江苏省2018中考数学试题研究第一部分考点研究第三章函数第9课时平面直角坐标系与函数练习
2018数学江苏中考试题精选

2018江苏中考试题精选(1)一.选择题1.用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是直角三角形;③可能是钝角三角形;④可能是平行四边形.其中所有正确结论的序号是()A.①②B.①④C.①②④D.①②③④2.如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A.﹣5B.﹣4C.﹣3 D.﹣23.如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③第1题图第2题图第3题图第4题图二.填空题4.如图,五边形ABCDE是正五边形.若l1∥l2,则∠1﹣∠2=°.5.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A′B′C′D′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为.6.如图,E、F,G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,则AB的长为.7.如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为.8.如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为.第5题图第6题图第7题图第8题图三.解答题9.结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.所以S△ABC=AC•BC=(x+3)(x+4)=(x2+7x+12)=×(12+12)=12.小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.可以一般化吗?(1)若∠C=90°,求证:△ABC的面积等于mn.倒过来思考呢?(2)若AC•BC=2mn,求证∠C=90°.改变一下条件……(3)若∠C=60°,用m、n表示△ABC的面积.10.如图1,图形ABCD是由两个二次函数y1=kx2+m(k<0)与y2=ax2+b(a>0)的部分图象围成的封闭图形.已知A(1,0)、B(0,1)、D(0,﹣3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标11.在数学兴趣小组活动中,小亮进行数学探究活动.△ABC是边长为2的等边形,E是AC上一点,小亮以BE为边向BE的右侧作等边三角形BEF,连接CF.(1)如图1,当点E在线段AC上时,EF、BC相交于点D,小亮发现有两个三角形全等,请你找出来,并证明.(2)当点E在线段上运动时,点F也随着运动,若四边形ABFC的面积为,求AE的长.(3)如图2,当点E在AC的延长线上运动时,CF、BE相交于点D,请你探求△ECD的面积S1与△DBF的面积S2之间的数量关系.并说明理由.(4)如图2,当△ECD的面积S1=时,求AE的长.12.问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM 的延长线于点P,用上述方法构造网格求∠CPN的度数.13.如图1,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O出发,沿OA以每秒1个单位长度的速度向点A出发,同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒.(1)当t=2时,线段PQ的中点坐标为;(2)当△CBQ与△PAQ相似时,求t的值;(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.江苏中考试题精选参考答案与试题解析一.选择题(共3小题)1.用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是直角三角形;③可能是钝角三角形;④可能是平行四边形.其中所有正确结论的序号是()A.①②B.①④C.①②④D.①②③④【解答】解:用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,而三角形只能是锐角三角形,不能是直角三角形和钝角三角形.故选:B.2.如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A.﹣5B.﹣4C.﹣3D.﹣2【解答】解:∵四边形ABCD是菱形,∴BA=BC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∵点A(1,1),∴OA=,∴BO=,∵直线AC的解析式为y=x,∴直线BD的解析式为y=﹣x,∵OB=,∴点B的坐标为(,),∵点B在反比例函数y=的图象上,∴,解得,k=﹣3,故选:C.3.如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③【解答】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.二.填空题(共5小题)4.如图,五边形ABCDE是正五边形.若l1∥l2,则∠1﹣∠2=72°.【解答】解:过B点作BF∥l1,∵五边形ABCDE是正五边形,∴∠ABC=108°,∵BF∥l1,l1∥l2,∴BF∥l2,∴∠3=180°﹣∠1,∠4=∠2,∴180°﹣∠1+∠2=∠ABC=108°,∴∠1﹣∠2=72°.故答案为:72.5.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C 旋转,使所得矩形A′B′C′D′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为4.【解答】解:连接OE,延长EO交CD于点G,作OH⊥B′C于点H,则∠OEB′=∠OHB′=90°,∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,∴∠B′=∠B′CD′=90°,AB=CD=5、BC=B′C=4,∴四边形OEB′H和四边形EB′CG都是矩形,OE=OD=OC=2.5,∴B′H=OE=2.5,∴CH=B′C﹣B′H=1.5,∴CG=B′E=OH===2,∵四边形EB′CG是矩形,∴∠OGC=90°,即OG⊥CD′,∴CF=2CG=4,6.如图,E、F,G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,则AB的长为2.【解答】解:如图,连接BD.∵四边形ABCD是矩形,∴∠ADC=∠DCB=90°,AC=BD=,∵CG=DG,CF=FB,∴GF=BD=,∵AG⊥FG,∴∠AGF=90°,∴∠DAG+∠AGD=90°,∠AGD+∠CGF=90°,∴∠DAG=∠CGF,∴△ADG∽△GCF,设CF=BF=a,CG=DG=b,∴=,∴=,∴b2=2a2,∵a>0.b>0,∴b=a,在Rt△GCF中,3a2=,∴a=,∴AB=2b=2.故答案为2.7.如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为(,﹣).【解答】解:由折叠得:∠CBO=∠DBO,∵矩形ABCO,∴BC∥OA,∴∠CBO=∠BOA,∴∠DBO=∠BOA,∴BE=OE,在△ODE和△BAE中,,∴△ODE≌△BAE(AAS),∴AE=DE,设DE=AE=x,则有OE=BE=8﹣x,在Rt△ODE中,根据勾股定理得:42+(8﹣x)2=x2,解得:x=5,即OE=5,DE=3,过D作DF⊥OA,∵S△OED=OD•DE=OE•DF,∴DF=,OF==,则D(,﹣).故答案为:(,﹣)8.如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为.【解答】解:∵y=mx+m=m(x+1),∴函数y=mx+m一定过点(﹣1,0),当x=0时,y=m,∴点C的坐标为(0,m),由题意可得,直线AB的解析式为y=﹣x+2,,得,∵直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,∴,解得,m=或m=(舍去),故答案为:.