七年级数学上册知识点大全

合集下载

七年级上册数学知识点归纳总结

七年级上册数学知识点归纳总结

七年级上册数学知识点归纳总结一、知识点:1. 代数式:用运算符号把数与字母连起来的式子叫做代数式。

单独的一个数或一个字母也叫做代数式。

2. 单项式:只含有数与字母的积的代数式叫做单项式。

3. 系数:单项式中的数字因数叫做这个单项式的系数。

4. 次数:一个单项式中,所有字母的指数之和叫做这个单项式的次数。

5. 整式:只含有字母的积的式子叫做整式。

6. 多项式:几个单项式的和叫做多项式。

7. 项:在多项式中,每个单项式叫做多项式的项。

8. 常数项:不含字母的项叫做常数项。

9. 升幂排列与降幂排列:从左向右,指数由小到大是升幂排列;从左向右,指数由大到小是降幂排列。

10. 平行线:在同一平面内,不相交的两条直线叫做平行线。

11. 同位角、内错角、同旁内角:两条直线被第三条直线所截,如果两个角都在两直线的同侧,并且在第三条直线的两侧,那么这样的一对角叫做同旁内角;如果两个角都在两直线的同侧,并在第三条直线的同旁,那么这样的一对角叫做同位角;如果两个角都在两直线的异侧,并且都在第三条直线的同旁,那么这样的一对角叫做内错角。

12. 对顶角:两个角的两边分别对应垂直,则这两个角叫做对顶角。

13. 垂直:两条直线相交成直角时,这两条直线互相垂直。

14. 垂线与垂足:从直线外一点向直线引垂线,这点和垂足之间的线段叫做垂线段。

连接直线外一点与直线上各点的所有线段中,垂线段最短。

15. 两点之间的所有连线中,线段最短。

简单说成:两点之间线段最短。

16. 三角形:由不在同一条直线上的三条线段首尾顺次连接得到的图形叫做三角形。

17. 三角形的边、顶点、内角:三角形是由三条边、三个顶点、三条高组成的。

三条边分别叫做三角形的三边;三个顶点分别叫做三角形的三个顶点;三个内角分别叫做三角形的三个内角;其中最大的内角叫做最大角,它也是三角形的外角。

18. 三角形的基本性质:三角形任意两边的和大于第三边;三角形三个内角和等于180°;三角形具有稳定性。

七年级上册数学重点知识

七年级上册数学重点知识

七年级上册数学重点知识包括以下几个方面:
1. 有理数:了解正数、负数和零的概念,掌握有理数的加、减、乘、除运算规则,以及整数和分数的转换。

2. 一元一次方程:学会解一元一次方程,理解方程的解的概念,掌握解方程的方法。

3. 几何图形:了解线段、射线和直线的概念,掌握角的概念及角的度量,学会画图和识图。

4. 三角形:理解三角形的定义和性质,掌握三角形的三边关系、三角形内角和定理、三角形外角性质等。

5. 多边形:了解多边形的定义和性质,掌握多边形的内角和公式、外角和定理,以及多边形对角线的概念。

6. 几何图形的变换:掌握平移、旋转、轴对称等几何变换的概念和方法。

7. 数据分析:学会收集、整理、分析数据,掌握条形图、折线图、饼图等统计图表的绘制方法。

8. 逻辑推理:培养逻辑思维能力,掌握简单的逻辑推理方法。

以上就是七年级上册数学的重点知识,需要在学习过程中加以重视和掌握。

完整版)七年级上册数学知识点大全

完整版)七年级上册数学知识点大全

完整版)七年级上册数学知识点大全2)异号两数相加,取绝对值大的符号,并把绝对值相减;3)加数与被加数的顺序可以交换,即满足交换律;4)加法结合律成立,即(a+b)+c=a+(b+c);5)0是加法的零元素,即a+0=a;6)有理数加法满足可逆律,即对于任意有理数a,都有相反数-b,使得a+b=0.8.有理数减法法则:1)a-b=a+(-b);2)减数与被减数的顺序不能交换,即不满足交换律;3)减法不满足结合律,即(a-b)-c≠a-(b-c);4)减法没有零元素;5)有理数减法也满足可逆律,即对于任意有理数a,都有相反数-b,使得a-b=a+(-b)=0.9.有理数乘法法则:1)同号两数相乘,积为正数;2)异号两数相乘,积为负数;3)0乘以任何数都等于0;4)1是乘法的单位元素,即a×1=a;5)乘法满足交换律,即a×b=b×a;6)乘法满足结合律,即(a×b)×c=a×(b×c);7)有理数乘法满足可逆律,即对于任意非零有理数a,都有倒数1/a,使得a×1/a=1.10.有理数除法法则:1)a÷b=a×1/b;2)被除数为0时,无法进行除法运算;3)除数为0时,无意义;4)除法不满足交换律,即a÷b≠b÷a;5)除法不满足结合律,即(a÷b)÷c≠a÷(b÷c);6)有理数除法满足可逆律,即对于任意非零有理数a,都有倒数1/a,使得a×1/a=1.11.分数:1)分数由分子和分母组成,分母不能为0;2)分数可以化为最简分数,即分子和分母没有公因数;3)分数可以比大小,比较分数大小时,可以通分,然后比较分子大小;4)分数可以加减乘除,加减法通分后再进行运算,乘法直接将分子和分母相乘,除法将除数取倒数后再乘以被除数.12.小数:1)小数是有理数的一种表示形式;2)小数可以化为分数,分母为10的正整数的分数;3)小数的加减乘除法与分数的运算法则相同;4)小数可以用数轴表示,小数点左边的数表示整数部分,右边的数表示小数部分;5)小数可以化为百分数,即乘以100,化为千分数即乘以1000等.1.有理数的基本概念:有理数包括正有理数、负有理数和零,可以表示成分数形式,分母不为零。

