清华大学热工基础工程热力学加传热学1绪论
清华大学热工基础课件工程热力学加传热学期末复习

11
重点掌握:
(1)对流换热的牛顿冷却公式; (2)边界层的概念与特点及其对求解对流 换热问题的意义; (3)相似原理的主要内容及相似原理指导 下的实验研究方法; (4)对流换热特征数(Nu、Re、Pr、Gr)的 表达式及其物理意义; (5)管内和外掠圆管束的强制对流换热及 大空间自然对流换热的特点、影响因素, 会利用特征数关联式计算上述对流换热问 题。
重点掌握:
温度场、温度梯度、热流密度等基本概念; 导热傅里叶定律;不同材料导热系数的量级; 直角坐标系下导热微分方程式及其推导方法; 通过平壁、圆筒壁、肋壁稳态导热的计算方 法;非稳态导热过程的特点、会利用相关公 式或诺谟图计算一维非稳态导热问题;非稳 态导热计算的集总参数法。
10
第十章 对流换热
8
第二篇 传热学
第八章 热量传递的基本方式
8-1 热传导 8-2 热对流 8-3 热辐射 8-4 传热过程简介 重点掌握: 热传导、热对流、热辐射三种热量传递基
本方式及传热过程的特点。
9
第九章 导热
9-1 导热理论基础
9-2 稳态导热
9-3 非稳态导热
9-4 导热问题的数值解法基础
12
第十一章 辐射换热
11-1 热辐射的基本概念
11-2 黑体辐射的基本定律
11-3 实际物体的辐射特性、基尔霍夫
定律
11-4 辐射换热的计算方法
11-5 遮热板的原理
13
重点掌握: (1)黑体、灰体、吸收比、发射比、透射比、
01 清华大学 工程热力学 第一章

第一章1-1 试将1物理大气压表示为下列液体的液柱高(mm),(1) 水,(2) 酒精,(3) 液态钠。
它们的密度分别为1000kg/m3,789kg/m3和860kg/m3。
1-4 人们假定大气环境的空气压力和密度之间的关系是p=cρ1.4,c为常数。
在海平面上空气的压力和密度分别为1.013×105Pa和1.177kg/m3,如果在某山顶上测得大气压为5×104Pa。
试求山的高度为多少。
重力加速度为常量,即g=9.81m/s2。
1-7如图1-15 所示的一圆筒容器,表A的读数为360kPa,表B读数为170kPa,表示室Ⅰ压力高于室Ⅱ的压力。
大气压力为760mmHg。
试求(1) 真空室以及Ⅰ室和Ⅱ室的绝对压力;(2) 表C的读数;(3) 圆筒顶面所受的作用力。
图1-151-8 若某温标的冰点为20°,沸点为75°,试导出这种温标与摄氏度温标的关系(一般为线性关系)。
1-10 若用摄氏温度计和华氏温度计测量同一个物体的温度。
有人认为这两种温度计的读数不可能出现数值相同的情况,对吗?若可能,读数相同的温度应是多少?1-14一系统发生状态变化,压力随容积的变化关系为pV1.3=常数。
若系统初态压力为600kPa,容积为0.3m3,试问系统容积膨胀至0.5m3时,对外作了多少膨胀功。
1-15气球直径为0.3m,球内充满压力为150kPa的空气。
由于加热,气球直径可逆地增大到0.4m,并且空气压力正比于气球直径而变化。
试求该过程空气对外作功量。
1-16 1kg气体经历如图1-16所示的循环,A到B为直线变化过程,B到C为定容过程,C到A为定压过程。
试求循环的净功量。
如果循环为A-C-B-A则净功量有何变化?图1-161。
清华大学热工基础课件工程热力学加传热学第十章-对流换热、单相流体

对流换热愈强烈;
2)密度,kg/m3 3)比热容c,J/(kgK)。 c反映单位体积流体热容量
的大小,其数值愈大,通过对流所转移的热量愈多,对 流换热愈强烈;
4)动力粘度,Pas;运动粘度=/,m2/s。流体
的粘度影响速度分布与流态,因此影响对流换热;
u v 0
dy
x y
2)动量微分方程(动量守恒)
微元体
惯性力
压力差 0
dx
x
x方向: u u u xv u y F x x p x 2 u 2 y 2 u 2
D duFxxp2u 体积力
20
局部表面传热系数的变化趋势:
流动边界层厚度 与热边界层厚度t的比较 :
两种边界层厚度的相对大小取决于流体运动粘度 与
热扩散率a的相对大小。令
对于层流边界层:Pr≥1 t ;Pr≤1 t
Pr a
对于湍流边界层: t
普朗特数
