导数应用测试题及参考答案

合集下载

导数运算法则的应用试题及答案

导数运算法则的应用试题及答案

导数运算法则的应用试题及答案导数运算法则的应用试题1.若函数()f x 在R 上可导,且满足'()()f x xf x < ,则( ) A.2(1)(2)f f < B.2(1)(2)f f > C.2(1)(2)f f = D.(1)(2)f f =2.已知函数()f x 的导函数为 '()f x ,满足 ln '()2()x xf x f x x +=,且1()2f e e=,则()f x 的单调性情况为( )A .先增后减B 单调递增C .单调递减D 先减后增3.定义在(0,)+∞上的单调递减函数()f x ,若()f x 的导函数存在且满足'()()f x x f x >,则下列不等式成立的是( ) A .3(2)2(3)f f < B .3(4)4(3)f f < C .2(3)3(4)f f < D .(2)2(1)f f <4.定义在R 上的函数()f x 满足:()()1,(0)4,f x f x f '+>=则不等式()3x x e f x e >+(其中e为自然对数的底数)的解集为( ) A .()0,+∞ B .()(),03,-∞+∞C .()(),00,-∞+∞D .()3,+∞5.)0)()((),(≠x g x g x f 分别是定义在R 上的奇函数和偶函数,当0x <时,()()()()f x g x f x g x ''<,且0)()(,0)3(<=-x g x f f的解集为( ) A .(-∞,-3)∪(3,+∞) B .(-3,0)∪(0,3) C .(-3,0)∪(3,+∞) D .(-∞,-3)∪(0,3)6.若定义在R 上的函数f(x)的导函数为()f x ',且满足()()f x f x '>,则(2011)f 与2(2009)f e 的大小关系为( ).A 、(2011)f <2(2009)f eB 、(2011)f =2(2009)f eC 、(2011)f >2(2009)f eD 、不能确定7.定义在(0,)2π上的函数()f x ,()f x '是它的导函数,且恒有()()tan f x f x x '<⋅成立,则( ) Aππ()2()43f B .(1)2()sin16πf f C ππ()()64f D ππ()()63f8.定义在(0,)+∞上的单调递减函数()f x ,若()f x 的导函数存在且满足x x f x f >')()(,则下列不等式成立的是( ) A .3(2)2(3)f f < B .3(4)4(3)f f < C .2(3)3(4)f f < D .(2)2(1)f f <9.函数f(x)的定义域是R ,f(0)=2,对任意x ∈R ,f(x)+f′(x)>1,则不等式e x ·f(x)>e x +1的解集为( ) A .{x|x>0} B .{x|x<0}C .{x|x<-1或x>1}D .{x|x<-1或0<x<1}10.设函数在R 上存在导数,对任意的R ,有,且(0,+)时,.若,则实数a 的取值范围为( )(A)[1,+∞) (B)(-∞,1] (C)(-∞,2] (D)[2,+∞)()f x '()f x x ∈2()()f x f x x -+=x ∈∞'()f x x >(2)()22f a f a a --≥-11.设()f x 是定义在R 上的可导函数,且满足()()f x f x '<-,对于任意的正数a ,下面不等式恒成立的是( )A.()()0a f a e f <B.()()0a f a e f >C.()()0a f f a e <D.()()0af f a e>12.已知函数f (x )的定义域为R ,对任意x R ∈,有()3f x '>,且()13f -=,则f (x )<3x +6的解集为( ) A.(-1, 1) B.(-1,+∞) C.(-∞,-1) D.(-∞,+∞)13.已知()f x 为定义在(,)-∞+∞上的可导函数,()()f x f x '>对于x R ∈恒成立,且e 为自然对数的底数,则( ) A .20132014(2014)(2013)e f e f ⋅<⋅ B .20132014(2014)(2013)e f e f ⋅=⋅ C .20132014(2014)(2013)e f e f ⋅>⋅D .2013(2014)e f ⋅与2014(2013)e f ⋅的大小不能确定14.