《原子物理学》(褚圣麟)第二章 原子的能级和辐射要点
原子物理学中的原子能级和辐射研究

原子物理学中的原子能级和辐射研究原子物理学是物理学的一个重要分支,主要研究原子的结构和性质以及原子与辐射的相互作用。
在原子物理学中,原子能级和辐射是两个基本概念,并且它们之间存在着密切的联系。
本文将介绍原子能级和辐射的研究内容和方法,并探讨它们在原子物理学中的重要性。
一、原子能级的研究原子能级是指原子中不同的能量状态。
根据量子力学理论,原子的能级是离散的,每个能级对应一个确定的能量值。
原子能级的研究主要包括能级结构、能级跃迁和谱线等方面。
1. 能级结构能级结构是指原子内部不同能量的分布状态。
一般而言,原子的能级结构可以用一系列的能级图来表示。
能级图的每一条横线代表一个能级,能级上的每个小圆点表示该能级上的一个电子。
2. 能级跃迁能级跃迁是指电子由一个能级跃迁到另一个能级的过程。
根据能级跃迁的方式和规律,可以分为自发辐射、受激辐射和吸收辐射三种形式。
自发辐射是指电子从高能级跃迁到低能级,并发射出一个光子。
受激辐射是指电子受到外界激励后,从高能级跃迁到低能级,并发射出一个与外界激励光子频率相同的光子。
吸收辐射是指电子吸收一个光子,从低能级跃迁到高能级。
3. 谱线原子能级的跃迁过程会产生特定的频率和波长的光,这些光在光谱上表现为一系列的谱线。
谱线的研究可以揭示原子的能级结构和能级跃迁的特性。
对于不同元素和分子,它们的谱线具有独特的特征,因此光谱分析成为了研究原子和辐射的重要手段之一。
二、辐射的研究辐射是指物质发射、传播或吸收的电磁波或粒子流。
在原子物理学中,辐射不仅包括可见光、紫外线、X射线等电磁波辐射,还包括带电粒子的流动,比如α粒子、β粒子和γ射线等。
1. 电磁辐射电磁辐射是原子物理学中研究的重要内容之一。
电磁辐射具有波粒二象性,既可以看作波动也可以看作粒子。
根据电磁辐射的波长或频率,可以将其分为不同的区域,如可见光、紫外线、X射线和γ射线等。
研究辐射的特性和相互作用是原子物理学的核心问题之一。
2. 带电粒子辐射带电粒子辐射是指原子核或带电粒子在运动中所发射的辐射。
原子的能级和辐射

第十七页,编辑于星期一:二十一点 二十七分。
§2.3 Bohr的氢原子理论
二、 Bohr理论的基本假设
Bohr首先提出量子假设,拿出新的模型,并由此建立了氢原子理论,从他的 理论出发,能准确地导出Balmer公式,从纯理论的角度求出里德伯常数 ,并与 实验值吻合的很好。
此外,Bohr 理论对类氢离子的光谱也能给出很好的解释。因此,玻尔理论一举 成功,很快为人们接受。
2、 经典理论的困难
(1)无法解释原子的稳定性
电子加速运动辐射电磁波,能量不断损失,电子回转半径不断 减小,最后落入核内,原子塌缩。
(2)无法解释原子光谱是线状光谱
电子绕核运动频率
f 2vr2e
Z
40m3r
电磁波频率等于电子回转频率,发射光谱为连续谱。
描述宏观物体运动规律的经典理论,不能随意地推广到原子这样的微
h En Em En Em
h
h:Planck常数
第十九页,编辑于星期一:二十一点 二十七分。
§2.3 Bohr的氢原子理论
(1)若En > Em,表明原子发射光子 (2)若En < Em,表明原子吸收光子
3、角动量量子化
电子绕原子核运动的轨迹不是任意的,只有那些角动量满足mvr ·2 =
§2.3 Bohr的氢原子理论
例:试估算处于基态的氢原子被能量为12.09eV的光子激发时, 其电子的轨道半径变为原来的多少倍?
