小学奥数等差数列(二)
小学奥数 等差数列的认识与公式运用 精选例题练习习题(含知识点拨)

本讲知识点属于计算板块的部分,难度较三年级学到的该内容稍大,最突出一点就是把公式用字母表示。
要求学生熟记等差数列三个公式,并在公式中找出对应的各个量进行计算。
一、等差数列的定义⑴ 先介绍一下一些定义和表示方法定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、 从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、 从第二项起,每一项比前一项小5 ,递减数列⑵ 首项:一个数列的第一项,通常用1a 表示末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。
项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 .二、等差数列的相关公式(1)三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯() 递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯() 回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2知识点拨教学目标等差数列的认识与公式运用对于这个公式的得到可以从两个方面入手: (思路1) 1239899100++++++ 11002993985051=++++++++共50个101()()()()101505050=⨯= (思路2)这道题目,还可以这样理解: 23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即, 和 (1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(), 题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;② 65636153116533233331089++++++=+⨯÷=⨯=(), 题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.模块一、等差数列基本概念及公式的简单应用等差数列的基本认识【例 1】 下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由。
小学五年级奥数 数列与数表(二)

⑴ 第一行的第100个数是____. ⑵ 自然数207位于数表的第几行第几列?
1
247
11 ……
3 5 8 12 ……
6 9 13 ……
10 14 ……
15 ……
……Байду номын сангаас
知识大总结 1.等差数列常用公式.
⑴ 求和、求项数 2.常⑵见求数an列=:首项+(n-1)×公差.
等差数列、斐波那契、间隔数列、二级等差数列 3.关于数表
⑴ 看行、看列、看斜线 ⑵ 对数列进行分组 【今日讲题】
基本公式
例2,例4,例5,超常大挑战
【讲题心得】
__________________________________________________________________.
【家长评价】
_________________________________________________________________. 2
98
⑵第500个分数是几分之几?
1
版块二:数表找规律
【例4】(★★★☆)
将非零自然数按照表中规律地不断写出,发现有些数被写出多次,还
有些数永远不会出现,那么99在数表中共出现过几次?最小的永不出
现的数等于几?
1 2 3 4 … 97 98 99
2 3 4 5 … 98 99 100
4 5 6 7 … 100 101 102
【课前小练习】(★) ⑴ 1, 4, 7, 10, 13,____,…… ⑵ 1, 2, 4, 7, 11,____,…… ⑶ 1, 2, 4, 8, 16,____,…… ⑷ 1, 4, 9, 16, 25,____,……
【例1】(★★☆) 一串数按下述规律排列: 1,2,3,2,3,4,3,4, 5,4,5,6,…… ⑴ 数列中,第200个数是_______. ⑵ 数列中,前200个数的和是______.
小学四年级奥数第二讲__等差数列

等差数列像1,2,3,…,99,100这样的一串数我们称为“等差数列”,下面介绍有关等差数列的概念。
的概念。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后后项与前项之差后项与前项之差都相等的数称为等差数列,后项与前项之差一项称为末项。
从第一项开始,后项与前项之差都相等的数称为等差数列,称为公差,数列中数的个数称为项数。
称为公差,数列中数的个数称为项数。
等差数列的求和公式为:等差数列的求和公式为:数列和=(首项+末项)×项数÷2 项数=(末项-首项)÷公差+1 末项=首项+公差×(项数-1)[例1]计算1+2+3+ (1999)[例2]求首项是5,公差是3的等差数列的前1999项的和。
项的和。
[例3]计算3+7+11+ (99)[例4]计算(1)2000-3-6-9-…-51-54 (2)(2+4+6+…+96+98+100)-(1+3+5+…+95+97+99)[例5]2000×1999-1999×1998+1998×1997-1997×1996+…+4×3-3×2+2×1 [例6]在数列3、6、9……,201中,共有多少数?如果继续写下去,第201个数是多少?练习:1.计算:.计算:(1)1+2+3+…+76+77+78 (2)1+3+5+…+95+97+99 (3)2+6+10+14+…+202+206+210 (4)4+7+10+…+292+295+298 2.求首项是5,末项是93,公差是4的等差数列的和。
的等差数列的和。
3.求首项是13,公差是5的等差数列的前30项的和。
项的和。
4.计算:.计算:(1)4000-1-2-3-…-76-77-78 (2)560-557+554-551+…+500-497 (3)204-198+192-186+…+24-18+12-6 *5.计算:.计算:(1)(1+3+5+...+1999)-(2+4+6+ (1998)(2)1+2+3-4+5+6+7-8+9+10+11-12+…+25+26+27-28 6. 在等差数列中4、10、16、22、……中,第48项是多少?508是这个数列的第几项?是这个数列的第几项?7.一个剧院共有25排座位,从第一排起,以后每排都比前一排多2个座位,第25排有70个座位,这个剧院共有个座位,这个剧院共有 个座位。
小学奥数:1-2-1-1 等差数列的认识与公式运用.教师版