一般液体:Pr=0.6~4000;气体:Pr=0.6~0.8。 21
cp
t
uxt vyt
2t x2
2t y2
4个微分方程含有4个未知量(u、v、p、t),方程 组封闭。原则上,方程组对于满足上述假定条件的对 流换热(强迫、自然、层流、湍流换热)都适用。15
(2)对流换热的单值性条件
1) 几何条件
1
10-1 概述
1. 牛顿冷却公式
= A h( tw-tf ) q = h( tw-tf )
h—整个固体表面的平均 表面传热系数;
tw—固体表面的平均温度; tf —流体温度,对于外部绕流,tf 取远离壁面的流体 主流温度;对于内部流动,tf 取流体的平均温度。
热工基础课程教学大纲.doc

x2160541热工基础课程教学大纲课程名称:热工基础英文名称:Fundamental of Thermodynamics and Heat Transfer课程编码:x2160541学时数:40其中实践学时数:0 课外学时数:0学分数:2.5适用专业:机械设计制造及其自动化、机械工程一、课程简介《热工基础》是一门专业基础课程。
本课程包括工程热力学和传热学两部分内容。
工程热力学部分主要介绍工程热力学的基本概念和基本定律、常用工质的热物理性质、基本热力过程与典型热力循环;传热学部分主要介绍导热、对流换热、辐射换热的基本规律、求解方法以及控制热量传递过程的技术措施,换热器的热计算方法。
通过《热工基础》课程的学习,使学生理解工程热力学和传热学的基本概念、基本原理和基本定律;使学生了解工程热力学、传热学常用的分析方法,培养学生对简单热学问题的分析和求解能力;掌握能量转换规律和有效利用能量的基本知识,培养学生综合运用所学知识去分析和解决实际问题的能力。
二、课程目标与毕业要求关系表三、课程教学内容、基本要求、重点和难点(零)绪论1. 能量与能源:了解能量能源的概念、分类,与国民经济和人民生活关系;2. 热工基础的研究内容:掌握热工基础的研究内容与方法。
(一)基本概念1. 热力系统:理解工质、热力系的定义,掌握热力系的分类;(重点)2.平衡状态与状态参数:理解热力状态和状态参数的定义,掌握平衡状态的物理意义及实现条件;3. 状态方程与状态参数坐标图:了解状态方程式及参数坐标图的物理意义及作用;4.准平衡过程与可逆过程:理解热力过程、准平衡过程和可逆过程的物理意义与联系;(难点)5. 功量与热量:掌握功量与热量的概念和计算。
(二)热力学第一定律1. 热力系统的储存能:掌握能量、热力系统储存能、热力学能的概念;2. 热力学第一定律的实质:理解热力学第一定律的实质;3. 闭口系统的热力学第一定律表达式:掌握封闭热力系的能量方程并熟练应用;(重点)4.开口系统的稳定流动能量方程式:掌握开口热力系稳定流动能量方程并熟练应用,掌握体积变化功、轴功、流动功和技术功的概念,理解焓的定义式及物理意义;(难点)5.稳定流动能量方程式的应用:了解常用热工设备主要交换的能量及稳定流动能量方程的简化式。
传热学-第一章 绪论PPTPPT幻灯片

• 传热学:研究热量传递规律的一门科学, 热量传递的机理、规律、计算和测试方法
• 燃烧学:研究燃烧现象和燃烧机理
• 制冷与低温:用人工的方法在一定时间和一定空 间内将某物体或流体冷却,使其温度降到环境温度 以下或很低的温度并保持该温度
授课计划 (48学时)
说明:只研究导热现象的宏观规律。
4 、导热的基本规律
1 )傅立叶定律 ( 1822年,法国数学家Fourier)
如左图所示的两个表面分别维持均 匀恒定温度的平板,是个一维导热 问题。对于x方向上任意一个厚度为 的微元层来说,根据傅里叶定律, 单位时间内通过该层的导热热量与 当地的温度变化率及平板面积A成正 比,即
第一章 绪论(4学时) 第二章 导热基本定律及稳态导热(8学时) 第三章 非稳态导热(6学时) 第四章 导热数值解法基础(2学时) 第五章 单相流体对流换热(8学时) 第六章 凝结与沸腾换热(2学时) 第七章 热辐射基本定律及物体的辐射特性(4学时) 第八章 辐射换热计算(6学时) 第九章 传热过程分析与换热器计算(8学时) 成绩权重:考试 70%,作业30%。
c 北方寒冷地区,建筑房屋都是双层玻璃, 以利于保温。如何解释其道理?越厚越好?
d 为什么下雪不冷、化雪冷?