解:h = E2- E1
12.09 = E2- (-13.6)
∴ E2 = -1.51eV Rhc
E2n2 n3
又 r = a1n2
∴ 半径变为原来的9倍
第二十九页,编辑于星期一:二十一点 二十七 分。
原子物理一到三章讲义(褚圣麟编)

2、玻尔理论H原子电子轨道半径:rn
v e F向 m 2 r 4 0 r
两式联立
2
2
2
P mvr n2
2
1 2 E动 mv 2 2 1 1 e 1 V势能 2 4 0 r 2
r
4o 2 rn n ( ) n r 0 2 me
R
汤姆孙模型
m 7300me 电子的影响忽略
2Ze2 r R时,F 2 4 0 r 2Ze r R时,F 2 4 0 R
2
Ze 3 r R时,有效电荷量Q 3 r R
Ze 3 r R时,有效电荷量Q 3 r R 2 2eQ 2Ze r 电荷受力F 2 3 4 0 r 4 0 R
1 2 1 2Ze 2 Mv Mv 2 2 4 0 rm
有心力场中,角动量守恒
2
Mvb Mvrm
2Ze2 1 14 rm (1 ) ~ 10 m 2 4 0 Mv sin 2
5.对a粒子散射实验的说明
(1)散射截面的问题
(2)大角散射和小角散射的问题 (3)核外电子的问题
三、原子光谱的规律
(1)原子光谱是线状分离谱
(2)各谱线的波数有严格的关系(线系) ~ T m T n—— (3)每个波数都可写为: 里兹并合原理 例: H : T n
RH n
2
Li :
T n
R (n )
2
§3 玻尔氢原子理论 1. 玻尔理论的三个基本假说 1) 定态假设: 原子只能处于某些分立的,不连续的能量状态
定比定律: 元素按一定的物质比相互化合。
倍比定律: 若两种元素能生成几种化合物,则 在这些化合物中,与一定质量的甲 元素化合的乙元素的质量,互成简 单整数比。
原子物理学第2章原子的量子态全解

的温度升高时,单色辐射能量密度
最大值向短波方向移动.
0 1 2 3 4 λ(µm) 绝对黑体辐射能量密度按波长分布(实验)曲线
第二章 原子的量子态:玻尔模型
Manufacture: Zhu Qiao Zhong
4
物体辐射总能量按波长分布决定于温度.
800K
1000K
1200K
固体在温度升高时颜色的变化
矛盾二:经典的光强和时间决定光电流大小;而光电效应中只有 在光的频率大于红限时才会发生光电效应.
矛盾三:经典的驰豫时间(or:响应时间)较长 (若光强很小,电 子需较长时间吸收足够能量才能逸出),而光电效应不超过10-9s.
实验表明:光强为1μW/m2的光照射到钠靶上即有光电流产生, 这相当于500W的光源照在6.3km处的钠靶.
第二章 原子的量子态:玻尔模型
Manufacture: Zhu Qiao Zhong
10
“在目前业已基本建成的科学大厦中,物理学家似乎只要 做一些零碎的修补工作就行了;然而在物理学晴朗天空的 远处,还飘着两朵令人不安的愁云.”
