流体力学动量定实验
流体力学动量定理实验报告

流体力学动量定理实验报告流体力学是研究流体运动规律的一门学科,其中动量定理是流体力学中的重要定律之一。
本实验旨在通过实际操作验证流体力学动量定理,并深入理解其物理意义和应用。
一、实验目的1. 验证流体力学动量定理的实际有效性;2. 理解动量定理的物理意义和应用;3. 探究不同流体条件下动量定理的适用性。
二、实验原理根据动量定理,当一个物体受到外力作用时,其动量的变化率等于作用在物体上的合外力。
对于流体,其动量定理可以表述为:流体的动量的变化率等于作用在流体上的合外力和压力力之和。
三、实验器材和药品1. 实验装置:流体力学实验装置、流量计、压力计等;2. 实验介质:水。
四、实验步骤1. 将流体力学实验装置连接好,保证流体可以顺利流动;2. 打开水源,调节流量计的流量,保持恒定;3. 使用压力计测量不同位置的压力值,并记录;4. 分别改变流动介质的流速和流量,再次测量压力值并记录;5. 根据实验数据,计算流体的动量变化率并进行比较分析。
五、实验结果与分析通过实验测量得到的压力值和流速数据,可以计算出流体的动量变化率。
根据动量定理,动量的变化率应该等于作用在流体上的合外力和压力力之和。
通过对不同流速和流量下的实验数据进行比较分析,可以得出以下结论:1. 随着流速的增加,流体的动量变化率也增加,说明流体受到的合外力也增大;2. 当流速恒定时,流量的增加会导致动量变化率的增加,说明流体受到的压力力也增大;3. 实验结果与动量定理的预期结果相符,验证了动量定理在流体力学中的适用性。
六、实验总结与思考通过本次实验,我们深入理解了流体力学动量定理的物理意义和应用。
实验结果表明,动量定理在流体力学中具有实际有效性,并能够用于解释和预测流体运动过程中的各种现象。
同时,实验过程中还发现了流速和流量对流体动量变化率的影响,这为进一步研究流体力学提供了新的思路和方向。
通过本次实验我们验证了流体力学动量定理的实际有效性,并深入理解了其物理意义和应用。
流体力学中的动量守恒定律

流体力学中的动量守恒定律流体力学是研究流体力学性质和运动规律的学科,其中动量守恒定律是流体力学中的基本原理之一。
本文将讨论流体力学中的动量守恒定律及其应用。
一、动量守恒定律的定义动量是物体的运动属性,它的大小与物体的质量和速度有关。
动量守恒定律指出,在一个封闭系统中,如果没有外力作用,系统总动量保持不变。
这意味着如果一个物体在一个方向上有动量的改变,那么另一个物体在相反方向上的动量将会有相应的改变,以使系统总动量保持恒定。
二、动量守恒定律的数学表达动量守恒定律可以通过数学方程来表示。
设在某一时刻,流体在某个截面上的速度为$v$,单位面积上的动量为$\rho v$,其中$\rho$是流体的密度。
如果在该截面将速度增加一个很小的量$\Delta v$,则单位面积上的动量增加了$\rho \Delta v$。
根据动量守恒定律,单位时间内通过该截面的动量变化与单位时间内外力对流体产生的冲量相等。
三、动量守恒定律的应用1. 流体管道中的动量守恒定律在流体管道中,可以利用动量守恒定律来分析管道中流体的运动。
根据动量守恒定律,如果管道中没有外力的作用,流体在管道内的运动速度不会发生改变。
这一原理在工程领域中广泛应用于水力学、石油工程等领域。
2. 流体力学中的扬力动量守恒定律也可以用来解释扬力的产生机制。
当流体通过一个曲面的时候,曲面会对流体施加一个力,这个力称为压力力。
根据动量守恒定律,由于流动速度的改变,流体分子对一个物体所产生的压力力要大于对另一个物体所产生的压力力。
这个压力差会引起物体受到一个往上的力,即扬力。
3. 航空航天中的动量守恒定律应用在航空航天领域,动量守恒定律被广泛应用于飞行器的设计和改进。
例如,喷气式发动机的工作原理就是利用了动量守恒定律。
燃料燃烧产生的气体向后喷出,在推力作用下,飞行器向前推进。
