自感现象的应用(15-2-4)
自感现象及应用

继电器
继电器是一种利用小电流控制大电流的开关器件,广泛应用于电力系统、自动化控 制和通信等领域。
在继电器中,自感元件用于储存能量,当电流超过一定值时,自感产生的感应电动 势会阻止电流继续增加,从而保护电路。
研究磁场与电流的关系
80%
研究目的
探究磁场与电流之间的关系,了 解自感现象与互感现象的产生机 理。
100%
实验器材
自感线圈、电源、开关、电流表 、导线、磁场测量仪等。
80%
实验步骤
将自感线圈置于磁场中,通过电 源向线圈中通入不同频率的交流 电,观察磁场与电流的变化关系 ,记录实验数据并进行分析。
电磁感应实验
自感现象及应用
目
CONTENCT
录
• 自感现象概述 • 自感现象在电路中的应用 • 自感现象在磁学中的应用 • 自感现象在物理实验中的应用 • 自感现象在其他领域的应用
01
自感现象概述
自感现象的定义
自感现象
当一个线圈中的电流发生变化时,会在其自身产生一个感应电动 势,阻碍电流的变化,这种现象称为自感现象。
磁力矩器具有响应速度快、控制精度高、可靠性好等优点, 能够实现精确的位置和姿态控制。
04
自感现象在物理实验中的应用
测量自感系数
测量原理
通过测量电路中自感线圈在通断电瞬间产生的感应 电动势,可以计算出自感系数。
实验器材
自感线圈、电源、开关、电压表、电流表、导线等 。
实验步骤
将自感线圈接入电路,分别测量通断电瞬间感应电 动势,根据公式计算出自感系数。
要点二
磁感应成像(Magnetic Induction Im…
自感现象及其应用

2.日光灯的主要元件及作用 (1)灯管 日光灯灯管的两端各有一个灯丝,灯管内充有微量的 氩和稀薄的汞蒸气,灯管内壁上涂有荧光粉.两个灯丝之 间的气体导电时发出紫外线,使涂在管壁上的荧光粉发 出柔和的可见光.
(2)镇流器 ①构造 镇流器是一个带铁芯的线圈,自感系数很大. ②作用 起辉器接通再断开的瞬间,镇流器能产生瞬时高压,加 在灯管两端,使灯管中的气体导电,日光灯开始发光. 在日光灯正常发光时,由于交变电流通过镇流器的线 圈,线圈中产生自感电动势,总是阻碍电流的变化,这时镇 流器起着降压限流的作用,保证日光灯的正常工作.
通电自感现象
L
1 2
R
R1
问题1:开关接通时,可以看到什么现象?为什么?
灯2立即变亮, 灯1逐渐变亮
断电自感现象
现象?为什么? 灯2立即熄灭, 灯1先闪亮,后逐渐变暗 灯泡闪亮一下,说明了什么?后来为什 么会慢慢变暗?