——《19世纪笼罩在热和光的动力论上的阴影》 1900年4月27日于不列颠皇家科学院
1)光电流与入射光强度的关系
光电子
单色光
I
e
Is
A
V
遏止电压
光强较强 光强较弱
第二章 原子的量子态:玻尔模型
Ua o
U
Manufacture: Zhu Qiao Zhong
15
第二章 原子的量子态:玻尔模型
Manufacture: Zhu Qiao Zhong
16
2)光电子初动能与入射光频率呈线性关系,而与入射光强度
原子物理学习题答案(褚圣麟)

7.2 原子的3d 次壳层按泡利原理一共可以填多少电子?为什么?答:电子的状态可用四个量子s l m m l n ,,,来描写。
根据泡利原理,在原子中不能有两个电子处在同一状态,即不能有两个电子具有完全相同的四个量子数。
3d 此壳层上的电子,其主量子数n 和角量子数l 都相同。
因此,该次壳层上的任意两个电子,它们的轨道磁量子数和自旋磁量子数不能同时相等,至少要有一个不相等。
对于一个给定的l m l ,可以取12;,....,2,1,0+±±±=l l m l 共有个值;对每个给定的s l m m ,的取值是2121-或,共2个值;因此,对每一个次壳层l ,最多可以容纳)(122+l 个电子。
3d 次壳层的2=l ,所以3d 次壳层上可以容纳10个电子,而不违背泡利原理。
7.4 原子中能够有下列量子数相同的最大电子数是多少?n l n m l n )3(;,)2(;,,)1(。
答:(1)m l n ,,相同时,s m 还可以取两个值:21,21-==s s m m ;所以此时最大电子数为2个。
(2)l n ,相同时,l m 还可以取两12+l 个值,而每一个s m 还可取两个值,所以l n ,相同的最大电子数为)12(2+l 个。
(3)n 相同时,在(2)基础上,l 还可取n 个值。
因此n 相同的最大电子数是:212)12(2n l N n l =+=∑-=7.5 从实验得到的等电子体系K Ⅰ、Ca Ⅱ……等的莫塞莱图解,怎样知道从钾Z=19开始不填s d 43而填次壳层,又从钪Z=21开始填s d 43而不填次壳层?解:由图7—1所示的莫塞莱图可见,S D 2243和相交于Z=20与21之间。
当Z=19和20时,S 24的谱项值大于D 23的值,由于能量同谱项值有hcT E -=的关系,可见从钾Z=19起到钙Z=20的S 24能级低于D 23能级,所以钾和钙从第19个电子开始不是填s d 43而填次壳层。
原子物理和量子力学

原子物理与量子力学习题参考答案目录原子物理学(褚圣麟编) (1)第一章原子的基本状况 (1)7.α粒子散射问题(P21) (1)第二章原子的能级和辐射 (1)5.能量比较(P76) (1)7.电子偶素(P76) (1)8.对应原理(P77) (1)9.类氢体系能级公式应用(P77) (1)11.Stern-Gerlach实验(P77) (2)第三章量子力学初步 (2)3.de Broglie公式(P113) (2)第四章碱金属原子 (2)2.Na原子光谱公式(P143) (2)4.Li原子的能级跃迁(P143) (2)7.Na原子的精细结构(P144) (2)8.精细结构应用(P144) (3)第五章多电子原子 (3)2.角动量合成法则(P168) (3)3.LS耦合(P168) (3)7.Landé间隔定则(P169) (4)第六章磁场中的原子 (4)2.磁场中的跃迁(P197) (4)3.Zeeman效应(P197) (4)7.磁场中的原子能级(P197) (5)8.Stern-Gerlach实验与原子状态(P197) (5)10.顺磁共振(P198) (5)第七章原子的壳层结构 (6)3.原子结构(P218) (6)第八章X射线 (6)2.反射式光栅衍射(P249) (6)3.