贝叶斯统计书籍
贝叶斯资料

贝叶斯 Thomas Bayes,英国数学家.1702年出生于伦敦,做过神甫。
1742年成为英国皇家学会会员。
1763年4月7日逝世。
贝叶斯在数学方面主要研究概率论。
他首先将归纳推理法用于概率论基础理论,并创立了贝叶斯统计理论,对于统计决策函数、统计推断、统计的估算等做出了贡献.1763年发表了这方面的论著,对于现代概率论和数理统计都有很重要的作用。
贝叶斯的另一著作《机会的学说概论》发表于1758年。
贝叶斯所采用的许多术语被沿用至今。
贝叶斯决策理论是主观贝叶斯派归纳理论的重要组成部分。
贝叶斯决策就是在不完全情报下,对部分未知的状态用主观概率估计,然后用贝叶斯公式对发生概率进行修正,最后再利用期望值和修正概率做出最优决策。
贝叶斯决策理论方法是统计模型决策中的一个基本方法,其基本思想是:1、已知类条件概率密度参数表达式和先验概率。
2、利用贝叶斯公式转换成后验概率。
3、根据后验概率大小进行决策分类。
他对统计推理的主要贡献是使用了"逆概率"这个概念,并把它作为一种普遍的推理方法提出来。
贝叶斯定理原本是概率论中的一个定理,这一定理可用一个数学公式来表达,这个公式就是著名的贝叶斯公式。
贝叶斯公式是他在1763年提出来的:假定B1,B2,……是某个过程的若干可能的前提,则P(Bi)是人们事先对各前提条件出现可能性大小的估计,称之为先验概率。
如果这个过程得到了一个结果A,那么贝叶斯公式提供了我们根据A的出现而对前提条件做出新评价的方法。
P(Bi ∣A)既是对以A为前提下Bi的出现概率的重新认识,称 P(Bi∣A)为后验概率。
经过多年的发展与完善,贝叶斯公式以及由此发展起来的一整套理论与方法,已经成为概率统计中的一个冠以“贝叶斯”名字的学派,在自然科学及国民经济的许多领域中有着广泛应用。
【贝叶斯决策理论分析】(1)如果我们已知被分类类别概率分布的形式和已经标记类别的训练样本集合,那我们就需要从训练样本集合中来估计概率分布的参数。
贝叶斯统计第二版茆诗松汤银才编著

贝叶斯统计第⼆版茆诗松汤银才编著第⼀章先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从⽽有1111122()()()0.4582()()()()P A A P A P A θπθπθθπθθπθ==+2221122()()()0.5418()()()()P A A P A P A θπθπθθπθθπθ==+1.2 解:令121, 1.5λλ==设X 为⼀卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从⽽有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1)由题意知 ()1,01πθθ=<< 从⽽有 351()()()504(1),01()()P A A P A d θπθπθθθθθπθθ(2)361()()()47040(1),01()()P A A P A d θπθπθθθθθπθθ==-<1.5 解:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110m x d θ==?从⽽有()()()10,11.511.6()P x x m x θπθπθθ==<<1.6 证明:设随机变量()X P λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则 (),0!x e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝?∝= 所以 (,1)x Ga x λαβ++ 1.7 解:(1)由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=?=-?因此 2=<<- (2)由题意可知 1222()36xm x d x θθθ=?=?因此 ()()()1,01()P x x m x θπθπθθ==<<1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝?∝--=- 由上可知 (5,297)A Be θ1.9 解:设X 为某集团中⼈的⾼度,则2(,5)XN θ∴25(,)10XN θ∴2(176.53)5()p x θθ--=由题意可知 2(172.72)5.08()θπθ--=⼜由于X 是θ的充分统计量,从⽽有()()()()x x p x πθπθθπθ=∝?2(176.53)(172.72)(174.64)55.0821.26eeeθθθ------∝?