过点A,交y轴于点E(0,﹣1),点P是直线AE下方抛物线上一点,过点P作x轴的垂线交直线AE于点M,点N在线段AM延长线上,且PM=PN,是否存在点P,使△PMN的周长有最大值?若存在,求出点P的坐标及△PMN的周长的最大值;若不存在,请说明理由.32.如图所示,已知抛物线y=ax2+bx+c(a≠0)经过点A(﹣2,0)、B(4,0)、C(0,﹣8),与直线y=x﹣4交于B,D两点(1)求抛物线的解析式并直接写出D点的坐标;(2)点P为直线BD下方抛物线上的一个动点,试求出△BDP面积的最大值及此时点P的坐标;(3)点Q是线段BD上异于B、D的动点,过点Q作QF⊥x轴于点F,交抛物线于点G,当△QDG为直角三角形时,直接写出点Q的坐标.33.已知抛物线y=ax2+bx+2过点A(5,0)和点B(﹣3,﹣4),与y轴交于点C.(1)求抛物线y=ax2+bx+2的函数表达式;(2)求直线BC的函数表达式及直线BC与x轴的交点D的坐标;(3)点E是点B关于y轴的对称点,连接AE、BE,点P是折线EB﹣BC上的一个动点,①当点P在线段BC上时,连接EP,若EP⊥BC,请直接写出线段BP与线段AE的关系;②过点P作x轴的垂线与过点C作的y轴的垂线交于点M,当点M不与点C重合时,点M关于直线PC的对称点为点M′,如果点M′恰好在坐标轴上,请直接写出此时点P的坐标.34.如图1,在平面直角坐标系中,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求直线AC的解析式;(2)如图2,点E(a,b)是对称轴右侧抛物线上一点,过点E垂直于y轴的直线与AC交于点D(m,n).点P是x轴上的一点,点Q是该抛物线对称轴上的一点,当a+m最大时,求点E的坐标,并直接写出EQ+PQ+PB的最小值;(3)如图3,在(2)的条件下,连结OD,将△AOD沿x轴翻折得到△AOM,再将△AOM沿射线CB的方向以每秒3个单位的速度沿平移,记平移后的△AOM为△A′O'M',同时抛物线以每秒1个单位的速度沿x轴正方向平移,点B 的对应点为B'.△A'B'M'能否为等腰三角形?若能,请求出所有符合条件的点M'的坐标;若不能,请说明理由.35.如图1所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒,设P、Q同时出发t秒时,△BPQ的面积为ycm2,已知y与t的函数关系图象如图2所示,请回答:(1)线段BC的长为cm.(2)当运动时间t=2.5秒时,P、Q之间的距离是cm.36.如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与轴相交于A、B两点(B点在A点的右侧),与轴交于C点.(1)A点的坐标是;B点坐标是;(2)直线BC的解析式是:;(3)点P是直线BC上方的抛物线上的一动点(不与B、C重合),是否存在点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积,若不存在,试说明理由;(4)若点M在x轴上,点N在抛物线上,以A、C、M、N为顶点的四边形是平行四边形时,请直接写出点M点坐标.37.如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(0,﹣2),并与x轴交于点C,点M是抛物线对称轴l上任意一点(点M,B,C三点不在同一直线上)(1)求该抛物线所表示的二次函数的表达式;(2)若△MCB为直角三角形,请求出点M的坐标;(3)在抛物线上找出点P,使得以M、C、B、P为顶点的四边形为平行四边形,并直接写出点P的坐标.38.如图1,抛物线y=x2+bx+c与x轴交于A(1,0)、B(4,0),与y轴交于点C(1)求抛物线的解析式;(2)抛物线上一点D,满足S=S△OAC,求点D的坐标;△DAC(3)如图2,已知N(0,1),将抛物线在点A、B之间部分(含点A、B)沿x轴向上翻折,得到图T(虚线部分),点M为图象T的顶点.现将图象保持其顶点在直线MN上平移,得到的图象T1与线段BC至少有一个交点,求图象T1的顶点横坐标的取值范围.39.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)和点B,与y 轴交于点C,点C关于抛物线对称轴的对称点为点D,抛物线顶点为H(1,2).(1)求抛物线的解析式;=3,(2)点P为直线AD上方抛物线的对称轴上一动点,连接PA,PD.当S△PAD 若在x轴上存在一动点Q,使PQ+QB最小,求此时点Q的坐标及PQ+QB的最小值;(3)若点E为抛物线上的动点,点G,F为平面内的点,以BE为边构造以B,E,F,G为顶点的正方形,当顶点F或者G恰好落在y轴上时,求点E的横坐标.40.在平面直角坐标系中,抛物线y=ax2+bx﹣3与x轴交于A,B两点(A在B 的左侧),与y轴交于点C,点B的坐标为(3,0),且CO=3OA.(1)求抛物线的解析式;(2)P点为对称轴右侧第四象限抛物线上的点连接BC、PC、PB,设P的横坐标为t,△PBC的面积为S求S与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,线段BP绕B顺时针旋转90°,得到对应线段BN,点P 的对应点为点N,在对称轴左侧的抛物线上取一点Q,射线BQ与射线PC交于点H,若点N在y轴上,且HQ=PQ,求点Q的坐标.41.抛物线y=x2+mx+n过点(﹣1,8)和点(4,3)且与x轴交于A,B两点,与y轴交于点C(1)求抛物线的解析式;(2)如图1,AD交抛物线于D,交直线BC于点G,且AG=GD,求点D的坐标;(3)如图2,过点M(3,2)的直线交抛物线于P,Q,AP交y轴于点E,AQ 交y轴于点F,求OE•OF的值.42.如图,二次函数y=x2﹣m2(m>0且为常数)的图象与x轴交于点A、B(A 在B左侧),与y轴交于C.