自感现象
当导体中的电流发生变化时,导体本身就产生感 应电动势,这个电动势总是阻碍导体中原来电流 的变化。这种由于导体本身的电流发生变化而 产生的电磁感应现象,叫做自感现象。这种现象 中产生的感应电动势,叫做自感电动势。
通电自感现象分析 开关刚接通时, 灯2立即变亮, 灯1逐渐变亮
R
L
I1
1
I感
2
I2
I总
电路稳定后, L变成一个电 阻,灯1、灯2的 亮度基本相同
R1
断电自感现象分析
I1
1
开关断开时, I总 I1、I2均变为零
I感 LI 2
L
I总 R1
灯2立即熄灭, I感 与IL 方向相同, 灯1先闪亮,后逐渐变暗
自感系数
1、自感电动势的大小:与电流的变化率成正比 2、自感系数 L-简称自感或电感
自感的原理及应用

自感的原理及应用1. 什么是自感?自感,又称为电感或感应电阻,是电路中一种重要的电性质。
当电流在导体中流动时,会在导体周围产生一个磁场。
这个磁场会产生一个与电流变化有关的电动势,从而阻碍电流的变化。
这种阻碍电流变化的电性质就是自感。
2. 自感的原理自感的原理可以由法拉第电磁感应定律解释。
根据法拉第电磁感应定律,当电流在导线中变化时,会在导线周围产生一个磁场。
这个磁场会反过来影响导线内的电流,从而阻碍电流的变化。
具体来说,自感的产生是由于磁场的回应。
当电流发生变化时,磁场会随之改变,从而产生了一个沿着导线方向的感应电动势。
这个感应电动势的方向与电流的变化方向相反,从而产生了一个阻碍电流变化的作用。
3. 自感的应用自感在电路中有着广泛的应用,以下列举了几个常见的应用:•电感自感器件就是电感的一种常见形式,它可以用来存储能量,抑制高频噪声以及滤波等。
自感通过电抗来描述,它的阻力为零。
电感的大小取决于线圈的匝数、线圈的面积以及线圈的长度。
•变压器变压器是利用自感原理工作的重要设备。
它可以将低压高电流的交流电转换成高压低电流的交流电,或者反过来。
变压器是电力传输和分配中的关键设备,广泛应用于电力系统中。
•发电机发电机也是利用自感原理工作的设备之一。
在发电机中,通过转动导体线圈和恒定磁场之间的相互作用,产生感应电动势。
这个感应电动势将电能转换为机械能,从而进行发电。
•电磁铁电磁铁是利用自感原理将电能转换为磁能的设备之一。
当电流通过一个线圈时,会在线圈周围产生一个磁场。
这个磁场可以吸引铁磁物质,从而形成一个临时磁铁。
•电感传感器电感传感器是利用自感原理测量物理量的设备。
通过测量电感的变化来实现对物理量的测量。
例如,利用电感传感器可以测量金属材料的温度、液位的变化等。
4. 总结自感是电路中一种重要的电性质,通过阻碍电流变化来产生感应电动势。
自感的原理可以由法拉第电磁感应定律解释。
自感在电路中有着广泛的应用,包括电感、变压器、发电机、电磁铁和电感传感器等。
自感现象的原理及应用

自感现象的原理及应用1. 引言自感现象是一种物理现象,指的是当电流经过一条导线时,产生的磁场会对导线本身产生感应电动势的现象。
这种自感作用在电路设计和应用中具有重要的作用。
本文将介绍自感现象的基本原理、计算方法以及在电路设计和应用中的应用。
2. 自感现象的原理自感现象基于法拉第电磁感应定律,即改变磁通量线的大小和方向会在导线上产生感应电动势。
自感现象的原理可以用以下公式表示:$$ V = -L \\frac{di}{dt} $$其中,V表示电压,L表示自感系数,di/dt表示电流的变化率。
3. 自感系数的计算自感系数是用来衡量导线对其本身产生的磁场的感应程度。
具体计算方法如下:•直线导线的自感系数计算公式为:$$ L = \\frac{\\mu_0 \\cdot \\pi \\cdot d}{ln(\\frac{8d}{r})} $$其中,L表示自感系数,$\\mu_0$表示真空中的磁导率,d表示导线的长度,r表示导线的半径。