∝因此 (174.64,1.26)x N θ1.10 证明:设22(,),,N u u θσσ其中为已知⼜由于X 是θ的充分统计量,从⽽有()()()()x x p x πθπθθπθ=∝?222222251()()11252()11225252u x x u e eeσθθθσσσ+----+?--+∝∝因此 222251(,)11⼜由于21112525σ≤+ 所以θ的后验标准差⼀定⼩于151.11 解:设X 为某⼈每天早上在车站等候公共汽车的时间,则(0,)X U θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ+∞==?从⽽有 7()()3()()128p x x m x θπθπθθ==1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从⽽有 ()()()()x x p x πθπθθπθ∝?00111++++∝?∝因此θ的后验分布仍是Pareto 分布。
贝叶斯统计-教学大纲

《贝叶斯统计》教学大纲“Bayesian Statistics” Course Outline课程编号:152053A课程类型:专业选修课总学时:48 讲课学时:48实验(上机)学时:0学分:3适用对象:金融学(金融经济)先修课程:数学分析、概率论与数理统计、计量经济学Course Code:152053ACourse Type:Discipline ElectiveTotal Hours:48 Lecture:48Experiment(Computer):0Credit:3Applicable Major:Finance(Finance and Economics Experiment Class)Prerequisite:Mathematical Analysis, Probability Theory and Statistics, Econometrics一、课程的教学目标本课程旨在向学生介绍贝叶斯统计理论、贝叶斯统计方法及其在实证研究中的应用。
贝叶斯统计理论与传统统计理论遵循着不同的基本假设,为我们处理数据信息提供新的角度和解读思路,并在处理某些复杂模型上(如,估计动态随机一般均衡模型、带时变参数的状态空间模型等)相比传统方法具有相对优势。
本课程要求学生在选课前具备基本的微积分、概率统计以及计量经济学知识。
以此为起点,我们将主要就贝叶斯统计理论知识、统计模型的应用以及基于计算机编程的实证能力三方面对学生进行训练。
经过对本课程的学习,学生应了解贝叶斯框架的基本思想,掌握基本的贝叶斯理论方法及其主要应用,并掌握实证研究中常用的贝叶斯数值抽样方法以及相关的计算机编程技能。
特别地,学生应能明确了解贝叶斯统计方法与传统统计方法在思想和应用上的区别以及各自的优缺点,以便能在实际应用中合理选择统计分析工具。
This course introduces the basic concepts of Bayesian statistics and the use of Bayesian econometric methods in empirical study. Bayesian statistics has different fundamental assumptions from the classical (frequentist) framework, providing us with an alternative way in analyzing and interpreting data information. Bayesian methods also have relative advantages, and thus are widely used, in dealing with certain complicated models (for example, the estimation of Dynamic Stochastic General Equilibrium model, state space models with time-varying parameters, etc.).Students should have had basic trainings on calculus, probability