找项数还有一种配组的方法,其中运用的思想我们是常常用到的. 譬如:找找下面数列的项数:4、7、10、13、 、40、43、46 , 分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、 、(46、47、48),注意等差是 3 , 那么每组有 3 个数,我们数列中的数都在每组的第 1 位,所以 46 应在最后一组第 1 位,4 到 48 有 48 4 1 45 项,每组 3 个数,所以共 45 3 15 组,原数列有 15 组. 当然还可以有其他的配组方法. ③ 求和公式:和=(首项 末项) 项数÷2
【例 6】 从 1 开始的奇数:1,3,5,7,……其中第 100 个奇数是_____。
【考点】等差数列的基本认识
【难度】2 星
【题型】计算
【关键词】希望杯,4 年级,1 试
【解析】略
【答案】199
【例 7】 观察右面的五个数:19、37、55、a 、91 排列的规律,推知 a =________ 。
【考点】等差数列的基本认识
【难度】2 星
【题型】计算
【解析】此数列为一个等差数列,将第 21 项看做末项。末项=2+(21-1)×3=62
【答案】 62
【例 5】 已知一个等差数列第 9 项等于 131,第 10 项等于 137,这个数列的第 1 项是多少?第 19 项是多
少?
【考点】等差数列的基本认识
例题精讲
模块一、等差数列基本概念及公式的简单应用
等差数列的基本认识
【例 1】 下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由。
①6,10,14,18,22,…,98;
②1,2,1,2,3,4,5,6;
③ 1,2,4,8,16,32,64;
小学五年级奥数练习及部分答案2等差数列求和应用数列(二)

奥数五年级上一、数列规律地应用--找规律(四> (1)二、等差数列求和地应用--数列(二> (7)三、包含与排除(二> (14)四、小数地巧算--巧算(四> (19)五、行程问题(三> (25)六、行程问题(四> (31)七、牛吃草问题 (36)八、平面图形地面积(二> (39)九、计数问题 (45)十、数地进位制(二> (50)十一、简单抽屉原理(一> (54)十二、简单地统筹规划问题 (60)部分答案 (68)二、等差数列求和地应用--数列<二)对等差数列a1,a2,a3,…,an,…,如果公差是d,第n项是an,前n项地和是sn(n=1,2,3,……>那么:b5E2RGbCAPan=a1+(n-1>d即: 第n项=首项+公差地(n-1>倍n=(an-a1>÷d+1即: 项数=(末项-首项>÷公差+1sn=(a1+an>×n÷2即: 前n项和=(首项+末项>×项数÷2前n个奇数地和:1+3+5+…+(2n-1>=n2前n个偶数地和:2+4+6+…+2n=n2+n例18、有一列数:5,8,11,14,…….①求它地第100项;②求前100项地和.例19、有一串数:1,4,7,10,……,298.求这串数地和.例20、1998+1997-1996-1995+1994+1993-1992-1991+……198+197-196-195p1EanqFDPw例21、1+2+3-4-5-6+7+8+9-10-11-12+……+182+183例22、写出数列:1,2,3,4,5,6,……中,第n个偶数和第n个奇数.例23、分别求自然数列中前n个奇数之和,以及前n个偶数(不包括0>地和.例24、1+3+5+7+…+99例25、2+4+6+8+…+100例26、21+23+25+27+…+99例27、已知一串数1,5,9,13,17,…,问这串数中第100个数是多少?例28、1971,1981,1991,2001,2018,…,2091,这几个数地和是多少?例29、98+97-96-95+94+93-92-91+…-4-3+2+1例30、1+2-3+4+5-6+7+8-9+…+97+98-99例31、在小于100地自然数中,被7除余3地数地和是多少?例32、从一点o引出20条不重复地射线共形成多少个锐角?例33、求所有比11地倍少5地三位数地和?例34、下图有中地30个方格中各有一个数,每个格子中地数等于同一横行最左边一格和同一竖列最上面一格地数之和(如a=14+17=31>.问这30个数地总和等于多少?DXDiTa9E3d例35、已知一列数:1,3,6,10,15,21,…问第59个数是多少?例36、在一个八层地宝塔上安装节日彩灯共888盏.已知从第二层开始,每一层比下边一层少安装6盏.问最上边一层安装多少盏?RTCrpUDGiT例37、若干个同样地盒子排成一排,小明把50多个同样地棋子分装在盒子中.其中只有一个盒子是空地,然后他外出了,小光从每个有棋子地盒子里各拿了一个棋子放在空盒子内,再把盒子重新排了一下,小明回来没有发现有人动过棋子,问共有多少个盒子?多少棋子?5PCzVD7HxA 例38、能不能把44颗花生分给10只猴子,使每只猴子分地花生颗数都不同?例39、一堆相同地立方体堆积如图,第1层1个,第2层3个,第3层6个,…第10层有多少个?例40、每相邻地3个圆点组成一个小三角形,如图,问图中这样地小三角形个数多还是圆点个数多?例41、红光电影院有22排座位,后一排都比前一排多2个座位,最后一排42个座位.那么这个电影院一共有多少个座位?jLBHrnAILg 例42、小明和小强比赛口算,计算:1+2+3+4+……,当计算到规定地那个加数时,小明地得数是60,小强地得数是66,老师说他们两人地得数有一个错了.问:他们谁算错了,错在哪里?xHAQX74J0X例43、100这个自然数最多能写成多少个不同地自然数地和?例44、如果十个互不相同地两位奇数之和等于898,那么这十个数中最小地一个是多少?。
四年级奥数第五讲-等差数列(二)-教师版