(1)求A,B,C三点的坐标(用含m的式子表示);(2)若∠ACB=90°,求m的值.43.阅读下列材料:某同学遇到这样一个问题:在平面直角坐标系xOy中,已知直线l:y=﹣x,点A (1,t)在抛物线y=x2﹣4x+5上,求点A到直线l的距离d.如图1,他过点A作AB⊥l于点B,AD∥y轴分别交x轴于点C,交直线l于点D.他发现OC=CD,∠ADB=45°,可求出AD的长,再利用Rt△ABD求出AB的长,即为点A到直线l的距离d.请回答:(1)图1中,AD=,点A到直线l的距离d=.参考该同学思考问题的方法,解决下列问题:在平面直角坐标系xOy中,点M是抛物线y=x2﹣4x+5上的一动点,设点M到直线l的距离为d.(2)如图2,①l:y=﹣x,d=,则点M的坐标为;②l:y=﹣x,在点M运动的过程中,求d的最小值;(3)如图3,l:y=2x﹣7,在点M运动的过程中,d的最小值是.44.如图1,已知抛物线y=﹣x2+mx+m﹣2的顶点为A,且经过点B(3,﹣3).(1)求顶点A的坐标(2)若P是抛物线上且位于直线OB上方的一个动点,求△OPB的面积的最大值及比时点P的坐标;(3)如图2,将原抛物线沿射线OA方向进行平移得到新的抛物线,新抛物线与射线OA交于C,D两点,请问:在抛物线平移的过程中,线段CD的长度是否为定值?若是,请求出这个定值;若不是,请说明理由.45.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B 两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)求出四边形ABPC的面积最大时的P点坐标和四边形ABPC的最大面积;(3)在直线BC找一点Q,使得△QOC为等腰三角形,写出Q点坐标.46.如图①,作法平面直角坐标系中,二次函数y=ax2﹣6ax的图象经过点D(2,1).(1)求该函数表达式及顶点坐标;(2)将该二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个如图②所示的新图象,请补全新图象对应的函数表达式:y=,(x<0或),y=,(0≤x≤6)(3)已知点E的坐标为(4,1),P是图②图象上一点,其横坐标为m,连接PD、PE,当△PDE的面积为1时,直接写出m的值.47.已知函数y=a n x2+b n x(a n<0,b n>0,n为正整数)的图象的顶点为B n,与x 轴的一个交点为A n,点O为坐标原点.(1)当n=1时,函数y=a1x2+b1x的图象的对称轴与函数y=﹣x2的图象交于点C1,且四边形OB1A1C1为正方形,求a1、b1的值.(2)当n=2时,函数y=a2x2+b2x的图象的对称轴与函数y=a1x2+b1x的图象交于点C2,且四边形OB2A2C2为正方形,求a2、b2的值.(3)以此类推,可得a3=﹣,b3=2,一般地,若函数y=a n x2+b n x的对称轴与函x2+b n﹣1x的图象交于点C n,且四边形OB n A n C n为正方形,求a n、b n的值.数a n﹣148.已知抛物线C1:y=ax2过点(2,2)(1)直接写出抛物线的解析式;(2)如图,△ABC的三个顶点都在抛物线C1上,且边AC所在的直线解析式为y=x+b,若AC边上的中线BD平行于y轴,求的值;(3)如图,点P的坐标为(0,2),点Q为抛物线上C1上一动点,以PQ为直径作⊙M,直线y=t与⊙M相交于H、K两点是否存在实数t,使得HK的长度为定值?若存在,求出HK的长度;若不存在,请说明理由.49.如图所示,已知二次函数y=ax2+bx+c(a≠0)的顶点是(1,4),且图象过点A(3,0),与y轴交于点B.(1)求二次函数y=ax2+bx+c的解析式;(2)求直线AB的解析式;(3)在直线AB上方的抛物线上是否存在一点C,使得S=.如果存在,请△ABC求出C点的坐标;如果不存在,请说明理由.50.已知直线l:y=﹣2,抛物线C:y=ax2﹣1经过点(2,0)(1)求a的值;(2)如图①,点P是抛物线C上任意一点,过点P作直线l的垂线,垂足为Q.求证:PO=PQ;(3)请你参考(2)中的结论解决下列问题1.如图②,过原点作直线交抛物线C于A,B两点,过此两点作直线l的垂线,垂足分别为M,N,连接ON,OM,求证:OM⊥ON;2.如图③,点D(1,1),使探究在抛物线C上是否存在点F,使得FD+FO取得最小值?若存在,求出点F的坐标,若不存在,请说明理由.二次函数最新综合题练习50道参考答案与试题解析一.解答题(共50小题)1.如图,已知二次函数y=﹣x2+bx+c的图象经过点C(0,3),与x轴分别交于点A、点B(3,0).点D(n,y1)、E(n+t,y2)、F(n+4,y3)都在这个二次函数的图象上,其中0<t<4,连接DE、DF、EF,记△DEF的面积为S.(1)求二次函数y=﹣x2+bx+c的表达式;(2)若n=0,求S的最大值,并求此时t的值;(3)若t=2,当n不同数值时,S的值是否变化?如不变,求该定值;如变化,试用含n的代数式表示S.【解答】解:(1)将点B(3,0),C(0,3)代入y=﹣x2+bx+c,得:,解得:,∴二次函数的表达式为y=﹣x2+2x+3.(2)当n=0时,点D的坐标为(0,3),点E的坐标为(t,﹣t2+2t+3),点F 的坐标为(4,﹣5).设直线DF的函数表达式为y=kx+a(k≠0),将D(0,3),F(4,﹣5)代入y=kx+a,得:,解得:,∴直线DF的函数表达式为y=﹣2x+3.过点E作EQ∥y轴,交直线DF于点Q,如图1所示.∵点E的坐标为(t,﹣t2+2t+3),∴点Q的坐标为(t,﹣2t+3),∴EQ=﹣t2+2t+3﹣(﹣2t+3)=﹣t2+4t,∴S=EQ•(x F﹣x D)=﹣2t2+8t=﹣2(t﹣2)2+8.∵﹣2<0,∴当t=2时,S取最大值,最大值为8.