初中数学七年级上册知识点总结(最新最全)

初中数学七年级上册知识点总结(最新最全)

提分数学七年级上知识清单第一章 有理数一.正数和负数⒈正数和负数的概念负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数注意:①字母a 可以表示任意数,当a 表示正数时,-a 是负数;当a 表示负数时,-a 是正数;当a 表示0时,-a 仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数: 比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。

3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

二.有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

2. (1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ①按正、负分类: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②按有理数的意义来分:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

七年级上册数学要点

七年级上册数学要点

七年级上册数学要点
1. 正负数:正数是大于0的数,负数是小于0的数。

0既不是正数也不是负数。

2. 有理数:有理数是可以表示为两个整数之比的数,包括整数和分数。

整数包括正整数、0和负整数,分数包括正分数和负分数。

3. 数轴:数轴是一条直线,可以用来表示所有的有理数。

数轴上的每一个点都对应一个有理数,反之亦然。

数轴上的点有原点(表示0的点)、正方向和单位长度。

在数轴上,右边的数总比左边的数大。

4. 相反数和绝对值:只有符号不同的两个数互为相反数。

正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

5. 倒数:乘积为1的两个数互为倒数。

0没有倒数。

6. 直线、射线和线段:直线可以向两侧无限延伸,没有端点。

射线有一个端点,可以向一侧无限延伸。

线段有两个端点,长度有限。

7. 角:角是由有公共端点的两条射线组成的图形。

这个公共端点是角的顶点,两条射线是角的两边。

角的度、分、秒是60进制的,即1度等于60分,1分等于60秒。

七年级上册数学知识点大全

七年级上册数学知识点大全

人教版七年级数学上册知识点大全1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数; (2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数 0和正整数; a >0 a 是正数; a <0 a 是负数;a ≥0 a 是正数或0 a 是非负数; a ≤ 0 a 是负数或0 a 是非正数.;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 a+b=0 a 、b 互为相反数. (4)相反数的商为-1. (5)相反数的绝对值相等 4.绝对值:!(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0; 5.有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;'(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,,以上数据表示与标准质量的差, 绝对值越小,越接近标准。

七年级数学上册知识点大全

七年级数学上册知识点大全

七年级数学上册知识点汇总1.有理数:(1)凡能写成分数形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ( a 是非负数); a ≤ 0 ⇔ a 是负数或0(a 是非正数).(4)最大的负整数是-1,最小的正整数是12.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;如1.5的相反数是-1.5,-12的相反数是12,a 的相反数是-a,0的相反数还是0;(2)注意:3.14-π 的相反数是π-3.14;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0, 即: a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为-1(除0外). (5)相反数的绝对值相等。

4.绝对值:(1)正数的绝对值等于它本身,例如:|5|=5, |π-3.14|=π-3.140的绝对值是0,负数的绝对值等于它的相反数;例如: |-5|=5, |3.14-π|=-(3.14-π)注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=; (4) |a|是重要的非负数,即|a|≥0;5.有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;(3)两个负数,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;6.倒数:乘积为1的两个数互为倒数;例如:1.2的倒数是5/6,-4/7的倒数是-7/4注意:0没有倒数;若ab=1⇔ a、b互为倒数;等于本身的数汇总:(1)相反数等于本身的数:0(2)倒数等于本身的数:1,-1 (3)绝对值等于本身的数:正数和0(4)平方等于本身的数:0,1 (5)立方等于本身的数:0,1,-1.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;例如:-2-1=-3,(-2-1可理解为+号省略读作-2,-1的和,也可读作-2减1 )(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;例如:-1+2=1, -2+1=-1, 7-9=-2(7-9读为7与-9的和)(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;例如4-(-5)=4+5.10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个不为零因数连乘,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。