•环形导线的自感系数计算公式为:$$ L = \\frac{\\mu_0 \\cdot R}{2} \\cdot \\left[ln\\left(\\frac{8R}{r}\\right)-1\\right] $$其中,L表示自感系数,$\\mu_0$表示真空中的磁导率,R表示环形导线的半径,r表示导线的半径。
4. 自感现象在电路设计中的应用自感现象在电路设计中有广泛的应用,下面列举了一些常见的应用场景。
•电感器:电感器是利用自感现象制造的一种电子元件,常用于滤波器、功率供给器、谐振器等电路中。
它们基于自感现象的特性,可以实现对特定频率的信号进行滤波和放大的功能。
•电感耦合:在一些电路中,可以利用自感现象实现电感耦合,将两个或多个电路以电感器作为耦合元件连接起来。
这种电感耦合可以实现信号的传输和干扰的隔离。
•变压器:变压器是基于自感现象的原理构造的,它利用电磁感应现象和自感现象将交流电压从一路传送到另一路。
自感现象及其应用

D1
D2
L S
R
C. 接通时D1先达最亮,断开时D2后灭
D. 接通时D2先达最亮,断开时D1后灭
A
课堂训练
4、如图所示,L为自感系数较大的线 圈,电路稳定后小灯泡正常发光,当 断开电键的瞬间会有 A . 灯A立即熄灭 B . 灯A慢慢熄灭 C . 灯A突然闪亮一下再慢慢熄灭 D . 灯A突然闪亮一下再突然熄灭 L A
A
六、日光灯工作原理 启动器
静触片 U 形 动触 片
灯管
镇流器
~ 220v
灯管要求:启动高压、工作低压电阻值和电感L的自感系数都很 大,但L的直流电阻值很小,A1、A2是两个规格相同 A2 比 A1 先亮,最后 的灯泡。则当电键S闭合瞬间, A1 比 A2 亮 。
课堂训练
3、如图所示的电路中,D1和D2是 两个相同的小灯泡,L是一个自感 系数相当大的线圈,其阻值与R相 同。在电键接通和断开时,灯泡 D1和D2亮暗的顺序是 A. 接通时D1先达最亮,断开时D1后灭 B. 接通时D2先达最亮,断开时D2后灭
自感系数
1、自感电动势的大小:与电流的变化率成正比
2、自感系数 L-简称自感或电感 (1)决定线圈自感系数的因素:
I EL t
实验表明,线圈越大,越粗,匝数越多,自感 系数越大。另外,带有铁芯的线圈的自感系数比 没有铁芯时大得多。 (2)自感系数的单位:亨利,简称亨,符号是 H。 常用单位:毫亨(m H) 微亨(μ H)
常发光,然后断开开关S。重新闭 合S,观察到什么现象?
现象: 灯泡A2立刻正常发光,跟线圈L串联的灯泡 A1逐渐亮起来。
分析: 电路接通时,电流由零开始增加,穿过线圈L的 磁通量逐渐增加,L中产生的感应电动势的方向 与原来的电流方向相反,阻碍L中电流增加,即 推迟了电流达到正常值的时间。
自感现象的应用

第三阶段:
灯管发光后,由于它使用的电源是电流大小和方 向都在不断变化的交变电流,这样的电流通过镇流器时 会在线圈两端产生自感电动势,阻碍交变电流的变化,此 时镇流器起降压限流的作用。
对于氖泡,两端电压降低,启辉器保持断开状态而 不起作用。
电流由管内气体导电而形成回路,灯管进入工作状 态。
1.灯管内水银蒸汽导电,发出紫外线,使管壁上荧光粉 发出白光,要激发水银蒸汽导电需要很高的电压,日光 灯正常工作时又需要比220V低很多的电压.
自感现象的应用
复习引入
1.什么是自感现象? 2.自感电动势方向有什么特
点
从两次实验中可看出,当线圈自身的电 流发生变化时,线圈本身就产生出感应电动 势,这个电动势总是阻碍线圈中电流的变化。
这种由于线圈本身的电流发生变化 而产生的电磁感应现象,叫做自感现象。
自感现象在各种电气设备和无线 电技术中有广泛的应用,日光灯电路 就是利用线圈自感现象的一个例子。
(3)在小锤式断续器中,当 电路开断时,小锤与螺丝钉 之间出现火花,这火花使电 流持续一段时间。因此,开 断时间也就延长了。为了减 小火花,缩短开断时间,在 线路中加装一个电容器C, 将它的一个极与小锤连接, 另一个极接到螺丝钉的支柱 上。电路开断的瞬间产生的 感应电流集中到电容器里。 电容器两极板带电,减小了 裂口处的火花,电路开断就 会进行得很快。由于电磁感 应,感应圈初级线圈断续地 通过直流电流时,次级线圈 就感应出几千伏乃至上万伏 的交变高电压。