(3)当n取不同数值时,S的值不变.过点DM∥y轴,过点F作FM∥x轴,交直线DM于点M,过点E作EN⊥FM于点N,交直线DF于点G,如图2所示.当t=2时,点D的坐标为(n,﹣n2+2n+3),点E的坐标为(n+2,﹣n2﹣2n+3),点F的坐标为(n+4,﹣n2﹣6n﹣5),∴点M的坐标为(n,﹣n2﹣6n﹣5),点N的坐标为(n+2,﹣n2﹣6n﹣5),∴DM=8n+8,EN=4n+8,MN=2,NF=2,∴S=S梯形DMNE +S△ENF﹣S△DMF,=MN•(DM+EN)+NF•EN﹣DM•MF,=12n+16+4n+8﹣16n﹣16,=8.∴当n取不同数值时,S的值永远为8.2.抛物线y=x2+(2t﹣2)x+t2﹣2t﹣3与x轴交于A、B两点(A在B左侧),与y轴交于点C.(1)如图1,当t=0时,连接AC、BC,求△ABC的面积;(2)如图2,在(1)的条件下,若点P为在第四象限的抛物线上的一点,且∠PCB+∠CAB=135°,求P点坐标;(3)如图3,当﹣1<t<3时,若Q是抛物线上A、C之间的一点(不与A、C 重合),直线QA、QB分别交y轴于D、E两点.在Q点运动过程中,是否存在固定的t值,使得CE=2CD.若存在,求出t值;若不存在,请说明理由.【解答】解:(1)将t=0代入抛物线解析式得:y=x2﹣2x﹣3.当x=0时,y=x2﹣2x﹣3=﹣3,∴点C的坐标为(0,﹣3);当y=0时,有x2﹣2x﹣3=0,解得:x1=3,x2=﹣1,∴点B的坐标为(3,0),点A的坐标为(﹣1,0).=AB•OC=×[3﹣(﹣1)]×3=6.∴S△ABC(2)由(1)知:B(3,0),C(0,﹣3),∴OB=OC,∴∠ABC=45°,∴∠ACB+∠CAB=135°.又∵∠PCB+∠CAB=135°,∴∠ACB=∠PCB.在图2中,过B作BM∥y轴,交CP延长线于M.∴∠ABC=∠MBC.在△ABC和△MBC中,,∴△ABC≌△MBC(ASA),∴AB=MB=4,∴点M的坐标为(3,﹣4),∴直线CM解析式为:y=﹣x﹣3(利用待定系数法可求出该解析式).联立直线CM及抛物线的解析式成方程组,得:,解得:(舍去),,∴点P的坐标为(,﹣).(3)当y=0时,有x2+(2t﹣2)x+t2﹣2t﹣3=0,即[x+(t﹣3)]•[x+(t+1)]=0,解得:x1=﹣t+3,x2=﹣t﹣1,∴点A的坐标为(﹣t﹣1,0),点B的坐标为(﹣t+3,0).当x=0时,y=x2+(2t﹣2)x+t2﹣2t﹣3=t2﹣2t﹣3,∴点C的坐标为(0,t2﹣2t﹣3).设直线AQ的解析式为:y=k1x+b1,直线BQ的解析式为:y=k1x+b2.∴点D的坐标为(0,b1),点E的坐标为(0,b2),∴CD=(t2﹣2t﹣3)﹣b1,CE=b2﹣(t2﹣2t﹣3).∵y=k1x+b1,y=x2+(2t﹣2)x+t2﹣2t﹣3,∴x2+(2t﹣2﹣k1)x+t2﹣2t﹣3﹣b1=0,∴x A•x Q=t2﹣2t﹣3﹣b1①.同理:x B•x Q=t2﹣2t﹣3﹣b2②.由②÷①,得:==﹣,∴=﹣=2,∴=﹣2,∴t=.3.如图,在平面直角坐标系中,直线y=﹣x+3与x轴,y轴分别交于点A,点B,抛物线y=ax2+bx+c(a≠0)经过A,B与点C(﹣1,0).(1)求抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x 轴的垂线,垂足为D,交线段AB于点E.设点P的横坐标为m.①求△PAB的面积y关于m的函数关系式,当m为何值时,y有最大值,最大值是多少?②若点E是垂线段PD的三等分点,求点P的坐标.【解答】解:(1)∵直线y=﹣x+3与x轴,y轴分别交于点A,点B,∴A(3,0),B(0,3),把A(3,0),B(0,3),C(﹣1,0)代入y=ax2+bx+c得,,解得:,∴抛物线的解析式为:y=﹣x2+2x+3;(2)①∵点P的横坐标为m,∴P(m,﹣m2+2m+3),∵PD⊥x轴,∴E(m,﹣m+3),∴PE=﹣m2+2m+3+m﹣3=﹣m2+3m,∴y=(﹣m2+3m)•m+(﹣m2+3m)(3﹣m),∴y关于m的函数关系式为:y=﹣3m2+6m,∵y=﹣3m2+6m=﹣3(m﹣1)2+3,∴当m=1时,y有最大值,最大值是3;②当PE=2ED时,即﹣m2+3m=2(﹣m+3),解得:m=2或m=3(不会题意舍去),当2PE=ED时,即﹣2m2+6m=﹣m+3,整理得,2m2﹣7m+3=0,此方程无实数根,∴P(2,3).4.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(m,2m﹣5);(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.【解答】解:(1)∵y=ax2﹣2amx+am2+2m﹣5=a(x﹣m)2+2m﹣5,∴抛物线的顶点坐标为(m,2m﹣5).故答案为:(m,2m﹣5).(2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示.∵AB∥x轴,且AB=4,∴点B的坐标为(m+2,4a+2m﹣5).∵∠ABC=135°,∴设BD=t,则CD=t,∴点C的坐标为(m+2+t,4a+2m﹣5﹣t).∵点C在抛物线y=a(x﹣m)2+2m﹣5上,∴4a+2m﹣5﹣t=a(2+t)2+2m﹣5,整理,得:at2+(4a+1)t=0,解得:t1=0(舍去),t2=﹣,=AB•CD=﹣.∴S△ABC(3)∵△ABC的面积为2,∴﹣=2,解得:a=﹣,∴抛物线的解析式为y=﹣(x﹣m)2+2m﹣5.分三种情况考虑:①当m>2m﹣2,即m<2时,有﹣(2m﹣2﹣m)2+2m﹣5=2,整理,得:m2﹣14m+39=0,解得:m1=7﹣(舍去),m2=7+(舍去);②当2m﹣5≤m≤2m﹣2,即2≤m≤5时,有2m﹣5=2,解得:m=;③当m<2m﹣5,即m>5时,有﹣(2m﹣5﹣m)2+2m﹣5=2,整理,得:m2﹣20m+60=0,解得:m3=10﹣2(舍去),m4=10+2.