四、结论动量守恒定律是流体力学中一个重要的基本原理,它指出了在一个封闭系统中,动量总是守恒的。
流体力学的三大实验原理

流体力学的三大实验原理流体力学是研究流体运动和流体力学性质的学科,是物理学的一个重要分支。
在流体力学的研究中,实验是一种重要的方法,通过实验可以观察流体的行为,并验证理论模型的有效性。
以下将介绍流体力学的三大实验原理。
第一大实验原理是质量守恒定律,也称为连续性方程。
它表达了在流体中质量的守恒性质,即单位时间内通过某一截面的质量流量保持不变。
具体而言,对于稳定不可压缩流体,该方程可以表示为:∮ρv·dA = 0其中,∮表示对闭合曲面取积分,ρ是流体的密度,v是流体的速度,dA是曲面的面积元素。
该方程说明了流体在运动过程中质量的连续性,即入口处的质量流量等于出口处的质量流量。
通过实验可以验证这一原理,例如使用水流经过一个管道,在入口处和出口处分别测量流体的质量流量,验证质量守恒定律的成立。
第二大实验原理是动量守恒定律,也称为动量方程。
动量守恒定律表达了流体中动量的守恒性质,即单位时间内通过某一截面的动量流量保持不变。
对于稳定不可压缩流体,动量守恒定律可以表示为:∮(ρv⋅v)·dA = -∮pdA + ∮τ·dA + ∮ρg·dV其中,p是流体的压强,τ是流体的切应力,g是重力加速度,dV是体积元素。
该方程说明了流体在运动过程中动量的守恒性,即流体的动量增加或减少必然伴随着外力的作用或者压强的变化。
通过实验可以验证动量守恒定律,例如通过测量流体经过一个管道时的压强变化以及受到的外力,验证动量守恒定律的成立。
第三大实验原理是能量守恒定律,也称为能量方程。
能量守恒定律表达了流体中能量的守恒性质,即单位时间内通过某一截面的能量流量保持不变。
对于稳定不可压缩流体,能量守恒定律可以表示为:∮(ρv⋅v+pg)·dA = ∮(τ⋅v)·dA + ∮q·dA + ∮ρg·h·dA其中,q是流体的热流量,h是流体的高度。
该方程说明了流体在运动过程中能量的守恒性,即流体的能量增加或减少必然伴随着外界对流体的做功或者热量的输入。
流体力学动量定理实验

流体力学动量定理实验动量定理实验一、概述动量定理指出:流体微团动量的变化率等于作用在该微团上所有外力的矢量和。
即某控制体内的动量在时间dt内的增量等于作用在控制体上所有外力在dt时间内的总冲量。
水射流冲击平板和内半球是用来验证动量定理的一个很好实例,本实验仪则采用水射流冲击平板通过称重系统测出冲击力。
二、实验目的:1(测定管嘴喷射水流对平板或曲面板所施加的冲击力。
2(测定动量修正系数,以实验分析射流出射角度与动量力的相关性 3(将测出的冲击力与用动量方程计算出的冲击力进行比较,加深对动量方程的理解。
三、设备性能与主要技术参数1、该实验装置主要由:流量计、水泵、实验水箱、管嘴、蓄水箱和平衡秤等组成。
2、流量计采用LZS-15(60-600)L/h。
3、水泵为增压泵,最高扬程:10m,最大流量:10L/min,转速2800r/min,输入功率90W。
4、量器为平衡杆秤,上面刻度每小各格为2mm,称上平衡游码为150g。
5、实验水箱由有机玻璃制成,顶部装有称重装置,内部则有实验平板与管嘴,其中管嘴距平板距离为40mm,管嘴的内径为9mm。
6、蓄水箱由PVC板焊制而成。
容积:35L。
四、实验原理1、本实验装置给出计量杠杆为平衡杆称。
2、计算每个状态下的体积流量和质量流量体积流量QV通过转子流量计直接得出读数,质量流量QM,ρW?QV其中水的密度ρW可根据水温查得。
3、计算每个状态下水射流冲击模型的当地速度u。
由公式u0=Qv/A0 (m/s)计算管嘴出口处的水流速度,其中A0为喷嘴出口截面积(m2)。
在地心引力的作用下,水射流离开喷嘴后要减速,当水流射到模板上时,当地速度u应根据垂直向上抛运动的公式进行修正,即:u=?u20-2gs,式中s为从喷嘴出口到模板实际接触距离。