theory and statistics, and preferably econometrics prior to this course. The major trainings offered in this course focus on Bayesian theories, Bayesian statistical models with applications and computational skills required for empirical analysis. After the course, students should develop their understanding on the philosophy of Bayesian framework, understand basic Bayesian theories, Bayesian estimation methods and their applications, and master the computer skills for the practical use of Bayesian methods. Specifically, students should understand the differences between the Bayesian viewpoint and the classical frequentist perspective in order to be able to choose appropriate analyzing tools in empirical use.二、教学基本要求贝叶斯统计学和计量方法在近年得到越来越广泛的关注和应用,主要得益于计算机技术的发展使得贝叶斯数值抽样方法在实际应用中得以实现。
机器学习经典书目汇总

机器学习经典书目汇总本文总结了机器学习的经典书籍,包括数学基础和算法理论的书籍。
入门书单《数学之美》作者吴军大家都很熟悉。
以极为通俗的语言讲述了数学在机器学习和自然语言处理等领域的应用。
《Programming Collective Intelligence》(《集体智慧编程》)作者Toby Segaran也是《BeautifulData : The Stories Behind Elegant Data Solutions》(《数据之美:解密优雅数据解决方案背后的故事》)的作者。
这本书最大的优势就是里面没有理论推导和复杂的数学公式,是很不错的入门书。
目前中文版已经脱销,对于有志于这个领域的人来说,英文的pdf是个不错的选择,因为后面有很多经典书的翻译都较差,只能看英文版,不如从这个入手。
还有,这本书适合于快速看完,因为据评论,看完一些经典的带有数学推导的书后会发现这本书什么都没讲,只是举了很多例子而已。
《Algorithms of the Intelligent Web》(《智能web算法》)作者Haralambos Marmanis、Dmitry Babenko。
这本书中的公式比《集体智慧编程》要略多一点,里面的例子多是互联网上的应用,看名字就知道。
不足的地方在于里面的配套代码是BeanShell而不是python或其他。
总起来说,这本书还是适合初学者,与上一本一样需要快速读完,如果读完上一本的话,这一本可以不必细看代码,了解算法主要思想就行了。
《统计学习方法》作者李航,是国内机器学习领域的几个大家之一,曾在MSRA 任高级研究员,现在华为诺亚方舟实验室。
书中写了十个算法,每个算法的介绍都很干脆,直接上公式,是彻头彻尾的“干货书”。
每章末尾的参考文献也方便了想深入理解算法的童鞋直接查到经典论文;本书可以与上面两本书互为辅助阅读。
《Machine Learning》(《机器学习》)作者Tom Mitchell是CMU的大师,有机器学习和半监督学习的网络课程视频。
统计学关我什么事:生活中的极简统计学

精彩摘录
贝叶斯统计的优势在于,“在数据少的情况下也可以进行推测,数据越多,推测结果越准确”,以及“对所 获的信息可做出瞬时反应,自动升级推测”的学习功能。
在本书中,上述过程称为“贝叶斯推理”。贝叶斯推理可以总结为:通过观察行动(信息),将先验概率通 过贝叶斯更新,转换为后验概率。
用数值来计算概率的情况下,需要在多种可能性中,选取“将各部分概率相加,总和为1”的那一种,这种情 况被称为“标准化条件”。
6-1运用内曼-皮尔逊式推理解答有关壶的问题 6-2假设检验的过程 6-3假设检验中也存在无法做出判断的情况