综上所述:m的值为或10+2.5.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y 轴交于点A(0,5),与x轴交于点E,B.(1)求二次函数y=ax2+bx+c的解析式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P 在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A,E,N,M为顶点的四边形是平行四边形,且AE为其一边,求点M,N的坐标.【解答】解:(1)设抛物线解析式为y=a(x﹣2)2+9,∵抛物线与y轴交于点A(0,5),∴4a+9=5,∴a=﹣1,y=﹣(x﹣2)2+9=﹣x2+4x+5,(2)当y=0时,﹣x2+4x+5=0,∴x1=﹣1,x2=5,∴E(﹣1,0),B(5,0),设直线AB的解析式为y=mx+n,∵A(0,5),B(5,0),∴m=﹣1,n=5,∴直线AB的解析式为y=﹣x+5;设P(x,﹣x2+4x+5),∴D(x,﹣x+5),∴PD=﹣x2+4x+5+x﹣5=﹣x2+5x,∵AC=4,=×AC×PD=2(﹣x2+5x)=﹣2x2+10x,∴S四边形APCD∴当x=﹣=时,∴即:点P(,)时,S=,四边形APCD最大(3)如图,过M作MH垂直于对称轴,垂足为H,∵MN∥AE,MN=AE,∴△HMN≌△AOE,∴HM=OE=1,∴M点的横坐标为x=3或x=1,当x=1时,M点纵坐标为8,当x=3时,M点纵坐标为8,∴M点的坐标为M1(1,8)或M2(3,8),∵A(0,5),E(﹣1,0),∴直线AE解析式为y=5x+5,∵MN∥AE,∴MN的解析式为y=5x+b,∵点N在抛物线对称轴x=2上,∴N(2,10+b),∵AE2=OA2+OE2=26∵MN=AE∴MN2=AE2,∴MN2=(2﹣1)2+[8﹣(10+b)]2=1+(b+2)2∵M点的坐标为M1(1,8)或M2(3,8),∴点M1,M2关于抛物线对称轴x=2对称,∵点N在抛物线对称轴上,∴M1N=M2N,∴1+(b+2)2=26,∴b=3,或b=﹣7,∴10+b=13或10+b=3∴当M点的坐标为(1,8)时,N点坐标为(2,13),当M点的坐标为(3,8)时,N点坐标为(2,3).6.如图①,直线y=kx+2与坐标轴交于A、B两点,OA=4,点C是x轴正半轴上的点,且OC=OB,过点C作AB的垂线,交y轴于点D,抛物线y=ax2+bx+c 过A、B、C三点.(1)求抛物线函数关系式;(2)如图②,点P是射线BA上一动点(不与点B重合),连接OP,过点O作OP的垂线交直线CD于点Q.求证:OP=OQ;(3)如图③,在(2)的条件下,分别过P、Q两点作x轴的垂线,分别交x轴于点E、F,交抛物线于点M、N,是否存在点P的位置,使以P、Q、M、N 为顶点的四边形为平行四边形?如果存在,求出点P的坐标;如果不存在,请说明理由.【解答】解:(1)∵OA=4∴点A(﹣4,0)∵直线y=kx+2与坐标轴交于A、B两点,。

专训1-二次函数综合应用及答案

专训1-二次函数综合应用及答案

1.如图,在直角坐标系角三角形,∠2+bx-2二次函数与平行四边形的综合2.如图所示,在平面直角坐标系xOy中,正方形OABC的边长为C分别在y轴的负半轴和轴的正半轴上,抛物线+bx+c经过点A,12a+5c=求抛物线对应的函数表达式.AB边以2 cm/s的速度开始沿BC边以1移动.一点到达终点后另一点停止移S=PQ2(cm2),试写出之间的函数表达式,并写出t的取值范围.取得最小值时,在抛物线上是否存在点3.二次函数标原点,点AB,B,4.(中考·孝感)如图所示,已知正方形长为1,点E在边BC方形外角的平分线CF(1)图①中,若点两个三角形全等来证明方案,并指出是哪两个三角形全等(2)如图②,若点C 重合).①AE=EF是否总成立?请给出证明.②在如图②所示的平面直角坐标系中,当点到某处时,点F恰好落在抛物线此时点F的坐标.(第1题)如图,过点C 作CD ⊥x 90°.,CAD =90°,∴∠OAB ∠AOB =∠CDA AAS ),∴AO =CD ==3,∴C(3,1).∵点-2上,∴1=12×32+∴抛物线对应的函数表达式为y =根据题意知:A(0,-2)点在抛物线上,∴c =-2.,∴a =56.知抛物线的对称轴为直线∴抛物线对应的函数表达式为y =5①若点E 在线段BC 上滑动,AE = 证明:如图②,在AB 上截取AM =BM =BE ,MBE 是等腰直角三角形,∴∠AME 135°.又∵CF 平分正方形的外角,,∴∠AME =∠ECF.而∠BAE +∠AEB AEB =90°,∴∠BAE =AME ≌△ECF ,∴AE =EF.②如图②,过点F 作FH ⊥x 轴于点H. FH =BE =CH.BH =a ,则FH =a -1,∴点F 的坐标为F 恰好落在抛物线y =-x 2+x +1a +1,∴a 2=2,∴a =2或-2(),∴a -1=2-1.∴点F 的坐标为。

二次函数专题复习及答案[1]

二次函数专题复习及答案[1]