LSGF 五、实验流程图1091、水泵8S672、水箱53、喷管44、喷嘴35、水射流6、平板7、筒体8、平衡秤9、传感力210、平衡杆1自循环供水装置由增压水泵和蓄水箱组合而成。
流体力学动量定理实验报告

实验报告:流体力学动量定理实验实验目的:本实验旨在通过测量流体在不同条件下的速度和压力,验证流体力学动量定理,并分析流体的流动特性。
实验原理:流体力学动量定理表明,流体在作用力作用下的动量变化等于作用力对流体的压力和重力的贡献之差。
即动量的变化等于合力乘以时间。
根据流体流动的连续性方程和动量守恒方程,可以推导出动量定理的数学表达式。
实验步骤:1.准备工作:确保实验仪器及设备正常运行,并校准各个测量装置。
2.设置实验装置:安装流体管道和流量计,并连接传感器以测量流体的速度和压力。
3.调整流体流动条件:调节流量控制阀门,使流体在管道中稳定流动,并记录流量、速度和压力的基准值。
4.改变流动条件:调节流体控制阀门,改变流量和速度,并记录相应的压力和速度数据。
5.测量数据:使用传感器和测量仪器记录流体流动过程中的速度和压力数据,并进行实时记录或记录存储。
6.分析数据:根据测量数据计算流体的动量变化,并与实验条件进行对比和分析。
7.绘制实验结果:根据实验数据绘制流体速度和压力随时间变化的曲线,并进行数据分析和讨论。
实验结果:根据测量数据和数据分析,得出流体速度和压力随时间变化的曲线。
对比实验条件和理论预期结果,可以验证流体力学动量定理的准确性。
实验讨论:根据实验结果和对流体力学动量定理的分析,讨论流体流动的特性,如流体的加速度、压力分布等,并讨论实验误差和改进方案。
结论:通过本实验,验证了流体力学动量定理的准确性,并对流体的流动特性进行了分析和讨论。
实验结果与理论预期相符,证明了流体力学动量定理的适用性和可靠性。
附录:实验数据和曲线图、实验装置照片等(如果有)。
这是一个基于流体力学动量定理的实验报告的基本结构,具体内容和格式可以根据实际情况进行调整和完善。
流体力学动量方程实验报告

流体力学动量方程实验报告流体力学动量方程实验报告引言:流体力学是研究流体运动规律的学科,其中动量方程是描述流体运动的基本方程之一。
本实验旨在通过实验验证流体力学动量方程,并探究不同因素对流体运动的影响。
实验设备与方法:1. 实验设备:本实验使用的设备包括流体力学实验装置、流速计、压力计等。
2. 实验方法:首先,将流体力学实验装置设置在水平台面上,并校准流速计和压力计。
然后,通过调节装置中的阀门控制流体的流速和压力。
在实验过程中,记录不同条件下的流速和压力数据,并进行数据处理。
实验结果与分析:1. 流体速度与动量的关系:在实验中,我们通过改变流体的流速,记录了不同流速下的动量数据。
结果显示,流体的动量与流速成正比关系。
这符合流体力学动量方程中的基本原理,即动量等于质量乘以速度。
2. 流体压力与动量的关系:在实验中,我们通过改变流体的压力,记录了不同压力下的动量数据。
结果显示,流体的动量与压力成正比关系。
这也符合流体力学动量方程中的基本原理,即动量等于质量乘以速度。
3. 流体密度与动量的关系:在实验中,我们通过改变流体的密度,记录了不同密度下的动量数据。
结果显示,流体的动量与密度成正比关系。
这同样符合流体力学动量方程中的基本原理。
4. 流体粘度对动量的影响:在实验中,我们通过改变流体的粘度,记录了不同粘度下的动量数据。
结果显示,流体的动量与粘度成反比关系。
这是因为高粘度的流体阻力大,导致动量的损失较大。
结论:通过本实验,我们验证了流体力学动量方程,并研究了不同因素对流体运动的影响。
实验结果表明,流体的动量与流速、压力、密度和粘度等因素密切相关。
这对于理解和预测流体运动具有重要意义,也为相关工程应用提供了理论依据。
未来展望:在今后的研究中,可以进一步探究其他因素对流体运动的影响,如温度、流道形状等。