2.为满足这些要求设置了镇流器和启辉器,启辉器的作 用是开关闭合后把连接灯管两端灯丝的电路接通,电路 接通后又使电路自动断开.(启辉器起自动开关的作用)
3.镇流器在起动器把电路突然中断的瞬间,由于自感现 象而产生一个瞬时高压加在灯管上,满足激发水银蒸汽 导电需要高压的要求,使日光灯管成为通路开始发 光.(镇流器起产生瞬间高压的作用)
自感现象及应用

小为
I EL L t
式中L是线圈的自感系数,即自感磁链与电流的比值
L L
I
线圈的自感是由线圈本身的特性决定的,与线圈中有无 电流及电流的大小无关。
L N N 2S
I
l
2.电感线圈和电容器一样,都是储能元件,磁场能量可 用下式计算
WL
1 2
LI 2
WL
1 2
LI 2
当线圈中通有电流时,线圈中就要储存磁场能量,通过线 圈的电流越大,储存的能量就越多。在通有相同电流的线圈中, 电感越大的线圈,储存的能量越多,因此线圈的电感也反映了 它储存磁场能量的能力。
与电场能量相比,磁场能量和电场能量有许多相同的特点:
(1) 磁场能量和电场能量在电路中的转化都是可逆的。例 如,随着电流的增大,线圈的磁场增强,储入的磁场能量增多; 随着电流的减小,线圈的磁场减弱,磁场能量通过电磁感应的 作用又转化为电能。因此,线圈和电容器一样是储能元件,而 不是电阻类的耗能元件。
3.产生电磁感应现象的条件是:穿过电路的磁通发生变化。 当电路闭合时,回路中有感应电流,当电路不闭合时,电路中 没有感应电流,但仍有感应电动势。
4.电路中感应电流的方向可用右手定则和楞次定律来判断。 楞次定律是判断感应电流方向的普遍规律。感应电动势的方向 与感应电流的方向相同,也用右手定则和楞次定律判断。
(2) 其他近似环形的线圈,在铁心没有饱和的条件下,也 可用上式近似计算线圈的电感,此时l是铁心的平均长度。若线 圈不闭合,不能用上式计算。
(3) 由于磁导率 不是常数,随电流而变,因此有铁心的
线圈其电感也不是一个定值,这种电感称为非线性电感。
四、自感电动势
由电磁感应定律可得,自感电动势
自感现象及应用

03.如图电路中,P、Q两灯相同,L的电阻不计,
则:
C
A.S断开瞬间,P立即熄灭,Q过一会才熄灭
B.S接通瞬间,P、Q同时达正常发光
C.S断开瞬间,通过P的电流从右向左
D.S断开瞬间,通过Q的电流与原来方向相反
第13页/共18页
04.如图所示电路中,A1、A2是两只相同的 电流表,电感线圈L的直流电阻与电阻R阻值
(2)自感系数的单位:亨利,简称亨(H)—— 如果通电线圈的电流在1秒内改变1安时产生的自 感电动势是1伏,这个线圈的自感系数就是1亨.
1mH=10-3H
1μH=10-6H
第7页/共18页
自感现象的应用-----日光灯: 镇流器的作用: 启动时产生瞬现象:
相等,下面判断正确的是(BD )
A.开关S接通的瞬间,电流表
A1的读数大于A2的读数
B.开关S接通的瞬间,电流表A1 的读数小于A2的读数
C.开关S接通电路稳定后,电
第14页/共18页
05.如图所示电路,电感线圈L的自感系数足够大,其直流电阻
忽略不计,LA、LB是两个相同的灯泡,则
D
A.S闭合瞬间,LA不亮,LB很亮;S断开瞬间,LA、LB立即熄灭
第5页/共18页
自感电动势也与磁通量的变化率成正比,可推得 自感电动势与通过线圈电流的变化率成正比。
自感电动势的大小: 与电流的变化率成正比
E L I t
第6页/共18页
自感系数
(1)决定线圈自感系数的因素:线圈的形状、长 短、匝数、线圈中是否有铁芯.(线圈越粗,越 长,匝数越密,它的自感系数就越大,另外有铁芯 的线圈的自感系数比没有铁芯时大得多.)