三.解答题(共5小题)9.结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.所以S△ABC=AC•BC=(x+3)(x+4)=(x2+7x+12)=×(12+12)=12.小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.可以一般化吗?(1)若∠C=90°,求证:△ABC的面积等于mn.倒过来思考呢?(2)若AC•BC=2mn,求证∠C=90°.改变一下条件……(3)若∠C=60°,用m、n表示△ABC的面积.【解答】解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,(1)如图1,在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,整理,得:x2+(m+n)x=mn,所以S△ABC=AC•BC=(x+m)(x+n)=[x2+(m+n)x+mn]=(mn+mn)=mn,(2)由AC•BC=2mn,得:(x+m)(x+n)=2mn,整理,得:x2+(m+n)x=mn,∴AC2+BC2=(x+m)2+(x+n)2=2[x2+(m+n)x]+m2+n2=2mn+m2+n2=(m+n)2=AB2,根据勾股定理逆定理可得∠C=90°;(3)如图2,过点A作AG⊥BC于点G,在Rt△ACG中,AG=AC•sin60°=(x+m),CG=AC•cos60°=(x+m),∴BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得:[(x+m)]2+[(x+n)﹣(x+m)]2=(m+n)2,整理,得:x2+(m+n)x=3mn,∴S△ABC=BC•AG=×(x+n)•(x+m)=[x2+(m+n)x+mn]=×(3mn+mn)=mn.10.如图1,图形ABCD是由两个二次函数y1=kx2+m(k<0)与y2=ax2+b(a>0)的部分图象围成的封闭图形.已知A(1,0)、B(0,1)、D(0,﹣3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标【解答】解:(1)∵点A(1,0),B(0,1)在二次函数y1=kx2+m(k<0)的图象上,∴,∴,∴二次函数解析式为y1=﹣x2+1,∵点A(1,0),D(0,﹣3)在二次函数y2=ax2+b(a>0)的图象上,∴,∴,∴二次函数y2=3x2﹣3;(2)设M(m,﹣m2+1)为第一象限内的图形ABCD上一点,M'(m,3m2﹣3)为第四象限的图形上一点,∴MM'=(1﹣m2)﹣(3m2﹣3)=4﹣4m2,由抛物线的对称性知,若有内接正方形,∴2m=4﹣4m2,∴m=或m=(舍),∵0<<1,∴存在内接正方形,此时其边长为;(3)在Rt△AOD中,OA=1,OD=3,∴AD==,同理:CD=,在Rt△BOC中,OB=OC=1,∴BC==,①如图1,当△DBC∽△DAE时,∵∠CDB=∠ADO,∴在y轴上存在E,由,∴,∴DE=,∵D(0,﹣3),∴E(0,﹣),由对称性知,在直线DA右侧还存在一点E'使得△DBC∽△DAE',连接EE'交DA于F点,作E'M⊥OD于M,连接E'D,∵E,E'关于DA对称,∴DF垂直平分线EE',∴△DEF∽△DAO,∴,∴,∴DF=,EF=,∵S△DEE'=DE•E'M=EF×DF=,∴E'M=,∵DE'=DE=,在Rt△DE'M中,DM==2,∴OM=1,∴E'(,﹣1),②如图2,当△DBC∽△ADE时,有∠BDC=∠DAE,,∴,∴AE=,当E在直线AD左侧时,设AE交y轴于P,作EQ⊥AC于Q,∵∠BDC=∠DAE=∠ODA,∴PD=PA,设PD=n,∴PO=3﹣n,PA=n,在Rt△AOP中,PA2=OA2+OP2,∴n2=(3﹣n)2+1,∴n=,∴PA=,PO=,∵AE=,∴PE=,在AEQ中,OP∥EQ,∴,∴OQ=,∵,∴QE=2,∴E(﹣,﹣2),当E'在直线DA右侧时,根据勾股定理得,AE==,∴AE'=∵∠DAE'=∠BDC,∠BDC=∠BDA,∴∠BDA=∠DAE',∴AE'∥OD,∴E'(1,﹣),综上,使得△BDC与△ADE相似(其中点C与E是对应顶点)的点E的坐标有4个,即:(0,﹣)或(,﹣1)或(1,﹣)或(﹣,﹣2).11.在数学兴趣小组活动中,小亮进行数学探究活动.△ABC是边长为2的等边形,E是AC上一点,小亮以BE为边向BE的右侧作等边三角形BEF,连接CF.(1)如图1,当点E在线段AC上时,EF、BC相交于点D,小亮发现有两个三角形全等,请你找出来,并证明.(2)当点E在线段上运动时,点F也随着运动,若四边形ABFC的面积为,求AE的长.(3)如图2,当点E在AC的延长线上运动时,CF、BE相交于点D,请你探求△ECD的面积S1与△DBF的面积S2之间的数量关系.并说明理由.(4)如图2,当△ECD的面积S1=时,求AE的长.【解答】解:(1)结论:△ABE≌△CBF.理由:如图1中,∴∵△ABC,△BEF都是等边三角形,∴BA=BC,BE=BF,∠ABC=∠EBF,∴∠ABE=∠CBF,∴△ABE≌△CBF.(2)如图1中,∵△ABE≌△CBF,∴S△ABE=S△BCF,∴S四边形BECF=S△BEC+s△BCF=S△BCE+S△ABE=S△ABC=,∵S四边形ABCF=,∴S△ABE=,∴•AE•AB•siin60°=,∴AE=.(3)结论:S2﹣S1=.理由:如图2中,∵∵△ABC,△BEF都是等边三角形,∴BA=BC,BE=BF,∠ABC=∠EBF,∴∠ABE=∠CBF,∴△ABE≌△CBF,∴S△ABE=S△BCF,∵S△BCF﹣S△BCE=S2﹣S1,∴S2﹣S1=S△ABE﹣S△BCE=S△ABC=.(4)由(3)可知:S△BDF﹣S△ECD=,∵S△ECD=,∴S△BDF=,∵△ABE≌△CBF,∴AE=CF,∠BAE=∠BCF=60°,∴∠ABC=∠DCB,∴CF∥AB,则△BDF的BF边上的高为,可得DF=,设CE=x,则2+x=CD+DF=CD+,∴CD=x﹣,∵CD∥AB,∴=,即=,化简得:3x2﹣x﹣2=0,解得x=1或﹣(舍弃),∴CE=1,AE=3.12.问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为2;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM 的延长线于点P,用上述方法构造网格求∠CPN的度数.【解答】解:(1)如图1中,∵EC∥MN,∴∠CPN=∠DNM,∴tan∠CPN=tan∠DNM,∵∠DMN=90°,∴tan∠CPN=tan∠DNM===2,故答案为2.(2)如图2中,取格点D,连接CD,DM.∵CD∥AN,∴∠CPN=∠DCM,∵△DCM是等腰直角三角形,∴∠DCM=∠D=45°,∴cos∠CPN=cos∠DCM=.(3)如图3中,如图取格点M,连接AN、MN.∵PC∥MN,∴∠CPN=∠ANM,∵AM=MN,∠AMN=90°,∴∠ANM=∠MAN=45°,∴∠CPN=45°.13.如图1,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O出发,沿OA以每秒1个单位长度的速度向点A出发,同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒.(1)当t=2时,线段PQ的中点坐标为(,2);(2)当△CBQ与△PAQ相似时,求t的值;(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.【解答】解:(1)如图1,∵点A的坐标为(3,0),∴OA=3,当t=2时,OP=t=2,AQ=2t=4,∴P(2,0),Q(3,4),∴线段PQ的中点坐标为:(,),即(,2);故答案为:(,2);(2)如图1,∵当点P与点A重合时运动停止,且△PAQ可以构成三角形,∴0<t<3,∵四边形OABC是矩形,∴∠B=∠PAQ=90°∴当△CBQ与△PAQ相似时,存在两种情况:①当△PAQ∽△QBC时,,∴,4t2﹣15t+9=0,(t﹣3)(t﹣)=0,t1=3(舍),t2=,②当△PAQ∽△CBQ时,,∴,t2﹣9t+9=0,t=,∵>7,∴x=不符合题意,舍去,综上所述,当△CBQ与△PAQ相似时,t的值是或;(3)当t=1时,P(1,0),Q(3,2),把P(1,0),Q(3,2)代入抛物线y=x2+bx+c中得:,解得:,∴抛物线:y=x2﹣3x+2=(x﹣)2﹣,∴顶点k(,﹣),∵Q(3,2),M(0,2),∴MQ∥x轴,作抛物线对称轴,交MQ于E,∴KM=KQ,KE⊥MQ,∴∠MKE=∠QKE=∠MKQ,如图2,∠MQD=∠MKQ=∠QKE,设DQ交y轴于H,∵∠HMQ=∠QEK=90°,∴△KEQ∽△QMH,∴,∴,∴MH=2,∴H(0,4),易得HQ的解析式为:y=﹣x+4,则,x2﹣3x+2=﹣x+4,解得:x1=3(舍),x2=﹣,∴D(﹣,);同理,在M的下方,y轴上存在点H,如图3,使∠HQM=∠MKQ=∠QKE,由对称性得:H(0,0),易得OQ的解析式:y=x,则,x2﹣3x+2=x,解得:x1=3(舍),x2=,∴D(,);综上所述,点D的坐标为:D(﹣,)或(,).。