同时,可以结合数值模拟方法,对流体力学动量方程进行更深入的研究,以提高流体力学理论的准确性和应用价值。
结语:通过本实验,我们对流体力学动量方程有了更深入的理解。
流体力学中的流体流动实验

流体力学中的流体流动实验流体力学是研究流体力学基本规律和流动现象的一门学科,而流体流动实验则是流体力学研究的重要手段之一。
通过实验,可以观察和记录流体在不同条件下的流动行为,验证流动方程和理论模型的可靠性,从而深入理解流体的运动规律。
本文将介绍流体力学中的流体流动实验的基本原理、实验装置以及实验方法。
一、流体流动实验的基本原理在流体力学中,流体流动实验的基本原理是根据质量守恒定律和动量守恒定律进行实验设计和数据分析。
根据质量守恒定律,流经给定截面的质量流率与入口和出口流速之积相等。
动量守恒定律则建立了流体运动方程,描述了流体在不同流动条件下的运动状态。
二、流体流动实验的实验装置为了研究流体力学中的各种流动现象,需要准备相应的实验装置。
常见的流体流动实验装置包括流体管道、流动模型、雷诺管道等。
流体管道是最常见的流体流动实验装置之一,其基本结构包括进口、出口和流体流通的管道。
通过改变流体的进口条件、管道的形状和尺寸等,可以研究流体在不同流动条件下的流动特性。
流动模型是模拟真实流动情况的物理模型,常用于研究复杂的流动现象和流体力学中的问题。
流动模型可以通过缩小尺寸或者使用可替代材料来简化实验过程,从而提高实验的可行性和可观察性。
雷诺管道是一种用于测量流体流速和观察流动形态的实验装置。
雷诺管道一般由一段直管和一个扩张段构成,通过在流体流动过程中增加扩张段,可以减小流速并形成湍流,方便观察和研究流体的流动特性。
三、流体流动实验的实验方法1. 流量测量方法:流量是流体流动实验中最基本的参数之一。
常用的流量测量方法有容积法、质量法、速度法等。
容积法通过测量流体通过给定截面的体积来计算流量;质量法通过测量单位时间内流体通过给定截面的质量来计算流量;速度法通过测量流体流速和截面积来计算流量。
2. 流速测量方法:流速是流体流动实验中另一个重要的参数。
常用的流速测量方法有直接法、间接法和动态法等。
直接法通过直接测量流体流速来得到流速值;间接法通过测量与流速相关的物理量,如压力和涡旋等来计算流速;动态法是一种通过观察流体流动状态的方法来判断流速的快慢。
03恒定总流动量方程验证实验报告

恒定总流动量方程验证实验报告一、实验原理1.恒定总流动量方程对恒定总流运用动量守恒原理,可以得到动量方程ρααQ v v F ()-+=∑011022,它表明总流中上游1-1断面和下游2-2断面之间控制体内流体所受外力之矢量和等于单位时间经两断面流出控制体的动量。
利用动量方程我们往往可以求出所需的作用力,包括边界对流体的作用力或者其反作用力(流体对边界的作用力)。
水流从圆形喷嘴射出,垂直冲击在距离很近的一块平板上,随即在平板上向四周散开,流速方向转了900,取射流转向前的断面1-1和水流完全转向以后的断面2-2(是一个圆筒面,它应截取全部散射的水流)之间的水流区域为控制体,运用动量方程可求出平板对水流的作用力'R .2.具体计算公式推导不考虑水流扩散、板面和空气阻力,由恒定总流能量方程可得:gv g v g p z g p z 22)()(21222211-=+-+ρρ控制面中除了水流和平板的交界面外压强都为零,即P 1=P 2,喷嘴距离平板很近,可认为Z 1=Z 2,于是: v v v 12==.若射流方向水平,重力沿射流方向无分量,沿射流方 向的动量方程投影式为: ραQ v R ()0011-=-', 取动量修正系数α0110=.,则 '=R Qv ρ.若射流冲击的是一块凹面板,则沿射流方向的动量方程投影式为: ραβαQ v v R (cos )022011-=-', 取动量修正系数αα010210==.,v v v 12== 仍满足,所以 '=-R Qv ρβ(cos )1.本实验装置设计的射流方向是铅垂向上的,重力沿射流方向有分量,考虑到重力的减速作用,射流冲击到实验板上的速度小于喷嘴出口流速,为v v v gz 1222==-, 故将实验板受力公式改为R Q v gz =--ρβ221(cos ),其中z 为射流喷射高程(喷嘴出口到实验板的距离)二、实验装置实验设备与仪器见下图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体力学动量定实验