为什么水壶的提把要包上橡胶?
不同材质的汤匙放入热水中,哪个黄油 融解更快?
生产技术领域大量存在传热问题
a 航空航天:高温叶片气膜冷却与发汗冷 却;火箭推力室的再生冷却与发汗冷却; 卫星与空间站热控制;空间飞行器重返大 气层冷却;超高音速飞行器(Ma=10)冷却; 核热火箭、电火箭;微型火箭(电火箭、 化学火箭);太阳能高空无人飞机
❖ 自然界与生产过程到处存在温差—传热很普遍
传热学课件-清华大学 (1)

dτ 时间内、沿 x 轴方向、经 x 表面导入的热量:
dQx = qx ⋅ dydz ⋅ dτ [J]
dτ 时间内、沿 x 轴方向、
经 x+dx 表面导出的热量:
dQx+dx = qx+dx ⋅ dydz ⋅ dτ [J]
物体的温度场通常用等温面或等温线表示
三、温度梯度 (Temperature gradient)
等温面上没有温差,不会 有热传递
不同的等温面之间,有温 差,有导热
∆t ≠ ∆t ∆n ∆s
温度梯度:沿等温面法线方向上的温度增量 与法向距离比值的极限,gradt
grad t = Lim ∆t n = ∂t n ∆n→0 ∆n ∂n
(2) 非金属的热导率: 非金属的导热:依靠晶格的振动传递热量;比较小
建筑和隔热保温材料: λ ≈ 0.025 ~ 3 W (mD C)
T ↑⇒ λ ↑
大多数建筑材料和绝热材料具有多孔或纤维结构 多孔材料的热导率与密度和湿度有关
ρ ↓ 、湿度 ↓ ⇒ λ ↓
保温材料:国家标准规定,温度低于350度时热导率 小于 0.12W/(mK) 的材料(绝热材料)
j
− λ ∂t k
∂z
qx
=
−λ
∂t ∂x
;
qy
=
−λ
∂t ∂y
;
qz
=
−λ
∂t ∂z
注:傅里叶定律只适用于各向同性材料 各向同性材料:热导率在各个方向是相同的
有些天然和人造材料,如:石英、木材、叠层塑料板、 叠层金属板,其导热系数随方向而变化
《热工基础》绪论PPT

g / kW. h
1960 1970 600 502
1980 1991 1997 448 424 408
2006 366 305
600 500 400 300 200 100 0 1960 1970 1980 1991 1997 2006 中国 世界先进
二Hale Waihona Puke 火力发电厂生产过程火力发电厂: 利用燃料燃烧放热生产电能的工厂
风 能
风 车
水 力 能
水水 力 车机 械
化 学 能
核 能
燃 裂 聚 烧 变 变
地 热 能
传 热
太 阳 能
光 热 光 电 反 应
热
热 机
温 差 发 电
能 (95%)
磁 流 体 发 电 热 用 户
机 械 能
发 电 机
电 动 机
电
能
太 阳 能 发 电
秦 山 核 电 站
西 藏 羊 八 井 地 热 发 电 站
《热工基础及应用》
课 程 性 质
岗位群
火电厂集控运行值班员、巡视员
专业
火电厂集控运行
课程
热工基础及应用(职业能力核心课程)
本课程为火电厂集控运行专业的职业能力核心课程,是针对大中型火力发
电厂运行与管理等岗位职业能力培养而设置的课程,旨在为大中型火电厂培 养具有运行操作基本技能、确保热力设备安全、经济运行的高素质技能型专 门人才。
传热过程是由导热、热对流、
热辐射三种基本方式组合形 成的
三、本课程主要内容及研究方法
(二)热工学主要研究方法
宏观方法为主,微观方法为辅
①宏观方法:即不考虑物质的微观结构,而是
从宏观现象出发来描述客观规律。用宏观物理量
第一章 绪论 热工基础

本章提要及安排本章提要:本章阐明热力学系统(热力系)的定义及其描述,着重介绍热力系的平衡状态的概念,描述平衡状态的基本状态参数比体积、压力和温度,及体现三者相互关系的状态方程式。
定义了热力系的准平衡过程并对热力循环作了初步的介绍.本章要求:1.了解热力系的定义,平衡状态的概念和应满足的平衡条件。
2.掌握基本状参数p、v、T 的定义、计量及不同单位间的换算。