2018年江苏省苏州市中考数学试卷含答案

【考点】科学记数法。
3.【答案】B 【解析】判断轴对称图形的关键是寻找对称轴,图形按照某条直线折叠后直线两旁的部
分能否重合即可.四个选项中,A、C、D 三个选项中的图形都能沿着某一条直线折 叠以后,直线两旁的部分能互相重合,只有 B 选项中图形无法沿着某一条直线折叠 以后,直线两旁的部分互相重合.故选 B. 【考点】轴对称图形的识别。
对应的函数表达式.
26.(本题满分 10 分)
如图, AB 是 O 的直径,点 C 在 O 上, AD 垂直于过点 C 的切线,垂足为 D , CE 垂 直于 AB ,垂足为 E .延长 DA 交 O 于点 F ,连接 FC , FC 与 AB 相交于点 G ,连接 OC . (1)求证: CD CE ; (2)若 AE GE ,求证: CEO 是等腰直角三角形.
27.(本题满分 10 分)
问题 1:如图①,在 △ABC 中, AB 4 , D 是 AB 上一点(不与 A , B 重合), DE∥ BC ,
交 AC 于点 E ,连接 CD .设 △ABC 的面积为 S , △DEC 的面积为 S .
(1)当 AD 3 时, S
.
S
(2)设 AD m ,请你用含字母 m 的代数式表示 S . S
成另一个圆锥的侧面,记这个圆锥的底面半径为
r2
,则
r1 r2
的值为
.
17.如图,在 Rt ABC 中, B=90 , AB 2 5, BC 5. 将 ABC 绕点 A 按逆时针方向
旋转 90 得到 ABC ,连接 BC ,则 sin ACB
.
(第 17 题)
(第 18 题)
解不等式组:
3x x 2,
江苏省近年中考数学试题研究第一部分考点研究第三章函数第14课时二次函数的应用试题(5年真题)(20

江苏省2018中考数学试题研究第一部分考点研究第三章函数第14课时二次函数的应用试题(5年真题)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省2018中考数学试题研究第一部分考点研究第三章函数第14课时二次函数的应用试题(5年真题))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省2018中考数学试题研究第一部分考点研究第三章函数第14课时二次函数的应用试题(5年真题)的全部内容。
函数第14课时二次函数的应用江苏近5年中考真题精选(2013~2017)命题点1二次函数的实际应用(盐城1考,淮安1考,宿迁1考)考向一最大利润问题1.(2016徐州26题8分)某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x(元)(180≤x≤300)满足一次函数关系,部分对应值如下表:(1)求y与x之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每间空置的客房,宾馆每日需支出各种费用60元.当房价为多少元时,宾馆当日利润最大?求出最大利润.(宾馆当日利润=当日房费收入-当日支出)2。
(2013盐城25题10分)水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.(1)现在实际购进这种水果每千克多少元?(2)王阿姨准备购进这种水果销售,若这种水果的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.①求y与x之间的函数关系式;②请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入-进货金额)第2题图3。
2018年中考复习:图解平面直角坐标系知识点+真题反馈

图解平面直角坐标系知识点+真题反馈一.平面直角坐标系定义1.【两个完全相同的数轴】【原点重合】【相互垂直】构成平面直角坐标系。
2.水平的数轴叫横轴或x轴,取向右方向为正方向;3.铅直的数轴叫纵轴或y轴,取向上方向为正方向;4.两数轴的交点叫做坐标原点;5.x轴和y轴把坐标平面分成四个部分,称四个象限,按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限.注意:两条坐标轴不属于任何一个象限.二.象限点和坐标轴点特征1.各象限内点的坐标的特征点P(x,y)在第一象限 x>0,y>0点P(x,y)在第二象限 x<0,y>0点P(x,y)在第三象限x<0,y<0点P(x,y)在第四象限x>0,y<02.坐标轴上的点的特征点P(x,y)在x轴正半轴上,x>0,y=0点P(x,y)在x轴负半轴上,x<0,y=0点P(x,y)在y轴正半轴上,x=0,y>0点P(x,y)在y轴负半轴上,x=0,y<0点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)即原点三.特殊线上的点特征1.点P(x,y)在第一、三象限夹角平分线上x与y相等2.点P(x,y)在第二、四象限夹角平分线上x与y互为相反数3.平行于x轴/垂直于y轴的直线上的各点的纵坐标相同4.平行于y轴/垂直于x轴的直线上的各点的横坐标相同。
四.与距离有关公式1.点P(x,y)到x轴的距离=|y|2.点P(x,y)到y轴的距离=|x|3.点P(x,y)到原点的距离d,d²=x²+y²4.点P(x,y)与点Q(m,n)的距离f,f²=(x-m)²+(y-n)²五.中点坐标公式:点A和点B的中点横坐标等于点A,点B横坐标之和除以2;点A和点B的中点纵坐标等于点A,点B纵坐标之和除以2。
六.与图形变换结合点坐标规律1.平移规律:上加下减,右加左减。
2.对称规律(1)点P(x,y)关于x轴的对称点是A(x,-y);(2)点P(x,y)关于y轴的对称点是B(-x,y);(3)点P(x,y)关于坐标原点的对称点是C(-x,-y);巧记:关于谁,谁不变,另一个互为相反数。
浙江省中考数学复习第一部分考点研究第三单元函数第9课时平面直角坐标系及函数初步(含近9年中考真题)

浙江省2018年中考数学复习第一部分考点研究第三单元函数第9课时平面直角坐标系及函数初步(含近9年中考真题)试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省2018年中考数学复习第一部分考点研究第三单元函数第9课时平面直角坐标系及函数初步(含近9年中考真题)试题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省2018年中考数学复习第一部分考点研究第三单元函数第9课时平面直角坐标系及函数初步(含近9年中考真题)试题的全部内容。
第一部分考点研究第三单元函数第9课时平面直角坐标系及函数初步浙江近9年中考真题精选(2009—2017)命题点1点坐标的表示(台州2015.14)1.(2015台州14题5分)如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y轴的正方向建立直角坐标系,规定一个单位长度表示1 km.甲、乙两人对着地图如下描述路桥区A处的位置.则椒江区B处的坐标是________.第1题图2.(2010杭州17题4分)常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点。