7-1用贝叶斯推理解开壶的问题 7-2把A壶和B壶分别设定为一个类别 7-3贝叶斯推理无论在何种条件下,都能得出一个暂时的结果 7-4贝叶斯推理和内曼-皮尔逊式推理中,“风险”的含义不同 7-5从逻辑性观点出发,看贝叶斯推理的过程
是由于贝叶斯统计中所涉及的概率是“主观的”。换言之,通过贝叶斯统计得到的概率并非客观的数值,而 是依存于人的心理的主观数值。
表示“某一特定类别采取各种行动的概率”,这在高等数学中被称为“条件概率”。用“原因”的概念来解 释,即“在原因明确的情况下,某一类别采取各项行动的结果概率”
从上表中我们可以看出,上前询问的顾客为购买者的概率,可以推定为3/7。这个概率,被称为“贝叶斯逆 概率”或“后验概率”。
8-1贝叶斯统计学与内曼-皮尔逊统计学的共通点 8-2 “极大似然原理”被运用到众多学科当中 8-3贝叶斯推理以极大似然原理为基础 8-4内曼-皮尔逊统计学也以极大似然原理为基础
9-1贝叶斯逆概率的悖论 9-2悖论①蒙蒂霍尔问题 9-3悖论②三个囚犯的问题 9-4这两个问题的本质是相同的 9-5通过贝叶斯推理推导出矛盾 9-6结论因模型的设定自身而发生变化
贝叶斯统计韦来生参考书目

贝叶斯统计韦来生参考书目贝叶斯统计是一门重要的统计学分支,韦来生是该领域的知名学者。
以下是一些关于贝叶斯统计和韦来生的参考书目,供你参考:1. "Bayesian Data Analysis" by Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin 这是一本经典的贝叶斯统计教材,涵盖了贝叶斯推断的基本概念和方法,适合初学者和进阶学习者。
2. "Bayesian Methods for Data Analysis" by Bradley P. Carlin and Thomas A. Louis 这本书介绍了贝叶斯统计的理论和应用,包括先验分布的选择、参数估计、模型比较等内容,适合深入学习贝叶斯统计的读者。
3. "Bayesian Theory" by José M. Bernardo and AdrianF.M. Smith 这本书系统地介绍了贝叶斯统计的理论基础,包括贝叶斯定理、贝叶斯决策理论、贝叶斯估计等内容,适合对贝叶斯统计有一定了解的读者。
4. "Bayesian Methods: An Analysis for Statisticians andInterdisciplinary Researchers" by Stefano Monti 这本书介绍了贝叶斯统计的基本原理和方法,并通过实例展示了如何应用贝叶斯统计解决实际问题,适合实际应用导向的读者。
5. "Bayesian Nonparametrics" by Peter Müller and Fernando Andres Quintana 这本书介绍了非参数贝叶斯统计的理论和方法,包括无限维参数空间、无参数密度估计等内容,适合对非参数方法感兴趣的读者。
贝叶斯统计原理及方法优秀-2022年学习资料

伽玛分布-如果随机变量X具有概率密度函数-e-D-Fa-x-1-x≥0-0,-x<0-则称X服从伽玛分布, 作X~Gaa,入.-其中a>0为形状参数,入>0为尺度参数,-6
EX=于-」e=iara,-Ta+11o-To2-aa+1-EX2=-22-C-VrX=EX2-[EX]2 -7
贝塔函数-Ba,b=[x"1-x-dx-称为贝塔函数,其中参数a>0,b>0-贝塔函数的性质:1Ba,b= b,a-TaTb-2Ba,b=-Ta+b-10
Bayesian Statistics-贝叶斯统计-1
贝叶斯统计-预修要求:已修过概率论与数理统计-基本教材:-茆诗松编,贝叶斯统计-中国统计出版社,2005年
[1]贝叶斯统计与决策.Berger J O.中国统计出版-社.1998-[2]现代贝叶斯统计.Kotz ,吴喜之.中国统计出版-社.1999-[3]贝叶斯统计推断.张尧庭、陈汉峰.科学出版-社.1991
经典统计学:基于以上两种信息进行的统计推断被-称为经典统计学。-•说明:它的基本观点是把数据(样本)看成是 自-具有一定概率分布的总体,所研究对象是这个总体而-不局限于数据本身。-据现有资料看,这方面最早的工作是高 和勒让德-德误差分析、正态分布和最小二乘法。从十九世纪末-期到二十世纪中叶,经皮尔逊、费歇和奈曼等人杰出工作创立了经典统计学。-²随着经典统计学的持续发展与广泛应用,它本身的-缺陷也逐渐暴露出来了。-23