七年级上册数学知识点总结归纳

七年级上册数学知识点总结归纳

七年级上册数学知识点总结归纳一、正数和负数1.数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数。

注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a 表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

若正数表示某种意义的量,则负数可以表示具有及该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.数字0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数;(3)0表示一个确切的量。

如:0℃,或在有些题目中的基准,比如以海平面为基准,则0米就表示海平面。

二、有理数⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

③整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8也是偶数,-1,-3,-5也是奇数。

三、数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数及数轴上的点不是一一对应关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册知识点汇总1、有理数:(1)凡能写成分数形式的数,都就是有理数,整数与分数统称有理数、注意:0即不就是正数,也不就是负数;-a 不一定就是负数,+a 也不一定就是正数;π不就是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)自然数⇔ 0与正整数; a >0 ⇔ a 就是正数; a <0 ⇔ a 就是负数;a ≥0 ⇔ a 就是正数或0 ( a 就是非负数); a ≤ 0 ⇔ a 就是负数或0(a 就是非正数)、(4)最大的负整数就是-1,最小的正整数就是12.数轴:数轴就是规定了原点、正方向、单位长度的一条直线、3.相反数:(1)只有符号不同的两个数,我们说其中一个就是另一个的相反数;如1、5的相反数就是-1、5,-12的相反数就是12,a 的相反数就是-a,0的相反数还就是0;(2)注意:3、14-π 的相反数就是π-3、14;a-b 的相反数就是b-a ;a+b 的相反数就是-a-b ;(3)相反数的与为0, 即: a+b=0 ⇔ a 、b 互为相反数、(4)相反数的商为-1(除0外)、 (5)相反数的绝对值相等。

4、绝对值:(1)正数的绝对值等于它本身,例如:|5|=5, |π-3、14|=π-3、140的绝对值就是0,负数的绝对值等于它的相反数;例如: |-5|=5, |3、14-π|=-(3、14-π)注意:绝对值的意义就是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=; (4) |a|就是重要的非负数,即|a|≥0;5、有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;(3)两个负数,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;6、倒数:乘积为1的两个数互为倒数;例如:1、2的倒数就是5/6,-4/7的倒数就是-7/4注意:0没有倒数; 若ab=1⇔ a 、b 互为倒数;等于本身的数汇总: (1)相反数等于本身的数:0(2)倒数等于本身的数:1,-1 (3)绝对值等于本身的数:正数与0(4)平方等于本身的数:0,1 (5)立方等于本身的数:0,1,-1、7、 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;例如:-2-1=-3,(-2-1可理解为+号省略读作-2,-1的与,也可读作-2减1 )(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;例如:-1+2=1, -2+1=-1, 7-9=-2(7-9读为7与-9的与)(3)一个数与0相加,仍得这个数、8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c)、9.有理数减法法则:减去一个数,等于加上这个数的相反数;例如4-(-5)=4+5、10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个不为零因数连乘,积的符号由负因式的个数决定、奇数个负数为负,偶数个负数为正。

4×(-6)×(-8)×12×(-9)=-4×6×8×12×911 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac 、(简便运算)12.有理数除法法则:(1)除以一个数等于乘以这个数的倒数;例如:7÷(-4/5)=7×(-5/4)(2)两数相除,同号得正,异号得负,并把绝对值相除;0除以任何非零数都得0。

(注意:零不能做除数,)13.有理数的乘方:(1)求n个相同因数a的积的运算,叫做乘方;即a n=a、a、、、、、a(2)乘方中,相同的因数a叫做底数,相同因数的个数n叫做指数,乘方的结果叫做幂;(3)|a|,a2就是非负数,即|a|,a2≥0;若(a-2)2+|b+4|=0 a-2=0,b+4=0(即a=2,b=-4);(4)正数的任何次幂都就是正数;例如:1n =1(5)负数的奇次幂就是负数; 例如:(-1)2n+1=-1 负数的偶次幂就是正数;(-1)2n=1(6)(-3)2 与-32的区别: (-3)2=(-3)×(-3)=9; -32=-3×3、=-914.科学记数法:把一个大于10的数记成a×10n的形式,其中a就是整数数位只有一位的数,这种记数法叫科学记数法、15、近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位例如:23、4精确到0、1或精确到十分位,5、78×104(5、78万)精确到百位。

16、有效数字:从左边第一个不为零的数字起,到末位数字止,所有数字,都叫这个近似数的有效数字、例如:0、0403有三个有效数字:4,0,3、17、混合运算法则:先乘方,再乘除,后加减;如果有括号,先算括号,同一级运算,从左到右进行、注意:不省过程,不跳步骤。