请你用两种不同方法表述点B相对点A的位置.第2题图命题点2平面直角坐标系中点的坐标特征类型一点的象限问题3.(2015金华3题3分)点P(4,3)所在的象限是()A. 第一象限B. 第二象限 C。
第三象限 D。
第四象限4.(2009杭州5题3分)已知点P(x,y)在函数y=错误!+错误!的图象上,那么点P应在平面直角坐标系中的()A. 第一象限 B。
第二象限C. 第三象限D. 第四象限类型二点的变换问题(杭州2016.15,台州2013。
2018中考平面直角坐标系与函数的认识真题

平面直角坐标系与函数的认识参考答案与试题解析一.选择题(共22小题)1.(2018•扬州)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)【分析】根据地二象限内点的坐标特征,可得答案.【解答】解:由题意,得x=﹣4,y=3,即M点的坐标是(﹣4,3),故选:C.2.(2018•金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,AB=OD﹣OA=40﹣30=10,∴P(9,10);故选:C.3.(2018•广州)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到A n.则△OA2A2018的面积是()A.504m2B.m2 C.m2 D.1009m2【分析】由OA4n=2n知OA2018=+1=1009,据此得出A2A2018=1009﹣1=1008,据此利用三角形的面积公式计算可得.【解答】解:由题意知OA4n=2n,∵2018÷4=504÷2,∴OA2018=+1=1009,∴A2A2018=1009﹣1=1008,则△OA2A2018的面积是×1×1008=504m2,故选:A.4.(2018•宿迁)函数y=中,自变量x的取值范围是()A.x≠0 B.x<1 C.x>1 D.x≠1【分析】根据分母不等于零分式有意义,可得答案.【解答】解:由题意,得x﹣1≠0,解得x≠1,故选:D.5.(2018•娄底)函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≥2且x≠3 D.x≠3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:,解得:x≥2且x≠3.故选:C.6.(2018•黄冈)函数y=中自变量x的取值范围是()A.x≥﹣1且x≠1 B.x≥﹣1 C.x≠1 D.﹣1≤x<1【分析】根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.【解答】解:根据题意得到:,解得x≥﹣1且x≠1,故选:A.7.(2018•南通)如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cosA=,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x的函数关系式是y=(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cosA=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=x cm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.8.(2018•永州)函数y=中自变量x的取值范围是()A.x≥3 B.x<3 C.x≠3 D.x=3【分析】根据分式的意义,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x﹣3≠0,解得:x≠3.故选:C.9.(2018•内江)已知函数y=,则自变量x的取值范围是()A.﹣1<x<1 B.x≥﹣1且x≠1 C.x≥﹣1 D.x≠1【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.【解答】解:根据题意得:,解得:x≥﹣1且x≠1.故选:B.10.(2018•潍坊)如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A 点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S 与t之间的函数关系的是()A.B.C.D.【分析】应根据0≤t<2和2≤t<4两种情况进行讨论.把t当作已知数值,就可以求出S,从而得到函数的解析式,进一步即可求解.【解答】解:当0≤t<2时,S=2t××(4﹣t)=﹣t2+4t;当2≤t<4时,S=4××(4﹣t)=﹣2t+8;只有选项D的图形符合.故选:D.11.(2018•孝感)如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB 向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q 两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是()A.B.C.D.【分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【解答】解:由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=PB•BQ=(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选:C.12.(2018•自贡)回顾初中阶段函数的学习过程,从函数解析式到函数图象,再利用函数图象研究函数的性质,这种研究方法主要体现的数学思想是()A.数形结合B.类比C.演绎D.公理化【分析】从函数解析式到函数图象,再利用函数图象研究函数的性质正是数形结合的数学思想的体现.【解答】解:学习了一次函数、二次函数和反比例函数,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现了数形结合的数学思想.故选:A.13.(2018•无锡)函数y=中自变量x的取值范围是()A.x≠﹣4 B.x≠4 C.x≤﹣4 D.x≤4【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,4﹣x≠0,解得x≠4.故选:B.14.(2018•荆门)在函数y=中,自变量x的取值范围是()A.x≥1 B.x>1 C.x<1 D.x≤1【分析】根据被开方数大于等于0,分母不等于0列式求解即可.【解答】解:根据题意得x﹣1≥0,1﹣x≠0,解得x>1.故选:B.15.(2018•重庆)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y 值相等,则b等于()A.9 B.7 C.﹣9 D.﹣7【分析】先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.【解答】解:∵当x=7时,y=6﹣7=﹣1,∴当x=4时,y=2×4+b=﹣1,解得:b=﹣9,故选:C.16.(2018•内江)如图,在物理课上,小明用弹簧秤将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则如图能反映弹簧秤的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图是()A.B.C.D.【分析】根据在铁块开始露出水面到完全露出水面时,排开水的体积逐渐变小,根据阿基米德原理和称重法可知y的变化,注意铁块露出水面前读数y不变,离开水面后y不变,即可得出答案.【解答】解:露出水面前排开水的体积不变,受到的浮力不变,根据称重法可知y不变;铁块开始露出水面到完全露出水面时,排开水的体积逐渐变小,根据阿基米德原理可知受到的浮力变小,根据称重法可知y变大;铁块完全露出水面后一定高度,不再受浮力的作用,弹簧秤的读数为铁块的重力,故y不变.故选:C.17.