光栅衍射(P249) (6)量子力学教程(周世勋编) (7)第一章绪论 (7)1.1 黑体辐射(P15) (7)1.4 量子化通则(P16) (7)第二章波函数和Schrödinger方程 (8)2.3 一维无限深势阱(P52) (8)2.6 对称性(P52) (8)2.7 有限深势阱(P52) (9)第三章力学量 (10)3.5 转子的运动(P101) (10)3.7 一维粒子动量的取值分布(P101) (10)3.8 无限深势阱中粒子能量的取值分布(P101) (11)3.12 测不准关系(P102) (11)第四章态和力学量的表象 (12)4.2 力学量的矩阵表示(P130) (12)4.5 久期方程与本征值方程的应用(P130) (13)第五章微扰理论 (16)5.3 非简并定态微扰公式的运用(P172) (16)5.5 含时微扰理论的应用(P173) (16)第七章自旋与全同粒子 (17)7.1 Pauli算符的对易关系(P241) (17)7.2 自旋算符的性质(P241) (17)7.3 自旋算符x、y分量的本征态(P241) (17)7.4 任意方向自旋算符的特点(P241) (17)7.5 任意态中轨道角动量和自旋角动量的取值(P241) (18)7.6 Bose子系的态函数(P241) (19)原子物理与量子力学习题 (20)一、波函数几率解释的应用 (20)二、态叠加原理的应用 (20)三、态叠加原理与力学量的取值 (20)四、对易关系 (21)五、角动量特性 (22)1原子物理学(褚圣麟编)第一章 原子的基本状况7.α粒子散射问题(P21)J 106.1105.3221962-⨯⨯⨯⨯==E M υ232323030m )2/3(109.1071002.61060sin 1060sin 10----⊥-⨯⨯⨯⨯=⨯⨯=⋅⨯=A N t A N Nt s ρρ C 1060.119-⨯=e ,11120m AsV 1085.8---⨯=ε,61029-⨯=n dn32521017.412.0100.6--⨯=⨯==ΩL dS d , 20=θ 2.48)4(sin 202422=⋅Ω⋅⋅=Nt d n dn eM Z πευθ第二章 原子的能级和辐射5.能量比较(P76)Li Li Li Li v hcR hcR E E hv E )427()211(32212=-⋅=-==H e H e H e H e hcR hcR E E 4)1/2(0221=⋅=-=++∞ +∞>H e v E E ,可以使He +的电子电离。
原子物理学 褚圣麟 第二章习题解答

第二章 原子的能级和辐射2.1 试计算氢原子的第一玻尔轨道上电子绕核转动的频率、线速度和加速度。
解:电子在第一玻尔轨道上即n=1。
根据量子化条件,πφ2hnmvrp == 1010.52910r a m −==×可得:频率 21211222ma hma nh a v πππν===1516.5610s −=×速度:m/s 61110188.2/2×===ma h a v νπ加速度:221/8.9810w v a ==×2m /s 22.2 试由氢原子的里德伯常数计算基态氢原子的电离电势和第一激发电势。
解:电离能为,把氢原子的能级公式代入,得:1E E E i −=∞2/n Rhc E n −=Rhc hc R E H i =∞−=111(2=13.60eV。
电离电势:60.13==eE V ii V 第一激发能为将电子从n=1的能级激发到n=2的能级上所需要的能量:20.1060.134343)2111(22=×==−=Rhc hc R E H i eV 第一激发电势:20.1011==eE V V 2.3 用能量为12.5电子伏特的电子去激发基态氢原子,问受激发的氢原子向低能基跃迁时,会出现那些波长的光谱线?解:由氢原子能级公式:2/H E hcR n =−得:113.6E eV =−2 3.4E e =−3 1.51E e ,,V V −40.85E eV ,==−可见,具有12.5电子伏特能量的电子只能激发H 原子至3≤n 的能级。
跃迁时可能发出的光谱线的波长为:1221111(5/36656323H H R R A ολλ=−=⇒=222232231113()12151241118()1025.7139H H H H R R R R οAAολλλλ=−=⇒==−=⇒=2.4 试估算一次电离的氦离子、二次电离的锂离子的第一玻尔轨道半径、电离电势、第一激发电势和赖曼系第一条谱线波长分别与氢原子的上述物理量之比值。
原子物理学(Atomic Physics) 主要参考书:褚圣麟,《原子物理学》,高等教育出版社杨福家,《原子物理学》