二次函数专题复习专题一:二次函数的图象与性质本专题涉及二次函数概念,二次函数的图象性质,抛物线平移后的表达式等.试题多以填空题、选择题为主,也有少量的解答题出现.考点1.二次函数图象的对称轴和顶点坐标二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a,顶点坐标是(-2b a,244ac b a-).例 1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,.(1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标.分析:要求m 的值只要将点A (-1,m )的坐标代入y=5x即可.要求c 的值,则只要把点A 的坐标代入y=-x 2+2x+c 即可.求二次函数图象的对称轴和顶点坐标,可以直接代入计算公式,也可以利用配方法进行计算.解答:(1)把x=1,y=m 代入y=5x,得m=-5,所以点A 的坐标为(-1,-5).把x=-1,y=-5代入y=-x 2+2x+c ,得c=-2.(2)因为y=-x 2+2x-2=-(x-1)2-1,所以二次函数的对称轴是直线x=1,顶点坐标是(1,-1). 点评:本题主要涉及二次函数图象的对称轴和顶点坐标的计算,解决问题的方法有两种,可根据表达式的特点灵活选择计算方法.考点2.抛物线与a 、b 、c 的关系抛物线y=ax 2+bx+c 中,当a>0时,开口向上,在对称轴x=-2b a的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限D .第一、三、四象限分析:通过观察图象可以知道a 喝b 的符号,从而可以判断出y=ax-b 的图象一定过的象限.图1解:由图,可知a<0,又由对称轴,可知-2b a>0,∴b>0.∴y=ax-b 的图象一定经过第二、三、四象限. ∴应选C.点评:求解本题时,一定要认真分析题目提供的图象,从图像中捕捉对求解有用的信息. 考点3.二次函数的平移当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到.例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2 分析:因为将抛物线向上平移,表明抛物线沿y 轴向上. 解:把抛物线y=3x 2向上平移2个单位, ∴平移后的抛物线的表达式应为y=3x 2+2. ∴应选C.点评:抛物线在左边平面内实施平移变换,其位置发生了改变,但其形状和开口不变,即a 不变. 专题练习一 1.对于抛物线y=13-x 2+103x 163-,下列说法正确的是( )A.开口向下,顶点坐标为(5,3)B.开口向上,顶点坐标为(5,3)C.开口向下,顶点坐标为(-5,3)D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4D.抛物线与x 轴交点为(-1,0),(3,0)3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________.4.小明从图2所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有图2_______.(填序号)专题复习二:二次函数表达式的确定本专题主要涉及二次函数的三种表示方法以及根据题目的特点灵活选用方法确定二次函数的表达式.题型多以解答题为主.考点1.根据实际问题模型确定二次函数表达式例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园A B C D ,设A B 边长为x 米,则菜园的面积y (单位:米2)与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围).分析:依题意利用图形的面积公式求解. 解:依题意AD=12(30-x ),所以由长方形的面积公式得y=x ×12(30-x )=-12x 2+15x.点评:本题主要考查从实际问题中建立函数模型求二次函数表达式,这里应注意30米的篱笆只需围三个面,另一面靠墙,不需要篱笆.考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0);2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )2+k (a ≠0);3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0). 例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式. 分析:可用顶点式求解.解:设抛物线的表达式为y=a (x+1)2+4,因为抛物线经过B (2,-5),所以-5=a (2+1)2+4,即a=-1.所以抛物线的表达式为y=-(x+1)2+4=-x 2-2x+3.点评:求抛物线的表达式的常用方法是待定系数法.给定的条件不同,所设的表达式的形式也不一样. 例3 已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标.分析:由于该抛物线经过三点,故可用一般式求解,又该抛物线与x 轴的两个交点已知,所以也可以用交点式求解.解:(1)设这个抛物线的解析式为y=ax 2+bx+c (a ≠0). 由题意,得ABC D图1菜园墙⎪⎩⎪⎨⎧=++=++=+-,824,0,024c b a c b a c b a 解得⎪⎩⎪⎨⎧-===.4,2,2c b a所以抛物线的解析式为.4222-+=x x y (2)因为4222-+=x x y =229)21(2-+x ,所以抛物线的顶点坐标为).29,21(--点评:用“待定系数法”求抛物线的表达式是最基本、最重要的方法之一,同学们一定要牢固掌握,同时,要灵活运用二次函数的三种表达式,如本题选用交点式)(1x x a y -=)(2x x -也较方便.专项练习二1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数表达式为( )A.y=2a (x-1)B.y=2a (1-x )C.y=a (1-x 2) D.y=a (1-x )22.如图2,在平而直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C ,且tan ∠ACO=12,CO=BO ,AB=3,则这条抛物线的函数解析式是 .3.