3.了解准平衡过程的定义及提出准平衡过程的意义和作用。
4.对不同的热力循环及其作用建立起初步的概念。
学习建议:本章学习时间建议共4学时:1.热力系及其描述 1学时2.基本状态参数 1学时3.状态方程式,状态参数坐标图 1学时4.热力过程及热力循环1学时1.1 热力系及其描述本节知识点:热力系平衡状态状态参数的特性本节疑问解答:思考题1.1.1思考题1.1.2思考题1.1.3思考题1.1.4思考题1.1.5本节基本概念:热力系外界界面开口系控制容积简单热力系绝热系孤立系可压缩系统简单可压缩系统热源尺度量强度量热力状态参数力学状态参数1.1.1 热力系在对一个现象或—个过程进行分析时为了确定研究的对象,规划出研究的范围,常从若干物体中取出需要研究的部分.这种被取出的部分叫做热力学系统,简称热力系。
热力系以外的物质世界统称为外界(或环境)。
热力系与外界的分界面叫做界面(或边界)。
所谓热力系,即是由界面包围着的作为研究对象的物体的总和。
热力系与外界之间的界面可以是真实的,也可以是假拟的,可以是固定的,也可以是运动的。
在一般情况下,热力系与外界处于相互作用中,彼此可交换能量(如热量及各种形式的功)及物质。
按热力系与外界进行物质交换的情况可将热力系分类为:闭口系(或闭系)——热力系与外界无物质交换,或者说没有物质穿过边界。
此时.热力系内部的质量将保持不变,称为控制质量(C.M.),故闭口系即是我们所研究的某“控制质量”。
开口系(或开系)——热力系与外界之间有物质交换,或者说有物质穿过边界。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/5/11
12
3. 能量的转换与利用
能量的利用过程,实质上是能量的传递与转换过程。
燃料电池
机械能
氢、酒精等二次能源
电能
辐射能
光电池
发电机
机械
风能、水能、海洋能
机械能
热能 直接利用
煤、石油、天然气
核能
核反应
燃烧 集热器
热机 90%
热 能 直接利用
燃烧
太阳能 光合作用
生物质能 食物利用
2020/5/11
全世界关注的5大问题: 1)能源 2)人口 3)粮食 4)环境 5)资源
能源建设也是我国四化建设的战略重点之一。
2020/5/11
5
(3)我国能源利用的现状及主要问题
正常情况下,每个国家能源消费总量及增 长速度与其国民经济总产值及增长速度成正比, 而能源的人均消费量的多少则反映国民生活水 平的高低。
(1) 热利用: 烧饭、采暖、烘干、熔炼等;
(2)动力利用: 通过热机将热能转换成机械能 或者再通过发电机转换成电能加以
利用。
由于热能转换为机械能的有效利用程度(即热 机的热效率)较低,早期蒸汽机的热效率只有1% 2%,现代燃气轮机装置的热效率大约只有37% 42%,蒸汽电站的热效率也只有40%左右。因此, 如何更有效地实现热能和机械能之间的转换,提高 热机的热效率,是十分重要的课题。
电能 :与电荷的运动和积蓄有关的能量; 化学能 :通过化学反应释放的能量; 核能 :通过核反应释放的能量; 辐射能 :物体以电磁波的形式发射的能量。
2020/5/11
2
2. 能源
能源是指能够直接或间接提供能量的物
质资源。
(1)能源分类
1)按开发利用的情况: 常规能源:煤、石油、天然气、水能、核能等。 新能源:太阳能、风能、海洋能、生物质能、
据世界银行报导,我国城市空气污染对人体健 康和生产造成的损失估计每年200亿美元;酸雨使农 作物减产每年损失达50亿美元。
2020/5/11
11
我国的能源建设要走可持续发展的道 路,必须两条腿走路:
(1)合理利用能源,提高能源利用率。 主要途径就是改造或更新技术落后的能源 利用终端设备;
(2)大力开发对环境无污染或污染很小 的新能源,如太阳能、风能、水能、地 热能、海洋能、生物质能以及核能等。
13