B.S闭合瞬间,LA很亮,LB逐渐亮;S断开瞬间,LA逐渐熄灭,LB
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自感现象的应用
(1)通电自感:通电瞬间自感线圈处相当于断路. (2)断电自感:断电时自感线圈处相当于电源. ○
1当线圈中电阻≥灯丝电阻时,灯缓慢熄灭; ○
2当线圈中电阻<灯丝电阻时,灯闪亮后缓慢熄灭. 增大线圈自感系数的方法
(1)增大线圈长度 (2)增多单位长度上匝数 (3)增大线圈截面积(口径) (4)线圈中插入铁芯 1、如图所示电路中,L 是一电阻可忽略不计的电感线圈,a 、b 为L 的左、右两端点,A 、B 、C 为完全相同的三个灯泡,原来电键K 是闭合的,三个灯泡均在发光.某时刻将电键K 断开,则下列说法正确的是( )
A .a 点电势高于b 点,A 灯闪亮后缓慢熄灭
B .b 点电势高于a 点,B 、
C 灯闪亮后缓慢熄灭 C .a 点电势高于b 点,B 、C 灯闪亮后缓慢熄灭
D .b 点电势高于a 点,B 、C 灯不会闪亮只是缓慢熄灭 答案 B
解析 电键K 闭合稳定时,电感线圈支路的总电阻较B 、C 灯支路电阻小,故流过A 灯的电流I 1大于流过B 、C 灯的电流I 2,且电流方向由a 到b ,a 点电势高于b 点.当电键K 断开,由于与电源断开,电感线圈会产生自感现象,相当于电源,b 点电势高于a 点,阻碍流过A 灯的电流减小,瞬间流过B 、C 灯支路的电流比原来的大,故B 、C 灯闪亮后再缓慢熄灭,故B 正确
2.湖南省雅礼2010届高三上学期如图所示,L 1、L 2、L 3是完全相同的灯泡,
L 为直流电阻可忽略的自感线圈,开关S 原来接通,当开关S 断开时,下面说法正
确的是(电源内阻不计) ( D )
A .L 1闪亮一下后熄灭
B .L 2闪亮一下后恢复原来的亮度
C .L 3变暗一下后恢复原来的亮度
D .L 3闪亮一下后恢复原来的亮度
3.如图所示,A 、B 、C 是三个完全相同的灯泡,L 是一个自感系数较大的线圈(直流电阻可忽略不计).则( )
A .S 闭合时,A 灯立即亮,然后逐渐熄灭
B .S 闭合时,B 灯立即亮,然后逐渐熄灭
C .电路接通稳定后,三个灯亮度相同
D .电路接通稳定后,S 断开时,C 灯立即熄灭 答案 A
S L 1 L 2 L 3
L
解析因线圈L的直流电阻可忽略不计,S闭合时,A灯立即亮,然后逐渐熄灭,A正确.S闭合时,B灯先不太亮,然后亮,B错误.电路接通稳定后,B、C灯亮度相同,A灯不亮,C错误.电路接通稳定后,S断开时,C灯逐渐熄灭,D错误.
4、如图所示,多匝电感线圈L的电阻不计,两个电阻的阻值都是R,电键S原来打开,通过电源的
电流I0=E
2R,合上电键,线圈中有自感电动势,这个电动势将()
A.有阻碍电流的作用,最后电流由I0减小到零
B.有阻碍电流的作用,最后电流小于I0
C.有阻碍电流增大的作用,因而电流I0保持不变
D.有阻碍电流增大的作用,但最后电流还是增大到2I0
答案:D
5.如图所示的电路中,L是一个自感系数很大、直流电阻不计的线圈,D1、D2
和D3是三个完全相同的灯泡,E是内阻不计的电源.在t=0时刻,闭合开关S,电
路稳定后在t1时刻断开开关S.规定以电路稳定时流过D1、D2的电流方向为正方向,
分别用I1、I2表示流过D1和D2的电流,则下列四个图象中能定性描述电流I1、I2随
时间t变化关系的是()
答案 C
解析在闭合开关S时,流过D2的电流立即增大到稳定值I2′,流过D1的电流由于线圈的自感作用并不能立即增加,而是缓慢地增加到I1′,且I1′=2I2′,在断开开关S时,线圈中产生自感电动势,D1、D2和D3组成回路,回路中有逆时针方向的电流,且电流从I1′逐渐减小,最后减为零,所以选项C正确.