第五讲等差数列(二)解题方法某些问题以转化为求若干个数的和解决这些问题时先要判断这些数是否成为等差数列,如果是等差数列才可以运用它的一些公式。
在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。
例题1小王看一本书第一天看了20页,以后每天都比前一天多看2页,第30天看了78页正好看完。
这本书共有多少页?提示根据条件“以后每天比前一天多看2页”可以知道他每天看的页数都是按照一定规律排列的数,即20、22、24、…、76、78。
要求这本书共有多少页也就是求出这列数的和。
解:由题意可知,这列数是一个等差数列,首项=20,末项=78,项数=30,所以这本书共有(20+78)×30÷2=1470(页)答:这本书共有1470页。
引申1、文丽学英语单词,第一天学会了3个,以后每天都比前一天多学会1个,最后一天学会了21个。
文丽在这些天中共学会了多少个英语单词?解:文丽每天学会的单词个数是一个等差数列,即3、4、5、6、…、21。
首项=3,末项=21,项数=(21-3)÷2+1=10。
所以,文丽在这些天中共学会了(3+21)×10÷2=120(个)答:文丽在这些天中共学会了120个英语单词。
2、李师傅做一批零件,第一天做了25 个,以后每天都比前一天多做2个,第20天做了63个正好做完。
这批零件共有多少个?答:(25+63)×20÷2=880(个)3、小李读一本短篇小说,她第一天读了20页这个等差数列共有多少项?答:这个等差数列共有29项。
例题2 建筑工地上堆着一些钢管(如图所示),求这堆钢管一共有多少根。
提示:根据图可以知道,这是一个以3为首项,以1为公差的等差数列,求钢管一共有多少根其实是求这列数的和。
解:求钢管一共有多少根,其实就是求3+4+5+…+9+10的和。
项数=(10-3)÷1+1=8,根据公式求和为:3+4+5+…+9+10=(3+10)×8÷2=13×8÷ 2=52(根)。
小学三年级奥数练习题(等差数列)

等差数列(小数数学 五年级奥数)