对称轴平行于y 轴的抛物线与y 轴交于点(0,-2),且x=1时,y=3;x=-1时y=1, 求此抛物线的关系式.4.推理运算:二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式; (2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最.少.平移 个单位,使得该图象的顶点在原点. 专题三:二次函数与一元二次方程的关系本专题主要涉及根据二次函数的图象求一元二次方程的近似根,由图象判断一元二次方程根的情况,由一元二次方程根的情况判断抛物线与x 轴的交点个数等,题型主要填空题、选择题和解答题.考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况.例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )图2A.6 6.17x << B.6.17 6.18x << C.6.18 6.19x <<D.6.19 6.20x <<分析:本题用表格的形式提供了部分信息,对函数、方程之间的关系进行针对性的考查,即方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的解就是函数y=ax 2+bx+c 值为零时对应的自变量x 的取值.解:由于x 轴上表示实数的点是连续的,因此,可以估计方程的解必然在某负数函数值与某正数函数值之间,故由表格提供的数据可选择C.点评:本题主要考查二次函数与一元二次方程的关系,解决问题的思路是通过表格观察函数值在什么范围内由负数变为正数,这个服务就是对应的方程的根的范围.考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.分析:二次函数y=-x 2+3x+m 的图象与x 轴的角度的横坐标即为方程-x 2+3x+m=0的根.观察图象,可知图象与x 轴的一个交点为(4,0),且对称轴为x=32,根据图象与x 轴两个交点关于对称轴x=32对称,所以另一个交点的坐标为(-1,0),由此可得到方程的两个根.解:因为y=-x 2+3x+m 与x 轴的一个交点为(4,0),且图象的对称轴为x=32,所以图象与x 轴的另一个交点为(-1,0).所以方程-x 2+3x+m=0的两根为x 1=-1,x 2=32.点评:本题已知图象的一部分,求相应方程的根,解决问题的关键是根据图象与x 轴两个交点关于对称轴对称,求到图象与x 轴交点的坐标.考点3.抛物线的交点个数与一元二次方程的根的情况当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2+bx+c=0有两个相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2+bx+c=0没有实数根.反之亦然.例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( )图1A.3B.2C.1D.0分析:要求与x 轴的交点个数,可转化为一元二次方程根的情况来解决. 解:由题意得当y=0时,即为x 2-1=0,∵b 2-4ac=4>0,∴x 2-1=0有两个不相等的实数根, ∴抛物线与x 轴有两个交点. 故选B.点评:二次函数中,当涉及到图象与坐标轴的交点时,注意要考虑与一元二次方程的联系.专项练习三1.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值范围是________.2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .3.已知函数2y a x b x c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根. (2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围. 专题四:利用二次函数解决实际问题本专题主要涉及从实际问题中建立二次函数模型,根据二次函数的最值解决实际问题,能根据图象学习建立二次函数模型解决实际问题.解决实际问题的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.例 某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”图2政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?分析:首先利用利润=(销售单价-成本)×销售量这个公式算术y 与x 的关系;再解一元二次方程;最后利用二次函数的性质求出最大值即可.解:(1)根据题意,得(24002000)8450x y x ⎛⎫=--+⨯⎪⎝⎭, 即2224320025y x x =-++.(2)由题意,得22243200480025x x -++=.整理,得2300200000x x -+=. 解这个方程,得12100200x x ==,.要使百姓得到实惠,取200x =.所以,每台冰箱应降价200元. (3)对于2224320025y x x =-++,当241502225x =-=⎛⎫⨯- ⎪⎝⎭时,150(24002000150)8425020500050y ⎛⎫=--+⨯=⨯= ⎪⎝⎭最大值.所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.点评:本题是一道构建二次函数解决实际问题的决策题,是中考的重要考点.对于第(3)小题的最大利润问题,除了用顶点公式来确定答案外,也可以利用配方法将二次函数的表达式化成顶点式.专题训练四1.