(2018•金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25 h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A 正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:,解得:,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.故选:D.18.(2018•滨州)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A.B.C.D.【分析】根据定义可将函数进行化简.【解答】解:当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选:A.19.(2018•绍兴)如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(﹣1,2),B(1,3),C(2,1),D(6,5),则此函数()A.当x<1时,y随x的增大而增大B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大 D.当x>1时,y随x的增大而减小【分析】根据函数图象和题目中的条件,可以写出各段中函数图象的变化情况,从而可以解答本题.【解答】解:由函数图象可得,当x<1时,y随x的增大而增大,故选项A正确,选项B错误,当1<x<2时,y随x的增大而减小,当x>2时,y随x的增大而增大,故选项C、D错误,故选:A.20.(2018•达州)如图,在物理课上,老师将挂在弹簧测力计下端的铁块浸没于水中,然后缓慢匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A.B.C.D.【分析】根据题意,利用分类讨论的数学思想可以解答本题.【解答】解:由题意可知,铁块露出水面以前,F拉+F浮=G,浮力不变,故此过程中弹簧的度数不变,当铁块慢慢露出水面开始,浮力减小,则拉力增加,当铁块完全露出水面后,拉力等于重力,故选:D.21.(2018•岳阳)函数y=中自变量x的取值范围是()A.x>3 B.x≠3 C.x≥3 D.x≥0【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:函数y=中x﹣3≥0,所以x≥3,故选:C.22.(2018•长沙)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明读报用了30minC.食堂到图书馆的距离为0.8kmD.小明从图书馆回家的速度为0.8km/min【分析】根据函数图象判断即可.【解答】解:小明吃早餐用了(25﹣8)=17min,A错误;小明读报用了(58﹣28)=30min,B正确;食堂到图书馆的距离为(0.8﹣0.6)=0.2km,C错误;小明从图书馆回家的速度为0.8÷10=0.08km/min,D错误;故选:B.。
2018中考数学试题分类汇编考点13平面直角坐标系与函数基础知识 答案

2018中考数学试题分类汇编:考点13 平面直角坐标系与函数基础知识一.选择题(共31小题)1.【分析】根据非负数的性质确定出点P的纵坐标是正数,然后根据各象限内点的坐标特征解答.【解答】解:∵x2≥0,∴x2+1≥1,∴点P(﹣2,x2+1)在第二象限.故选:B.2.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.【解答】解:∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.故选:C.3.【分析】根据第二象限内点的坐标特征,可得答案.【解答】解:由题意,得x=﹣4,y=3,即M点的坐标是(﹣4,3),故选:C.4.【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,OA=OD﹣AD=40﹣30=10,∴P(9,10);故选:C.5.【分析】依据有理数的乘除混合运算法则、零指数幂、同底数幂的乘法法则以及点的坐标,进行判断即可得出结论.【解答】解:A.﹣5×÷(﹣)×5=﹣1×(﹣5)×5=25,故错误;B.方程(x2+x﹣1)x+3=1有四个整数解:x=1,x=﹣2,x=﹣3,x=﹣1,故正确;C.若a×5673=103,a÷103=b,则a×b=×=,故错误;D.有序数对(m2+1,m)在平面直角坐标系中对应的点一定在第一象限或第四象限或x轴正半轴上,故错误;故选:B.6.【分析】由OA4n=2n知OA2018=+1=1009,据此得出A2A2018=1009﹣1=1008,据此利用三角形的面积公式计算可得.【解答】解:由题意知OA4n=2n,∵2018÷4=504…2,∴OA2018=+1=1009,∴A2A2018=1009﹣1=1008,则△OA2A2018的面积是×1×1008=504m2,故选:A.7.【分析】由天安门的位置确定原点,再进一步得出广安门和左安门的坐标即可判断.【解答】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论错误;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(6,﹣5),此结论错误;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:C.8.【分析】根据分母不等于零分式有意义,可得答案.【解答】解:由题意,得x﹣1≠0,解得x≠1,故选:D.9.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0且x﹣1≠0,解得x>1.故选:D.10.【分析】先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.【解答】解:∵当x=7时,y=6﹣7=﹣1,∴当x=4时,y=2×4+b=﹣1,解得:b=﹣9,故选:C.11.【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【解答】解:根据题意得:小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是故选:B.12.【分析】从函数解析式到函数图象,再利用函数图象研究函数的性质正是数形结合的数学思想的体现.【解答】解:学习了一次函数、二次函数和反比例函数,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现了数形结合的数学思想.故选:A.13.【分析】根据兔子的路程在一段时间内保持不变、乌龟比兔子所用时间少逐一判断即可得.【解答】解:由于兔子在图中睡觉,所以兔子的路程在一段时间内保持不变,所以D选项错误;因为乌龟最终赢得比赛,即乌龟比兔子所用时间少,所以A、C均错误;故选:B.14.【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:,解得:,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.故选:D.15.【分析】根据定义可将函数进行化简.【解答】解:当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选:A.16.【分析】根据齐齐哈尔市某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【解答】解:A、由函数图象知4时气温达到最低,此选项错误;B、最低气温是零下3℃,此选项错误;C、4点到14点之间气温持续上升,此选项错误;D、最高气温是8℃,此选项正确;故选:D.17.【分析】根据函数图象和题目中的条件,可以写出各段中函数图象的变化情况,从而可以解答本题.【解答】解:由函数图象可得,当x<1时,y随x的增大而增大,故选项A正确,选项B错误,当1<x<2时,y随x的增大而减小,当x>2时,y随x的增大而增大,故选项C、D错误,故选:A.18.【分析】根据题意,利用分类讨论的数学思想可以解答本题.