e 1.60217733(49)1019 C
根据电子的电量及荷质比e/me,可定 出电子的质量为:
me 9.1093897(54) 1028 g
两个小插曲:
早在1890年,休斯特(A.schuster)就曾研究过氢放电管中阴 极射线的偏转。且算出构成阴极射线微粒的荷质比为氢离子荷 质比的千倍以上。但他不敢相信自己的测量结果,而觉得“阴 极射线粒子质量只有氢原子的千分之一还不到”的结论是荒谬 的;相反,他假定:阴极射线粒子的大小与原子一样,而电荷 却较氢离子大。
此 粒子的运动基本不
受电子影响。
显微镜
实验结果表明:绝大部分粒子经金箔 散射后,散射角很小(2~3),但 有1/8000的粒子偏转角大于90 ,甚 至被反射回来。
汤姆逊模型无法解释 粒子散射实验中的大角度散射
对于汤姆逊模型, 粒子受到原子正电荷的最大作用力为:
2Ze2
F 40R2
R为原子半径。
用不同方法估算出的原子半径有一定的偏差,但数 量级相同,都是10-10米。
1.2 电子的发现
1833年,法拉第(M.Faraday)提出电解定律,依此推得:一 摩尔任何原子的单价离子永远带有相同的电量。这个电量,就 是法拉第常数F,其值是法拉第在实验中首次确定的。
1874年,斯通尼(G. J. Stoney)指出,电离后的原子所带的电 荷为一基本电荷的整数倍,并推算出这一基本电荷的近似值 (e=F/N0)。在1881年,斯通尼提出用“电子”命名基本电荷。
+Ze
vf vi
dv
42Ze02Lr0d
(其中 vi
和 vf
分别代表 粒子
的初速度和末速度)
并代入
r0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 原子的能级和辐射
一、 黑体辐射 普朗克能量子
第2章 原子的能级和辐射 二、光电效应 爱因斯坦光量子 (1)光电效应的实验规律
早在1887年,德国物理学家赫兹第一个观察到用紫光照射的尖端放电特别容 易发生,这实际上是光电效应导致的。由于当时还没有电子的概念,所以对其机 制不是很清楚。直到1897年汤姆逊发现了电子。人们才注意到一定频率的光照 射在金属表面上时,有大量电子从表面逸出,称之为光电效应。
第2章 原子的能级和辐射
经过近二个月的努力,普朗克在同年12月14日的一次德国物理学会议上提出: 对一定频率的电磁波,物体只能以 h为单位吸收或发射它,即吸收或发射电磁 波只能以“量子”方式进行,每一份能量 叫一能量子。
电子辐射的能量
E nhv (n 1,2,3)
这一概念严重偏离了经典物理;因此,这一假设提出后的5年时间内,没有 引起人的注意,并且在这以后的十多年时间里,普朗克很后悔当时的提法,在 很多场合他还极力的掩饰这种不连续性是“假设量子论”。
难点 • 量子理论的建立
• 空间量子化
第2章 原子的能级和辐射
2.1 玻尔理论的实验基础
1. 黑体辐射 普朗克能量子 2. 光电效应 爱因斯坦光量子 3. 氢原子光谱
第2章 原子的能级和辐射
卢瑟福模型把原子看成由带正电的原子核和围绕核运动的一些电子组成, 这个模型成功地解释了α粒子散射实验中粒子的大角度散射现象,可是当我们 准备进入原子内部作进一步的考察时,却发现已经建立的物理规律无法解释原 子的稳定性,同一性和再生性。
分子是由带电粒子组成的,所以当分子热运动时将有 电磁波辐射。这种辐射与温度有关,又称热辐射。
热辐射可以在任何温度下发生,其显著的特征是,辐 射谱是连续的,即含有各种波长的电磁波成份。
物体除因热运动向外辐射电磁波外,还具有吸收和反 射电磁波的本领。如果从物体辐射出去的能量正好等于它 所吸收的能量,那么物体和辐射场之间处于热平衡状态,
具有同一个温度T。
若处在平衡态的物体的吸收本领很强,那么它的辐射 本领也一定很强。对于吸收比(吸收的电磁能量与入射的 电磁能量之比)为1的物体(全吸收不反射)称为黑体。黑体 也是最好的辐射体,因此研究黑体的辐射最有意义。
第2章 原子的能级和辐射
事实上用不透明的材料制成一个开小孔的空腔就可看作是 一个实际的黑体。空腔内的热平衡辐射称黑体辐射。测量从 空腔小孔泻流出来的电磁能流,就可以获得空腔内热平衡辐 射的信息——黑体辐射的能量密度 .