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当x 是多少时,矩形场地面积S 最大?最大面积是多少?2.某旅行社有客房120间,每间客房的日租金为50元,每天都客满.旅社装修后要提高租金,经市场调查发现,如果每间客房的日租金每增加5元时,则客房每天出租数就会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?3.一座拱桥的轮廓是抛物线型(如图1所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m . (1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式; (2)求支柱E F 的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.参考答案 专题练习一 1.A 解析:由y=13-x 2+103x 163-=13-(x-5)2+3,∵13-<0,∴开口向下,顶点坐标为(5,3)2.C 解析:因为a=1>0,所以开口向上,A 正确;把(0,-3)代入y=x 2-2x+c 中,解得c=-3,所以抛物线为y=x 2-2x-3=(x-1)2-4,所以抛物线的对称轴是直线x=1,B 正确;因为a=1>0,所以抛物线有最小值,且当x=1时,最小值为-4,故C 错误;由x 2-2x-3=0得x=1,x=3,所以抛物线与x 轴交点为(-1,0),(3,0),D 正确.3.y=(x+1)2-2 解析:二次函数y=x 2的图象向左平移1个单位长度所得图象的表达式为y=(x+1)2,再向下平移2个单位长度后,所得图象的表达式为y=(x+1)2-2.4.①②③⑤ 解析:因为抛物线开口向上,可知a>0.再由对称轴x=2b a-,所以b<0.又2b a-=3,得3b=-2a ,所以2a+3b=0,所以④错误;由抛物线与y 轴交于负半轴,可知c<0,所以abc>0,所以①、②均正确;观察图形可知x=-1时,y>0,即a-b+c>0,所以③正确;因为x=2时,y>0,即4a+2b+c>0,将3b=-2a 代入4a+2b+c>0,得-4b+c>0,即c-4b>0,所以⑤正确,所以①、②、③、⑤正确.专题练习二1.D 解析:第一次降价后的价格为a (1-x ),第二次降价后的价格为a (1-x )(1-x )=a (1-x )2,所以x图1y=a (1-x )2.2.y=x 2-2x-2 解析:依题意,结合图象,当x=0时,y=c<0,即OC=|c|,又tan ∠ACO=12,CO=BO ,所以OB=OC=|c|,OA=12|c|,而AB=3,所以12|c|+|c|=3,所以c=-2,所以点A 的坐标为(-1,0),所以b=-1.使用这条抛物线的函数表达式为y=x 2-x-2.3.解析:设该抛物线表达式为y=ax 2+bx+c.把(0,-2)、(1,3),(-1,1)分别代入上式,并解得a=4,b=1,c=-2.所以该抛物线的表达式为y=4x 2+x-2.4.解析:(1)设23y ax bx =+-, 把点(23)-,,(10)-,代入得423330.a b a b +-=-⎧⎨--=⎩,解方程组得12.a b =⎧⎨=-⎩, 223y x x ∴=--;(2)2223(1)4y x x x =--=--.∴函数的顶点坐标为(14)-,.(3)要由(1,-4)变为(0,0),则应左移1个单位后,再上移4个单位,故应最少平移5个单位,才能使得该图象的顶点在原点.专项练习三 1.k ≥74-且k ≠0 解析:抛物线与x 轴有交点,即kx 2-7x-7=0有实数根,所以(-7)2-4×(-7)×k≥0,解得k ≥74-且k ≠0.2.x 1=-1,x 2=3 解析:同例3.3.D 解析:因为抛物线y=ax 2+bx+c+2是由抛物线y=ax 2+bx+c 向上平移2个单位所得的图象,而抛物线y=ax 2+bx+c 的最低点的纵坐标为-3,所以抛物线y=ax 2+bx+c+2的最低点的纵坐标为-1,故抛物线y=ax 2+bx+c+2与x 轴有两个交点,且都在y 轴的右侧,所以方程ax 2+bx+c+2=0有两个同号不等实数根.4.解析:(1)因为二次函数y=ax 2+bx+c 的图象与x 轴的两个交点坐标是(1,0),(3,0),所以方程ax 2+bx+c=0的两个根为x 1=1,x 2=3;(2)因为抛物线的开口向下,所以x 轴的上方都满足ax 2+bx+c>0,即表达式ax 2+bx+c>0的解为1<x<3; (3)因为抛物线的对称轴方程是x=2,且a<0,所以当x>2时,y 随x 的增大而减小;(4)因为抛物线的顶点的纵坐标是2,所以要使方程ax 2+bx+c=k 有两个不相等的实数根,只要k<2. 专题训练四1.解析:(1)根据题意,得S=x x⋅-2260=-x 2+30x ,自变量x 的取值范围是0<x<30. (2)∵a=-1<0,∴S 有最大值. 301522(1)b x a∴=-=-=⨯-2243022544(1)ac b S a--===⨯-最大∴当x=15时,S最大=225.答:当x 为15米时,才能使矩形场地面积最大,最大面积是225平方米.2.解析:设每间客房的日租金提高x 个5元(即5x 元),则每天客房出租数会减少6x 间,客房日租金总收入为y=(50+5x)(120-6x)=-30(x-5)2+6750.当x=5时,y 有最大值6750,这时每间客房的日租金为50+5×5=75(元),客房日租金总收入最高为6750元.3.解析:(1)根据题目条件,A B C ,,的坐标分别是(100)(100)(06)-,,,,,. 设抛物线的解析式为2y ax c =+,将B C ,的坐标代入2y ax c =+,得60100c a c =⎧⎨=+⎩,解得3650a c =-=,.所以抛物线的表达式是23650y x =-+.(2)可设(5)F F y ,,于是2356 4.550F y =-⨯+=从而支柱M N 的长度是10 4.5 5.5-=米.(3)设D N 是隔离带的宽,N G 是三辆车的宽度和, 则G 点坐标是(70),.过G 点作G H 垂直A B 交抛物线于H ,则2376 3.06350H y =-⨯+>≈.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数综合应用专题归纳训练一