【解答】解:由题意可知,铁块露出水面以前,F拉+F浮=G,浮力不变,故此过程中弹簧的度数不变,当铁块慢慢露出水面开始,浮力减小,则拉力增加,当铁块完全露出水面后,拉力等于重力,故选:D.19.【解答】解:小明吃早餐用了(25﹣8)=17min,A错误;小明读报用了(58﹣28)=30min,B正确;食堂到图书馆的距离为(0.8﹣0.6)=0.2km,C错误;小明从图书馆回家的速度为0.8÷10=0.08km/min,D错误;故选:B.20.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cosA=,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x的函数关系式是y=(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cosA=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=x cm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.21.【分析】应根据0≤t<2和2≤t<4两种情况进行讨论.把t当作已知数值,就可以求出S,从而得到函数的解析式,进一步即可求解.【解答】解:当0≤t<2时,S=2t××(4﹣t)=﹣t2+4t;当2≤t<4时,S=4××(4﹣t)=﹣2t+8;只有选项D的图形符合.故选:D.22.【分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【解答】解:由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=PB•BQ=(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选:C.23.【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.24.【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【解答】解:过点A向BC作AH⊥BC于点H,所以根据相似比可知: =,即EF=2(6﹣x)所以y=×2(6﹣x)x=﹣x2+6x.(0<x<6)该函数图象是抛物线的一部分,故选:D.25.【分析】先根据动点P和Q的运动时间和速度表示:AP=t,AQ=2t,①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,计算S与t的关系式,发现是开口向上的抛物线,可知:选项C、D不正确;②当4<t≤6时,Q在边BC上,P在边AD上,如图2,计算S与t的关系式,发现是一次函数,是一条直线,可知:选项B不正确,从而得结论.【解答】解:由题意得:AP=t,AQ=2t,①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,S△APQ=AP•AQ==t2,故选项C、D不正确;②当4<t≤6时,Q在边BC上,P在边AD上,如图2,S△APQ=AP•AB==4t,故选项B不正确;故选:A.26.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.27.【分析】过点B作BE⊥AD于点E,构建直角△ABE,通过解该直角三角形求得BE的长度,然后利用平行四边形的面积公式列出函数关系式,结合函数关系式找到对应的图象.【解答】解:如图,过点B作BE⊥AD于点E,∵∠A=60°,设边AB的长为x,∴BE=AB•sin60°=x.∵平行四边形ABCD的周长为12,∴AD=(12﹣2x)=6﹣x,∴y=AD•BE=(6﹣x)×x=﹣x2+3x(0≤x≤6).则该函数图象是一开口向下的抛物线的一部分,观察选项,C选项符合题意.故选:C.28.【分析】先观察图象得到y与x的函数图象分三个部分,则可对有4边的封闭图形进行淘汰,利用圆的定义,P点在圆上运动时,PM总上等于半径,则可对D进行判断,从而得到正确选项.【解答】解:y与x的函数图象分三个部分,而B选项和C选项中的封闭图形都有4条线段,其图象要分四个部分,所以B、C选项不正确;D选项中的封闭图形为圆,y为定中,所以D 选项不正确;A选项为三角形,M点在三边上运动对应三段图象,且M点在P点的对边上运动时,PM的长有最小值.故选:A.29.【分析】当0<x≤1时,y=2x,当1<x≤2时,y=2,当2<x≤3时,y=﹣2x+6,由此即可判断;【解答】解:当0<x≤1时,y=2x,当1<x≤2时,y=2,当2<x≤3时,y=﹣2x+6,∴函数图象是A,故选:A.30.【分析】在Rt△PMN中解题,要充分运用好垂直关系和45度角,因为此题也是点的移动问题,可知矩形ABCD以每秒1cm的速度由开始向右移动到停止,和Rt△PMN重叠部分的形状可分为下列三种情况,(1)0≤x≤2;(2)2<x≤4;(3)4<x≤6;根据重叠图形确定面积的求法,作出判断即可.【解答】解:∵∠P=90°,PM=PN,∴∠PMN=∠PNM=45°,由题意得:CM=x,分三种情况:①当0≤x≤2时,如图1,边CD与PM交于点E,∵∠PMN=45°,∴△MEC是等腰直角三角形,此时矩形ABCD与△PMN重叠部分是△EMC,∴y=S△EMC=CM•CE=;故选项B和D不正确;②如图2,当D在边PN上时,过P作PF⊥MN于F,交AD于G,∵∠N=45°,CD=2,∴CN=CD=2,∴CM=6﹣2=4,即此时x=4,当2<x≤4时,如图3,矩形ABCD与△PMN重叠部分是四边形EMCD,过E作EF⊥MN于F,∴EF=MF=2,∴ED=CF=x﹣2,∴y=S梯形EMCD=CD•(DE+CM)==2x﹣2;③当4<x≤6时,如图4,矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H,∴EH=MH=2,DE=CH=x﹣2,∵MN=6,CM=x,∴CG=CN=6﹣x,∴DF=DG=2﹣(6﹣x)=x﹣4,∴y=S梯形EMCD﹣S△FDG=﹣=×2×(x﹣2+x)﹣=﹣+10x ﹣18,故选项A正确;故选:A.31.【分析】根据题意,确定10≤t≤14,PQ的运动状态,得到BE、BC、ED问题可解.【解答】解:由图象可知,当10≤t≤14时,y值不变,则此时,Q点到C,P从E到D.∴BE=BC=10,ED=4故①正确.∴AE=6Rt△ABE中,AB=∴cos∠ABE=;故②错误当0≤t≤10时,△BPQ的面积为∴③正确;t=12时,P在点E右侧2单位,此时BP>BE=BCPC=∴△BPQ不是等腰三角形.④错误;当14≤t≤20时,点P由D向C运动,Q在C点,△BPQ的面积为则⑤正确故选:B.二.填空题(共10小题)32.【分析】直接利用平面直角坐标系得出A点坐标.【解答】解:由坐标系可得:点A的坐标是(﹣2,3).故答案为:(﹣2,3).33.【分析】根据点在坐标系中坐标的几何意义即可解答.【解答】解:根据点在坐标系中坐标的几何意义可知,P(3,﹣4)到x轴的距离是|﹣4|=4.故答案为:4.34.【分析】根据各象限内点的坐标特征解答.【解答】解:点(﹣1,2)所在的象限是第二象限.故答案为:二.35.【分析】根据题意,分别找到AB、A1B1、A2B2……及 BA1、B1A2、B2A3……线段长度递增规律即可【解答】解:由已知可知点A、A1、A2、A3……A2018各点在正比例函数y=的图象上点B、B1、B2、B3……B2018各点在正比例函数y=的图象上两个函数相减得到横坐标不变的情况下两个函数图象上点的纵坐标的差为:①由已知,Rt△A1B1A2,…,到Rt△B2017A2018B2018都有一个锐角为30°∴当A(B)点横坐标为时,由①AB=2,则BA1=2,则点A1横坐标为,B1点纵坐标为9=32当A1(B1)点横坐标为3时,由①A1B1=6,则B1A2=6,则点A2横坐标为,B2点纵坐标为27=33当A2(B2)点横坐标为9时,由①A2B2=18,则B2A3=18,则点A3横坐标为,B3点纵坐标为81=34依稀类推点B2018的纵坐标为32019故答案为:3201936.【分析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.【解答】解:“卒”的坐标为(﹣2,﹣2),故答案为:(﹣2,﹣2).37.