第2章 原子的能级和辐射
十九世纪中期,物理学理论在当时看来已经发展到了相当完善的阶段,那 时,一般的物理现象都可以用相应的理论加以解释。物体的宏观机械运动,准 确地遵从牛顿力学规律;电磁现象被总结为麦克斯韦方程;热现象有完整的热 力学及统计物理学;……;物理学的上空可谓晴空万里,在这种情况下,有许 多人认为物理学的基本规律已完全被揭示,剩下的工作只是把已有的规律应用 到各种具体的问题上,进行一些计算而已。
第2章 原子的能级和辐射
第二章 原子的能级和辐射
2.1 玻尔理论的实验基础 2.2 玻尔模型 2.3 玻尔理论的修正和推广 2.4 夫兰克—赫兹实验 2.5 索末菲理论 2 .6 空间量子化与史特恩—盖拉赫实验 2 .7 玻尔对应原理
第2章 原子的能级和辐射
教学要求
(1)掌握氢原子光谱规律及巴尔末公式。 (2)掌握玻尔基本假设、圆轨道的量子
(6)掌握史特恩—盖拉赫实验原理、方法、 实验结果的分析和结论,掌握原子磁矩的概 念和原子空间量子化理论,掌握旧量子数的 取值范围和所表征的物理量表达式。
(7)理解玻尔对应原理、玻尔理论的地位和 缺陷。
第2章 原子的能级和辐射
•重点
• 尔氢原子理论、类氢离子光谱 • 夫兰克—赫兹实验 • 量子化通则 • 空间量子化 • 旧量子数的取值范围和所表征的物理量表达式 • 玻尔的对应原理
测量得到的黑体辐射能量密度E(λ,t) 随波长λ的变化曲线如图所示
如何解释
E ~ 实 验曲线?
第2章 原子的能级和辐射
黑体辐射经典解释
按照经典电磁理论,电磁波经器壁多次反射,形成各种驻波。若把每一 驻波看作是一个线性谐振子,在热平衡态(T)每个谐振子具有kT(k是玻耳兹 曼常数)的平均能量,频率在υ~ υ +d υ之间的辐射能量密度是
E(v,T )dv
8
c3
k Tv2 dv
如此得到的结果(见上图点线)仅在长波段与实验曲线相符,而在紫外
区完全偏离实验曲线。这就是物理学史上的
。
紫外灾难
第2章 原子的能级和辐射
黑体辐射量子解释
1900年10月19日,德过物理学家普朗克(Planck)在一次物理学会议上公布了 一个公式
E(v,T )dv
化条件、半径公式、能量公式、氢原子 能级图,以及一些有关的重要常数值。 (3)掌握玻尔氢原子理论,能够解释氢 原子和类氢离子光谱的实验规律,掌握 光谱项的物理意义。
第2章 原子的能级和辐射
(4)掌握夫兰克—赫兹实验的原理、方法、 实验结果的分析及结论。
(5)掌握索末菲量子化通则和电子椭圆轨道 的特性。
8h
c3
3
eh
1
/ kT
dv 1
上式中的h就是著名的普朗克常量,其曲线与实验值完全吻合,而这一公式是普朗 克根据实验数据猜出来的。此公式虽然符合实验事实但其在公布时仍没有理论根 据,就在普朗克公式公布当天,另一位物理学家鲁本斯将普朗克的结果与他的最新 测量数据进行核对,发现两者以惊人的精确性相符合。第二天鲁本斯就把这一喜 讯告诉了普朗克,从而使普朗克决心:“不惜一切代价,找到一个理论解释。”
玻尔(N.Bohr)基于卢瑟福原子模型,原子光谱的实验规律以及普朗克的 量子化概念,于1913年提出了新的原子模型并成功地建立了氢原子理论,解释 了氢光谱的产生,玻尔理论还可以准确地推出巴尔末公式,并能算出里德伯常 数的理论值。不过当玻尔理论应用于复杂一些的原子时,就与实验事实产生了 较大的出入。这说明玻尔理论还很粗略,直到1925年量子力学建立以后,人们 才建立了较为完善的原子结构理论。