6、(多选)如图所示的电路中,L为一个自感系数很大、直流电阻不计的线圈,D1、
D2是两个完全相同的灯泡,E是一内阻不计的电源.t=0时刻,闭合开关S,经过一
段时间后,电路达到稳定,t1时刻断开开关S.I1、I2分别表示通过灯泡D1和D2的电流,
规定图中箭头所示的方向为电流正方向,以下各图中能定性描述电流I随时间t变化
关系的是()
解析当S闭合时,L的自感作用会阻碍其中的电流变大,电流从D1流过;当L的阻碍作用变小时,
L中的电流变大,D1中的电流变小至零;D2中的电流为电路总电流,电流流过D1时,电路总电阻较大,电流较小,当D1中电流为零时,电流流过L与D2,总电阻变小,电流变大至稳定;当S再断开时,D2马上熄灭,D1与L组成回路,由于L的自感作用,D1慢慢熄灭,电流反向且减小;综上所述知选项A、C 正确.
答案AC
7、图中L是绕在铁芯上的线圈,它与电阻R、R0及开关和电池E构成闭合回
路.开关S1和S2开始都处在断开状态.设在t=0时刻,接通开关S1,经过一段
时间,在t=t1时刻,再接通开关S2,则能较准确表示电阻R两端的电势差U ab随
时间t变化的图线是()
解析闭合开关S1,线圈产生的自感电动势阻碍电流的变大,U ab不会突然变大,D项错误;电流达到稳定后,再闭合开关S2,由于线圈的作用,原有电流慢慢变小,U ab也从原来的数值慢慢减小,A项正确.
答案 A
8、(10江苏卷)4.如图所示的电路中,电源的电动势为E,内阻为r,电感L的电阻不计,电阻R的阻值大于灯泡D的阻值,在t=0时刻闭合开关S,经过一段时间后,在t=t1时刻断开S,下列表示A、B两点间电压U AB随时间t变化的图像中,正确的是(B)
【解析】开关闭合时,线圈的自感阻碍作用,可看做电阻,线圈电阻逐渐减小,并联电路电阻逐渐减
U逐渐减小;开关闭合后再断开时,线圈的感应电流与原电流方向相同,形成回路,灯泡的电小。
电压
AB
流与原来相反,并逐渐减小到0,所以本题选B。
难度:难
9.(多选)如图所示,电路中A和B是两个完全相同的小灯泡,L是一个自感系数很大、直流电阻为零的电感线圈,C是电容很大的电容器.当S闭合与断开时,对A、B的发光
情况判断正确的是()
A.S闭合时,A立即亮,然后逐渐熄灭
B.S闭合时,B立即亮,然后逐渐熄灭
C.S闭合足够长时间后,B发光而A不发光
D.S闭合足够长时间后再断开,B立即熄灭而A逐渐熄灭
解析:电容器的特性是“充电和放电”,在开始充电阶段,相当于阻值很小的电阻,放电阶段相当于电源.电感线圈的特性是“阻交流、通直流”,即电流不会突然变化,当电流突然增大时,相当于阻值很大的电阻,当电流突然减小时,相当于电源.因此.当开关刚闭合时,电容器对电流的阻碍作用小,线圈对电流的阻碍作用大.C和B组成的电路分压作用小,A、L组成的电路分压作用大,B灯较暗,A灯较亮.当开关闭合足够长的时间后,电容器充电完成,线圈中电流为直流电,而其直流电阻很小,B灯较亮,A灯被短路,不发光;开关断开瞬间,电容器和B组成的回路中,电容器放电,B灯逐渐变暗,A灯和线圈组成的回路中,线圈充当电源,A灯先变亮再熄灭,故选项A、C正确.
答案:AC。