【分析】本题点A坐标变化规律要分别从旋转次数与点A所在象限或坐标轴、点A到原点的距离与旋转次数的对应关系.【解答】解:由已知,点A每次旋转转动45°,则转动一周需转动8次,每次转动点A到原点的距离变为转动前的倍∵2018=252×8+2∴点A2018的在y轴正半轴上,OA2018==21007故答案为:(0,21007)38.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2≥0且x≠0,解得x≥﹣2且x≠0.故答案为:x≥﹣2且x≠0.39.【分析】该函数是分式,分式有意义的条件是分母不等于0,故分母x+3≠0,解得x 的范围.【解答】解:根据分式有意义的条件得:x+3≠0,解得:x≠﹣3.故答案为:x≠﹣3.40.【分析】根据二次根式的性质,被开方数大于等于0可知:3﹣x≥0,解得x的范围.【解答】解:根据题意得:3﹣x≥0,解得:x≤3.故答案为:x≤3.41.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP 先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12三.解答题(共1小题)42.【分析】(1)根据图象和函数的定义可以解答本题;(2)①根据函数图象可以解答本题;②根据函数图象中的数据可以解答本题.【解答】解:(1)由图象可知,对于每一个摆动时间t,h都有唯一确定的值与其对应,∴变量h是关于t的函数;(2)①由函数图象可知,当t=0.7s时,h=0.5m,它的实际意义是秋千摆动0.7s时,离地面的高度是0.5m;②由图象可知,秋千摆动第一个来回需2.8s.。
中考数学总复习基础知识过关:第9课时 平面直角坐标系及函数的概念与图象(含答案)

第9课时平面直角坐标系及函数的概念与图象知能优化训练中考回顾1.(2018江苏扬州中考)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,-4)B.(4,-3)C.(-4,3)D.(-3,4)答案C2.(2018湖南湘潭中考)若b>0,则一次函数y=-x+b的图象大致是()答案C3.(2018四川雅安中考)若式子+(k-1)0有意义,则一次函数y=(1-k)x+k-1的图象可能是()答案C4.(2018江苏南通中考)如图,等边三角形ABC的边长为3 cm,动点P从点A出发,以每秒1 cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(单位:s),y=PC2,则y关于x的函数的图象大致为()答案C5.(2018江苏宿迁中考)在平面直角坐标系中,将点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是.答案(5,1)模拟预测1.已知点P(a+1,2a-3)在第一象限,则a的取值范围是()A.a<-1B.a>C.-<a<1D.-1<a<答案B2.函数y=中自变量x的取值范围是()A.x>-2B.x≥2C.x≠-2D.x≥-2答案A3.如图,若在象棋盘上建立平面直角坐标系,使“帥”位于点(-1,-2),“馬”位于点(2,-2),则“兵”位于点()A.(-1,1)B.(-2,-1)C.(-3,1)D.(1,-2)答案C4.下列命题正确的个数是()①若代数式有意义,则x的取值范围为x≤1,且x≠0.②我市生态旅游初步形成规模,2016年全年生态旅游收入为302 600 000元,用科学记数法表示并精确到百万位是3.03×108元.③若反比例函数y=(m为常数),当x>0时,y随x增大而增大,则一次函数y=-2x+m的图象一定不经过第一象限.④若函数的图象关于y轴对称,则函数称为偶函数,下列三个函数:y=3,y=2x+1,y=x2中偶函数的个数为2.A.1B.2C.3D.4答案C5.点P(1,2)关于x轴的对称点P1的坐标是,点P(1,2)关于原点O的对称点P2的坐标是.答案(1,-2)-1,-2)6.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是.答案(1,2)7.一个装有进水管和出水管的容器,从某时刻开始的4 min内只进水不出水,在随后的8 min内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的部分关系如图.那么,从关闭进水管起min 该容器内的水恰好放完.答案88.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图.(1)填写下列各点的坐标:A4(,),A8(,),A12(,);(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A100到点A101的移动方向.解(1)204060(2)A4n(2n,0);(3)向上(当n为自然数时,从点A4n到点A4n+1的移动方向是向上).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9课时 平面直角坐标系与函数基础过关1. (2017武汉)点A(-3,2)关于y 轴对称的点的坐标为( )A. (3,-2)B. (3,2)C. (-3,-2)D. (2,-3)2. (2017贵港)在平面直角坐标系中,点P (m -3,4-2m )不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. (2017泸州)下列曲线中不能表示y 是x 的函数的是( )4. (2017河池)若函数y =11x 有意义,则( ) A. x >1 B. x <1 C. x =1 D. x ≠15. (2017邵阳)函数y =x -5中,自变量x 的取值范围在数轴上表示正确的是( )6. (2017西宁)在平面直角坐标系中,将点A (-1,-2)向右平移3个单位长度得到点B ,则点B 关于x 轴的对称点B ′的坐标为( )A. (-3,-2)B. (2,2)C. (-2,2)D. (2,-2)7. (2017宁夏)在平面直角坐标系中,点(3,-2)关于原点对称的点是( )A . (-3,2)B . (-3,-2)C . (3,-2)D . (3,2)8. (2017甘肃)如图①,在边长为4的正方形ABCD 中,点P 以每秒2 cm 的速度从点A 出发,沿AB →BC 的路径运动,到点C 停止.过点P 作PQ ∥BD ,PQ 与边AD (或边CD )交于点Q ,PQ 的长度y (cm)与点P 的运动时间x (秒)的函数图象如图②所示.当点P 运动2.5秒时,PQ 的长是( )第8题图9. (2018原创)定义新运算:a ⊕b = 0()()0a b b a b b⎧⎪⎪⎨⎪-⎪⎩><,例如:4⊕5=45,4⊕ (-5)= 45.则函数y =2⊕ x (x ≠0)的图象大致是( )10. (2017济宁)如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是( )第10题图A. ①B. ③C. ②或④D. ①或③11. (2017绍兴)均匀地向一个容器注水,最后把容器注满.在注水的过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是( )12. (2017青海)如图,在矩形ABCD中,点P从点A出发,沿着矩形的边顺时针方向运动一周回到点A.则点A、P、D围成的图形面积y与点P运动路程x之间形成的函数关系式的大致图象是( )第12题图13. (2017淄博)小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是( )第13题图14. 如图,一根长为5米的竹竿AB斜立于墙MN的右侧,底端B与墙角N的距离为3米,当竹竿顶端A下滑x米时,底端B便随着向右滑行y米,反映y与x变化关系的大致图象是()第14题图15. 如图,在矩形ABCD中,动点P从点A开始沿A→B→C→D的路径匀速运动到点D为止,在这个过程中,下列图象可以大致表示△APD的面积S随点P的运动时间t的变化关系的是( )第15题图16.(2017常州模拟)如图①,一个电子蜘蛛从点A出发匀速爬行,它先沿线段AB爬到点B,再沿半圆经过点M爬到点C.