一、相似三角形的存在性问题
1.在平面直角坐标系中,一个二次函数的图像经过A(1,0)B(3,0)两点. (1)写出这个二次函数图像的对称轴;
(2)设这个二次函数图像的顶点为D,与y轴交与点C,它的对称轴与x轴交与点E,连接AC、DE和DB.当△AOC与△DEB相似时,求这个二次函数的表达式.
二、等腰三角形的存在性问题
2.如图,直线3
y交x轴于A点,交y轴于B点,过A、B两点的抛物线交x
=x
3+
轴于另一点C(3,0).
⑴求抛物线的解析式
⑵在抛物线的对称轴上是否存在点Q,使△ABQ
存在,求出符合条件的Q点坐标;若不存在,请说明理由.
3.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P是直线L上的一个动点,当△PAC的周长最
小时,求点P的坐标;
(3)在直线L上是否存在点M,使△MAC为等腰三角
形?若存在,直接写出所有符合条件的点M的坐标;
若不存在,请说明理由.
三、平行四边形的存在性问题
4.(2014年山东泰安)二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).
(1)求二次函数的表达式;
(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;
(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.
分析:(1)首先求得A、B的坐标,然后利用待定系数法即可求得二次函数的解析式;
(2)设M的横坐标是x,则根据M和N所在函数的解析式,即可利用x表示出M、N 的坐标,利用x表示出MN的长,利用二次函数的性质求解;
(3)BM与NC互相垂直平分,即四边形BCMN是菱形,则BC=MC,据此即可列方程,求得x的值,从而得到N的坐标.
解:(1)由题设可知A(0,1),B(﹣3,),
根据题意得:,解得:,
则二次函数的解析式是:y=﹣﹣x+1;
(2)设N(x,﹣x2﹣x+1),则M、P点的坐标分别是(x,﹣x+1),(x,0).∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+,
则当x=﹣时,MN的最大值为;
(3)连接MN、BN、BM与NC互相垂直平分,
即四边形BCMN是菱形,由于BC∥MN,即MN=BC,且BC=MC,
即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解得:x=1,
故当N(﹣1,4)时,MN和NC互相垂直平分.
四、线段差的最值问题
5
6
二次函数综合应用专题归纳训练二
五、面积问题
7.如图是二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,-4).
(1)求出图象与x 轴的交点A,B 的坐标;
(2)设直线AM 与y 轴交于点C ,求△BCM 的面积.
(3)在图中的抛物线上是否还存在点P ,使得S △PMB =S △BCM ,如果不存在,说明
理由;如存在,请直接写出P 点的个数.
C
8.(2014•重庆)如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.
(1)求A、B、C的坐标;
(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q 作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM 的面积;
(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F
的上方).若FG=2DQ,求点F的坐标.
9.(2013重庆)如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).
(1)求直线BC与抛物线的解析式;
(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;
(3)在(2)的条件下,MN取得最大值时,若点P是
抛物线在x轴下方图象上任意一点,以BC为边作平行
四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN
的面积为S2,且S1=6S2,求点P的坐标.
六、二次函数与圆的结合
10.如图,在平面直角坐标系中,坐标原点为O,A点坐标为(4,0),B点坐标为(﹣1,0),以AB的中点P为圆心,AB为直径作⊙P的正半轴交于点C.(1)求经过A、B、C三点的抛物线所对应的函数解析式;
(2)设M为(1)中抛物线的顶点,求直线MC对应的函数解析式;
(3)试说明直线MC与⊙P的位置关系,并证明你的结论.
11.将△A OB置于平面直角坐标系中,点O为坐标原点,点A为(3,0),∠A BO=60°.
(1)若△A OB的外接圆与y轴交于点D,求D点坐标;
(2)若点C为(-1,0),试猜想直线DC与△AO B的外接圆的位置关系,并说明理由;
(3)二次函数的图象经过点O和A且顶点在圆上,求此函数的解析式
(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注)。

相关文档
最新文档