等差数列知识与方法:像(1)1,2,3,4,5,…;(2)10,20,30,40,50,…从第2项起,每一项与它前一项的差等于同一个常数的数列,叫做等差数列。
这个常数叫做等差数列的公差,通常用字母d表示。
在等差数列a1,a2,a3,…a n中,它的公差是d,那么a2=a1+da3=a2+d=(a1+d)+d=a1+2da4=a3+d=(a1+2d)+d=a1+3d…a n=a1+(n-1)×d(等差数列的通项公式)由此可见,等差数列从第2项起,每一项都等于第一项加上公差的若干倍,这个倍数等于这项的项数减1的差,利用它可以求出等差数列的任何一项。
例题1:求等差数列3,8,13,18......的第38项和第69项。
练习1:求等差数列1,4,7,10,13.....的第20项和第80项.练习2:超市工作人员在商品上依次编号,分别为4,8,12,16......,请问第34个商品上标注的是什么数字?第58个标注的是什么数字?例题2:36个小学生排成一排玩报数游戏,后一个同学报的数总比前一个同学多报8,已知最后一个同学报的数是286,第一个同学报的数是几?练习1:仓库里有一叠被编上号的书,共40本,已知每下面一本书比上面一本书的号码多5,最后一本书的编号是225,请问第一本书的编号是多少?练习2:幼儿园给小朋友们发玩具,共32个小朋友,每人一个,每个玩具上都有编号,已知最后一个小朋友玩具编号是98,每一个玩具的编号比后一个玩具的编号少3,问第一个小朋友上玩具编号是多少?例题3:等差数列4,12,20......,中的580是第几项?练习1:等差数列3,9,15,21.....中381是第几项?练习2:糖果生产商为机器编号,依次为7,13,19,25......。
问编号为433的机器是第几个?例题4:一批货箱上面的标号是按等差数列排列的。
第1项是3.6,第5项是12,求它的第2项.练习1:有一个等差数列的第1项是2.4,第7项是26.4,求它的第5项.练习2:有一排用等差数列编码的彩色小旗,第1面小旗上的号码为3.7,第8面小旗上的号码为38.7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三讲 等差数列(二)
例2:在211、212两数之间插入一个数,使其成为一个等差数列。
解:根据第几项=首项+(项数-1)×公差,
那么第三项 3a =1a +2d ,即:212=211+2d ,所以d=0.5 故等差数列是,211、2、212。
巩固练习:
1、在12 与 60 之间插入3个数,使这5个数成为一个等差数列。
2 在25与41之间插入7个数,使这9个数成等差数列,求插入的这7个数?
3 在3与27之间插入7个数,使这9个数成等差数列,则插入的这7个数中的第4个数为是多少?
4 在2与27之间插入4个数,使这6个数成等差数列,求这四个数
5 在6和38 之间插入7个数,使他们成为等差数列,求这9 个数的和是多少?
6 在0.4和2.2之间插入8个数,能使这10个数成为等差数列
7 在4与40之间插入8个数以后,使这10个数成等差数列
8 在19和91之间插入5个数,使这7个数构成一个等差数列。
写出插入的五个数。
9 在数1与2之间插入10个数,使这12个数成递增的等差数列,公差是多少
10 在1与2之间插入8个数,使这10个数成为一个等差数列,求这个数列
例3:4个连续整数的和是94,求这4个数。
解:由于4个数是连续的整数,那么这4个数就是公差d=1的等差数列,不妨设第一个数为
a,那么第二个数就是1a+1,
1
同理:第3个数,第4个数分别是
a+2,1a+3那么由已知,这四个整数的和是94,所
1
以
a+(1a+1)+(1a+2)+(1a+3)=94,因此1a=22,所以这4个连续分别是22、1
23、24、25.
巩固练习:
1、3个连续整数的和是20,求这3个数。
2、5个连续整数的和是180,求这5个数。
3、6个连续双数中,第一个数和最后一个数的和是78,求这6个连续双数各是多少?4,在1一60中,所有连续双数数的和是多少
5,六个连续单数的和是36,这六个数分别是什么?
6,30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?
例4:丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学会1个,最后一天学会了16个。
丽丽在这些天中共学会了多少个单词?
解:因为丽丽从第二天开始,每天都比前一天多学会1个单词,因此丽丽每天学会的单词个数是一个等差数列,并且这个等差数列的首项
a=6, 公差d =1,末项n a=16,
1
若想求和,必须先算出项数n,根据公式项数=(末项-首项)÷公差+1 ,即n=(16-6)÷1+1=11
那么丽丽在这些天中共学会的单词个数为:6+7+8+……+16 = (6+16) 11÷2=121巩固练习:
1.有一家电影院,共有30排座位,后一排都比前一排多两个位置,已知第一排有28个座位,那么这家电影院共可以容纳多少名观众?
2.一个家具厂生产书桌从第二个月起每个月增加10件,一年共生产了1920件.这一年的12月份生产了多少件?
3,一个家具厂生产电脑桌的数目每个月增加10件,一年共生产了1920件,这一年的10月份生产了多少件?
4,有12个数组成等差数列,第六项与第七项的和是12,求这12个数的和。