如果准备在M、N、P、Q四点中选定一点安装一台记录仪,记录电子蜘蛛爬行的全过程.设电子蜘蛛爬行的时间为x,电子蜘蛛与记录仪之间的距离为y,表示y与x函数关系的图象如图②所示,那么记录仪可能位于图①中的( )第16题图A.点MB.点NC.点PD.点Q17. (2017丽水)在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行使时间x(小时)的函数关系的图象.下列说法错误的是( )A. 乙先出发的时间为0.5小时B. 甲的速度是80千米/小时C. 甲出发0.5小时后两车相遇D. 甲到B地比乙到A地早112小时18. (2017大庆)若点M(3,a-2),N(b,a)关于原点对称,则a+b=_______.满分冲关1. (2017河南)如图①,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A.图②是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.第1题图2.(2017攀枝花)如图①,E为矩形ABCD的边AD上一点,点P从点B处出发沿折线BE-ED-DC 运动到点C停止,点Q从点B处出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图②所示.第2题图给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③当14<t<22时,y=110-5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE 相似时,t=14.5.其中正确结论的序号是_____.答案基础过关1. B 【解析】关于y 轴对称的点,横坐标互为相反数,纵坐标相同.点A (-3,2)关于y 轴对称的点的坐标为(3,2).2. A 【解析】①当m -3>0,即m >3时,-2m <-6, 4-2m <-2, 所以点P (m -3,4-2m )可能在第四象限,不可能在第一象限; ②当m -3<0,即m <3时,-2m >-6, 4-2m >-2, 点P (m -3,4-2m )可能在第二或三象限, 综上所述,点P 不可能在第一象限.3. C 【解析】当给x 一个值时,y 有唯一的值与其对应,就说y 是x 的函数,x 是自变量. 选项C 的图形中对于一个自变量的值,图象就对应两个点,即y 有两个值与x 的值对应,因而y 与x 之间不是函数关系.4. D 【解析】由题得x -1≠0,解得x ≠1.5. B 【解析】根据二次根式有意义的条件:被开方数大于等于0,结合题意得x -5≥0,解得x ≥5,根据包含数轴上的点用实心点表示可知选B.6. B 【解析】点A (-1,-2)向右平移3个单位后得到的点坐标为B (2,-2),点B 关于x 轴对称的点B ′为(2,2).7. A 【解析】点(3,-2)关于原点对称的点的坐标是(-3,2).8. B 【解析】点P 运动2.5秒时,P 点运动了5 cm ,CP =8-5=3 cm ,由勾股定理得PQ =32+32=3 2 cm.9. D 【解析】由题意得:y =2⊕x =⎩⎪⎨⎪⎧2x (x >0)-2x (x <0),当x >0时,反比例函数y =2x 在第一象限;当x <0时,反比例函数y =-2x在第二象限,因此D 选项符合题意. 10. D 【解析】分两种情况进行讨论:当点P 顺时针旋转时,图象是③;当点P 逆时针旋转时,图象是①,故选D.11. D 【解析】函数图象由三条线段组成:OA 、AB 、BC ,BC 最陡,OA 其次,AB 最平,所以水面高度h 随时间t 的变化BC 最快,OA 其次,AB 最慢,故选D.12. A 【解析】当P 在AB 与CD 上运动时,△APD 中AD 边对应的高AP (或DP )随P 点的运动而变化且呈一次函数变化,所以P 在AB 和CD 间运动时,对应三角形的面积也呈线性变化.当P 在BC 边上运动时,△APD 中AD 边不变,对应的高AB 长也不变,则此时三角形的面积不变.观察四个图象,只有选项A 满足上述要求.13. B 【解析】由题意可知,当先向空玻璃杯中注水时,玻璃杯内水位迅速上升,注满玻璃杯后,鱼缸水位开始上升,此时最高水位h 不变,当鱼缸水位与玻璃杯水位相等时,鱼缸内水位h 缓慢上升,由此可判断B 选项符合题意.14. A 【解析】在Rt△ABN 中,AB =5米,NB =3米,根据勾股定理得:AN =22-NB AB =4米,若A 端下滑x 米,AN =(4-x )米,根据勾股定理得:NB =22-4-5)(x =3+y ,整理得:y =2-4-25)(x -3,当x =0时,y =0;当x =4时,y =2,且不是线性变化的,故选A.15. D 【解析】设点P 的运动速度为v , 点P 在AB 上时,S =12AD ·AP =AD 2vt , 点P 在BC 上时,S =12AD ·AB ,S 是定值, 点P 在CD 上时,S =12AD ·(AB +BC +CD -vt )=12AD ·(AB +BC +CD )-12vt ·AD , 所以,随着时间的增大,S 先匀速变大至矩形的面积的一半,然后保持一段时间不变,再匀速变小至0, 纵观各选项,只有D 选项图象符合.16. C 【解析】A.从A 点到M 点y 随x 增大而减小一直减小到0,故A 不符合题意; B .从A 到B 点y 随x 的增大而减小,从B 到C 点y 的值不变,故B 不符合题意; C .从A 到AB 的中点y 随x 的增大而减小,从AB 的中点到M 点y 随x 的增大而增大,从M 点到C 点y 随x 的增大而减小,故C 符合题意; D .从A 到M 点y 随x 的增大而增大,从M 点到C 点y 随x 的增大而减小,故D 不符合题意.17. D 【解析】由题图可知AB 两地之间的距离为100千米,乙先出发0.5小时后甲再出发,相遇后继续两车相背而行,乙先到达A 地,然后甲才到达B 地,则甲车从A 地到B 地的行驶时间为1.75-0.5=1.25,甲车的速度为100÷1.25=80千米/小时,乙车的速度为(100-70)÷0.5=60千米/小时,70÷(80+60)=0.5 小时,即甲出发0.5小时后两车相遇,此时乙车行驶1小时,距离B 地的距离为60千米,甲车行驶到B 地还需60÷80=0.75小时,乙车距A 地还有40千米,还需行驶40÷60=23小时,甲到B 地比乙到A 地晚112小时. 18. -2 【解析】根据平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),即关于原点的对称点,横纵坐标都变成相反数.根据点M 和点N 关于原点对称就可以求出a ,b 的值,即3=-b ,a -2=-a ,所以a =1,b =-3,所以a +b =-2.满分冲关1. 12 【解析】根据图象可知点P 在BC 上运动时,BP 不断增大,且最大值为5,即BC =5,由于M 是曲线部分的最低点,∴此时BP 最小,即BP ⊥AC 时,BP =4,∴由勾股定理可知:PC =3,由于图象的曲线部分是轴对称图形,∴PA =3,∴AC =6,∴△ABC 的面积为12×4×6=12. 2. ①③⑤ 【解析】由函数图象可判断出BE =10,DE =4,当P 点在ED 上运动时S △BPQ =40,即△PBQ 的面积保持不变,∴此时点Q 到达C 停止运动,∴△PBQ 的高为8,即AB =8,∴AE =BE 2-AB 2=102-82=6,∴BC =AD =10,∴当0<t ≤10时,点P 在BE 上运动,∴BP =BQ =t ,∴△BPQ 是等腰三角形,所以①正确;S △ABE =12AB ·AE =24,所以②错误;当14<t <22时,点P 在CD 上运动,∴此时S △PBQ =12×10(22-t )=110-5t ,即y =110-5t ,所以③正确;△ABP 为等腰三角形需要分类讨论,当AB =AP 时,ED 上存在一个P 点,当BA =BP 时,BE 上存在一个P 点,当PA =PB 时,点P 在AB 垂直平分线上,所以BE 和CD 上各存在一个P 点,共有4个满足条件的点,所以④错误;△BPQ 与△ABE 相似时,只存在△BPQ ∽△BAE 这种情况,此时Q 点与点C 重合,即PC BC =AE AB =34,所以PC =7.5,即t =14.5,所以⑤正确.。