18、特殊值法:就是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明、常用于填空,选择。

整式的加减19.单项式:表示数与字母的乘积的式子,单独的一个数或字母也叫单项式。

例如:单项式:3xy, a, -3ab/2, 0, -7, 不就是单项式:a/c, (m+n)/2, ab+ac20.单项式的系数与次数:单项式中的数字因数,称单项式的系数;例如:-32xy, a, -3ab/2,πa2b的系数分别就是-32,1,-3/2,π单项式中所有字母指数的与,叫单项式的次数、例如:-32xy, a, πa2b的次数分别就是2,1,321.多项式:几个单项式的与叫多项式、22.多项式的项数与次数:多项式中所含单项式的个数就就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;例如:-x2y+5xy-2x-1就是三次四项式,其中,三次项就是-x2y,三次项系数就是-1 ,二次项就是5xy,二次项系数就是5,一次项就是-2x, 一次项系数就是-2, 常数项就是-123.单项式与多项式统称整式、24.同类项:所含字母相同,并且相同字母的指数也相同的单项式就是同类项、25.合并同类项法则:系数相加,字母与字母的指数不变、不就是同类项不能合并。

26.去(添)括号法则:把括号与括号前面的符号去掉若括号前边就是“+”号,括号里的各项都不变号;+(a-b+c)=a-b+c若括号前边就是“-”号,括号里的各项都要变号、 -(a-b+c)=-a+b-c27.整式的加减:一找(同类项):(划线);二加(系数相加)三合(字母部分不变)28、多项式的升幂与降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)、经典例题透析类型一:用字母表示数量关系1.填空题:(1)香蕉每千克售价3元,m千克售价____________元。

(2)温度由5℃上升t℃后就是__________℃。

(3)每台电脑售价x元,降价10%后每台售价为____________元。

(4)某人完成一项工程需要a天,此人的工作效率为__________。

思路点拨:用字母表示数量关系,关键就是理解题意,抓住关键词句,再用适当的式子表达出来。

举一反三:[变式] 某校学生给“希望小学”邮寄每册元的图书240册,若每册图书的邮费为书价的5%,则共需邮费______________元。

类型二:整式的概念2.指出下列各式中哪些就是整式,哪些不就是。

(1)x+1;(2)a=2;(3)π;(4)S=πR2;(5);(6)总结升华:判断就是不就是整式,关键就是了解整式的概念,注意整式与等式、不等式的区别,等式含有等号,不等式含有不等号,而整式不能含有这些符号。

举一反三:[变式]把下列式子按单项式、多项式、整式进行归类。

x2y, a-b, x+y2-5, , -29, 2ax+9b-5, 600xz, axy, xyz-1, 。

分析:本题的实质就就是识别单项式、多项式与整式。

单项式中数与字母、字母与字母之间必须就是相乘的关系,多项式必须就是几个单项式的与的形式。

答案:单项式有:x2y,-,-29,600xz,axy多项式有:a-b,x+y2-5,2ax+9b-5,xyz-1整式有:x2y,a-b,x+y2-5,-,-29,2ax+9b-5,600xz,axy,xyz-1。

类型三:同类项3.若与就是同类项,那么a,b的值分别就是( )(A)a=2, b=-1。

(B)a=2, b=1。

(C)a=-2, b=-1。

(D)a=-2, b=1。

思路点拨:解决此类问题的关键就是明确同类项定义,即字母相同且相同字母的指数相同,要注意同类项与系数的大小没有关系。

解析:由同类项的定义可得:a-1=-b,且2a+b=3,解得a=2, b=-1,故选A。

举一反三:[变式]在下面的语句中,正确的有()①-a2b3与a3b2就是同类项;②x2yz与-zx2y就是同类项;③-1与就是同类项;④字母相同的项就是同类项。

A、1个B、2个C、3个D、4个解析:①中-a2b3与a3b2所含的字母都就是a,b,但a的次数分别就是2,3,b的次数分别就是3,2,所以它们不就是同类项;②中所含字母相同,并且相同字母的指数也相同,所以x2yz与-zx2y就是同类项;不含字母的项(常数项)都就是同类项,③正确,根据①可知④不正确。

故选B。

类型四:整式的加减4.化简m-n-(m+n)的结果就是( )(A)0。

(B)2m。

(C)-2n。

(D)2m-2n。

思路点拨:按去括号的法则进行计算,括号前面就是“-”号,把括号与它前面的“-”号去掉,括号里各项都改变符号。

解析: 原式=m-n-m-n=-2n,故选(C)。

举一反三:[变式] 计算:2xy+3xy=_________。

分析:按合并同类项的法则进行计算,把系数相加所得的结果作为系数,字母与字母的指数不变。

注意不要出现5x2y2的错误。

答案:5xy。

5.(化简代入求值法)已知x=-,y=-,求代数式(5x2y-2xy2-3xy)-(2xy+5x2y-2xy2)思路点拨:此题直接把x、y的值代入比较麻烦,应先化简再代入求值。

相关文档
最新文档