————————————————————————————————作者:————————————————————————————————日期:
动量定理实验
一、概述
动量定理指出:流体微团动量的变化率等于作用在该微团上所有外力的矢量和。
即某控制体内的动量在时间dt内的增量等于作用在控制体上所有外力在dt时间内的总冲量。
水射流冲击平板和内半球是用来验证动量定理的一个很好实例,本实验仪则采用水射流冲击平板通过称重系统测出冲击力。
二、实验目的:
1.测定管嘴喷射水流对平板或曲面板所施加的冲击力。
2.测定动量修正系数,以实验分析射流出射角度与动量力的相关性
3.将测出的冲击力与用动量方程计算出的冲击力进行比较,加深对动量方程的理解。
三、设备性能与主要技术参数
1、该实验装置主要由:流量计、水泵、实验水箱、管嘴、蓄水箱和平衡秤等组成。
2、流量计采用LZS-15(60-600)L/h。
3、水泵为增压泵,最高扬程:10m,最大流量:10L/min,转速2800r/min,输入功率90W。
4、量器为平衡杆秤,上面刻度每小各格为2mm,称上平衡游码为150g。
5、实验水箱由有机玻璃制成,顶部装有称重装置,内部则有实验平板与管嘴,其中管嘴距平板距离为40mm,管嘴的内径为9mm。
6、蓄水箱由PVC板焊制而成。
容积:35L。
四、实验原理
1、本实验装置给出计量杠杆为平衡杆称。
2、计算每个状态下的体积流量和质量流量
体积流量QV通过转子流量计直接得出读数,质量流量QM=ρW·QV其中水的密度ρW可根据水温查得。
3、计算每个状态下水射流冲击模型的当地速度u。
由公式u0=Qv/A0 (m/s)计算管嘴出口处的水流速度,其中A0为喷嘴出口截面积(m2)。
在地心引力的作用下,水射流离开喷嘴后要减速,当水流射到模板上时,当地
速度u 应根据垂直向上抛运动的公式进行修正,即:u=√u20-2gs,式中s 为从喷嘴出口到模板实际接触距离。
L S
G
F
五、实验流程图
S
3
4569
10
2
1
7
8
1、水泵
2、水箱
3、喷管
4、喷嘴
5、水射流
6、平板
7、筒体
8、平衡秤
9、传感力10、平衡杆
自循环供水装置由增压水泵和蓄水箱组合而成。
水泵的开启、流量大小的调节
均由阀门控制。
水流经供水管供给实验水箱,溢流水经回水管流回蓄水箱。
流经管嘴的水流形成射流,冲击实验平板,抗冲平板在射流冲力处于平衡状态。
即水流动量力F 。
冲击后的弃水经集水箱汇集后,再经上回水管流出,最后经回水管流回蓄水箱。
六、实验方法与步骤:
1、准备熟悉实验装置各部分名称、结构特征、作用性能,记录有关常数。
2、记录管嘴直径、实验模板直径和作用力力臂。
3、安装平面板,调节平衡锤位置,使杠杆处于水平状态
4、接通电源启动泵,打开泵出口阀,使水从管嘴内射向平板,导致计量杆的不平衡。
记录下流量计的读数以及电子秤的读数。
6、重复步骤4,逐档调大进水流量,至少应调节5次这样就可以得到5个实验点。
7、测量实验水温并记录下来,通过水温查得实验时水的密度,便于计算质量流量。
8、关闭水泵,将水箱中水排空,关闭电源,结束实验。
七、实验分析与讨论
1.记录有关常数。
管嘴内径d= cm,实验板直径D= cm,喷嘴出口距实验板距离s= cm。
2.设计实验参数记录、计算表,并填入实测数据。
3.取某一流量,绘出脱离体图,阐明分析计算的过程。
4. F实与F理有差异,除实验误差外还有什么原因?。