贝叶斯方法Bayesian approach-贝叶斯方法是基于贝叶斯定理而发展起来用于系-统地阐述和解决统 问题的方法Samuel Kotz和-吴喜之,2000。-贝叶斯推断的基本方法是将关于未知参数的先-验信息与 本信息综合,再根据贝叶斯定理,得-出后验信息,然后根据后验信息去推断未知参数-茆诗松和王静龙等,1998年 -“贝叶斯提出了一种归纳推理的理论(贝叶斯定-理,以后被一些统计学者发展为一种系统的统计-推断方法,称为贝 斯方法.”一摘自《中国大百-科全书》(数学卷)-16
针对小白入门的统计学相关的书籍

针对小白入门的统计学相关的书籍
以下是一些适合小白入门的统计学相关书籍:
1. 《统计学(概率论与数理统计)》(作者:吴喜之):这本书是一本经典的统计学入门教材,以简明易懂的语言介绍了统计学的基本概念、方法和应用。
2. 《统计学:概念与方法》(作者:Richard A. Johnson、Gouri K. Bhattacharyya):这本书通过丰富的实例和案例,详细讲解了统计学的基本概念、统计分布、参数估计和假设检验等内容。
3. 《统计学引论》(作者:Sheldon M. Ross):这本书介绍了统计学的基本概念和方法,包括概率论、随机变量、参数估计、假设检验和回归分析等内容,适合初学者阅读。
4. 《统计学: 探索数据的艺术》(作者:David S. Moore、George P. McCabe、Bruce A. Craig):这本书通过实例和案例,引导读者理解和应用统计学的基本原理和方法,同时强调数据分析的实用性。
5. 《统计学习方法》(作者:李航):这本书介绍了统计学习的基本原理和方法,包括线性回归、逻辑回归、支持向量机和决策树等内容,适合对机器学习感兴趣的读者。
这些书籍都是以简明易懂的语言介绍统计学的基本概念和方法,适合小白入门。
读者可以根据自己的兴趣和需求选择适合自己的书籍
进行学习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贝叶斯统计书籍
贝叶斯统计,作为一种经典的概率统计方法,被广泛应用于各个领域。
它以18世纪的英国数学家托马斯·贝叶斯的名字命名,主要用于解决根据已有信息进行推断的问题。
本文将介绍贝叶斯统计的基本原理和应用领域,并推荐几本相关的书籍供读者深入学习。
贝叶斯统计的核心思想是基于贝叶斯定理,通过将先验知识与新观测数据结合,更新我们对事件的概率估计。
与频率学派相比,贝叶斯统计更加注重主观推断,能够很好地处理小样本问题。
贝叶斯统计的主要步骤包括确定先验分布、构建似然函数、计算后验分布和进行推断。
贝叶斯统计在各个领域都有广泛的应用。
在医学领域,贝叶斯统计可以用于疾病诊断、药物疗效评估等方面。
在金融领域,贝叶斯统计可以用于风险评估、投资决策等方面。
在机器学习领域,贝叶斯统计可以用于模型选择、参数估计等方面。
此外,贝叶斯统计还被应用于天文学、生态学、社会科学等多个领域。
想要深入学习贝叶斯统计,以下几本经典的书籍可以作为参考:
1.《贝叶斯统计推断》(Bayesian Data Analysis):这本书由统计学家Gelman等人撰写,详细介绍了贝叶斯统计的基本原理和方法。
书中通过丰富的案例和实例,帮助读者理解和应用贝叶斯统计。
2.《贝叶斯数据分析导论》(An Introduction to Bayesian Data Analysis):作者是贝叶斯统计学家克里斯蒂安·罗伯茨和迭戈·卡尔达,这本书是贝叶斯统计入门的经典之作。
书中详细介绍了贝叶斯统计的基本概念和方法,并通过实例进行了说明。
3.《贝叶斯统计方法》(Bayesian Statistical Methods):这本书由英国统计学家彼得·李等人合著,是贝叶斯统计领域的经典教材之一。
书中系统地介绍了贝叶斯统计的基本原理和方法,包括参数估计、假设检验、模型选择等方面。
4.《贝叶斯统计导论》(A First Course in Bayesian Statistical Methods):这本书由英国统计学家彼得·李和大卫·斯密斯合著,是入门贝叶斯统计的良好选择。
书中通过简洁清晰的语言和实例,帮助读者理解贝叶斯统计的基本概念和方法。
以上是几本经典的贝叶斯统计书籍推荐,它们涵盖了贝叶斯统计的基本原理和方法,并提供了丰富的实例和案例,可以帮助读者深入理解和应用贝叶斯统计。
对于想要学习贝叶斯统计的读者来说,这些书籍是宝贵的资料。
希望读者通过学习贝叶斯统计,能够更好地应用于实际问题中,提高问题解决的准确性和效率。