据统计,目前通过热能形式利用的能源在我 国占总能源利用的90%以上,世界其它各国平均 也超过85%。由此可见,在能量转换与利用过程 中,热能不仅是最常见的形式,而且具有特殊重 要的作用。热能的有效利用对于解决我国的能源 问题乃至对人类社会的发展有着重大意义。
2020/5/11
14
热能利用的基本方式
地热能、 核聚变燃料等。
2)按开发的步骤: 一次能源: 煤、石油、天然气、风能、水能、 太阳能、 地热能、海洋能等。
二次能源: 电力、煤气、汽油、沼气、氢气、 甲醇、酒精等。
2020/5/11
3
3)按能否再生: 可再生能源:水能、太阳能、风能、海洋能、
生物质能、地热能等; 非再生能源:煤、石油、天然气、核能等。 4)按开发利用过程中对环境的污染情况:
我国每万元GDP的能耗是日本的6倍、美国 的3倍、韩国的4.5倍。
我国单位产品的能耗平均比发达国家高40 %左右。
2020/5/11
8
中国与日本工业能耗比较
3.5 3
2.5 2
1.5 1
0.5 0 吨煤/吨钢来自2020/5/11吨煤/吨合成氨
总利用率
中国 日本
9
中国发电的平均耗煤量
g / (kW. h) 600
(2)研究方法
工程热力学采用经典热力学的宏观 研究方法,还普遍采用抽象、概括、理 想化和简化处理方法。 (举例说明)
2020/5/11
17
热机工作过程示意图
过热蒸汽
发电机
锅 汽轮机 炉
乏汽 循环水
冷凝器
高温热源 吸热Q1 作功W
热机 机械能
放热Q2
水泵
冷却水
低温热源
如何提高热机的热能利用率(热效率)是
我国能源利用现状及存在的主要问题: 1)人均储备量少,远低于世界平均水平
原煤:95 吨/人(世界人均 209 吨/人);
原油:3 吨/人(世界人均 28 吨/人);
天然气:1416 m3/人(世界人均 28400 m3/人)。
2020/5/11
6
人均能源消费水平 我国的人均能源消费水平低,并且远低 于世界发达国家的水平:
500
400
300
200
100
0 1960
2020/5/11
1970
1980
1991
1997
中国 世界先进
10
3)环境污染严重
工业的发展带来了严重的环境污染,据调查,
我国57%的城市空气中总悬浮颗粒超标; 48个大中城市空气中的SO2浓度超标; 82%城市出现过酸雨;
我国的CO2排放量仅次于美国,居世界第二,占 世界总排放量的13.6%。
2020/5/11
15
0-2 热工基础的研究内容
热工基础
(热工理论基础)
工程热力学篇 传热学篇
主要研究内容:
热工基础主要研究热能利用的基 本规律以及热能利用过程及自然界所 有热现象中热量传递的基本规律。
2020/5/11
16
1.工程热力学的研究内容与研究方法
(1)研究内容
工程热力学主要研究热能和机械能 之间相互转换的规律及提高能量转换经 济性的途径和技术措施 。(举例)
清洁能源:太阳能、风能、水能、海洋能等;
非清洁能源:煤、石油、天然气等。
(2)能源对人类社会发展的重要意义
能源是人类社会生存的基础,能源的开发和 利用是人类社会发展的动力,能源开发和利用水 平是人类社会文明的重要标志之一。
2020/5/11
4
能源问题是全世界关注的重大问题,从20世 纪70年代起,就被列入世界5大问题之一。
绪论
0-1 能量与能源 1.能量
能量是物质运动的度量。 世界是由物质构成的,一切物质都处于 运动状态,所以一切物质都具有能量。
能量是人类社会进步的动力。
2020/5/11
1
能量的主要形式 :
机械能 : 物体的动能与势能; 热能 :物质分子热运动动能与位能之和,即不涉
及化学变化和核反应的热力学能,也称为内 热能;
我国大陆地区年总发电量 2.5 亿千瓦,人 均 0.2 千瓦/(人·年);台湾地区人均 1.0千 瓦/ (人·年);
欧、美、日本等发达国家 6 千瓦/人·年) 。
2020/5/11
7
2)能源开发利用设备和技术落后,能源利 用效率低,浪费严重
我国能源的终端利用效率为32 % ~33%;
发达国家能源的终端利用效率大于42%。