设)(x f 是定义在R 上的奇函数,且0)2(=f ,当0>x 时,有2()()0xf x f x x '-<恒成立,则不等式2()0x f x >的解集是( ) A. (-2,0) ∪(2,+∞) B. (-2,0) ∪(0,2) C. (-∞,-2)∪(2,+∞) D . (-∞,-2)∪(0,2)15.已知定义在R 上的函数)(x f 满足1)1(=f ,且)(x f 的导函数)(x f '在R 上恒有21)(<'x f ,则不等式212)(+<x x f 的解集为( ) A. ),1(+∞ B. )1,(-∞ C. )1,1(- D. )1,(-∞),1(+∞16.已知函数()y f x =是定义在数集R 上的奇函数,且当(,0)x ∈-∞时,()()xf x f x '<-成立,若)3(3f a =,)3(lg )3(lg f b =,)41(log )41(log 22f c =,则,,a b c 的大小关系是( )A. c a b >>B. c b a >>C. a b c >>D. a c b >>17.设函数()f x 的导函数为'()f x ,对任意x R ∈都有'()()f x f x >成立,则( ) A .3(ln 2)2(ln3)f f > B. 3(ln 2)2(ln3)f f =C. 3(ln 2)2(ln3)f f <D. 3(ln 2)f 与2(ln 3)f 的大小不确定导数运算法则的应用试题参考答案1.【答案】A试题分析:设x x f x g )()(=,则2)()()(xx f x f x x g -'=', ∵'()()f x xf x <,∴0)(>'x g ,即g (x )在(0,+∞)上单调递增,∴),2()1(g g <即)2()1(22)2(1)1(f f f f <⇒<,故选:A .2.【答案】C试题分析:由ln '()2()xxf x f x x+=知,22()2()(())ln x f x xf x x f x x ''+==,故2()x f x =ln x x x c -+,所以()f x =2ln 1x c x x x -+,因为1()2f e e =,所以c=2e ,所以()f x =2ln 12x ex x x-+,所以()f x ' =2231ln 1x e x x x -+-=32ln x x x ex --,设()h x =2ln x x x e --,所以()h x '=1ln x -,当0<x <e 时,()h x '>0,当x >e 时,()h x '<0,则()h x 在(0,e )是增函数,在(e ,+∞)上是减函数,所以当x e =时,()h x 取最大值()h e =0,所以当x >0时,()h x ≤0,即()f x '≤0,所以()f x 单调递减,故选C . 3.【答案】A 试题分析:∵()f x 为(0,)上的单调递减函数,∴0fx ,又∵'()()f x x f x ,∴>0⇔<0⇔[]′<0,设h (x )=,则h (x )=为(0,+∞)上的单调递减函数,∵>x >0,f′(x )<0,∴f (x )<0.∵h (x )=为(0,)上的单调递减函数,∴>⇔>0⇔2f (3)﹣3f (2)>0⇔2f (3)>3f (2),故A 正确;由2f (3)>3f (2)>3f (4),可排除C ;同理可判断3f (4)>4f (3),排除B ;1•f(2)>2f (1),排除D ;故选A . 4.【答案】A 试题分析:令()()3--=x x e x f e x g ,由于()()03100=--=f g ,()()()x x x e x f e x f e x g -'+='()()()01>-'+=x f x f e x 所用()x g 在R 上是增函数,()()0,0>∴>∴x g x g5.【答案】C .试题分析:由题意()()f xg x 是奇函数,当0x <时,()()()()f x g x f x g x ''<时,2()()()()()0()()f x f x g x f x g x g x g x '''⎡⎤-=<⎢⎥⎣⎦,则()()f x g x 在(),0-∞上为减函数,在()0,+∞上也为减函数,又有(3)0f -=,则有(3)(3)0,0(3)(3)f f g g -==-,可知()0()f xg x <的解集为()3,0(3,)-⋃+∞.6.【答案】C 试题分析:构造函数x e x f x g )()(=,则x e x f x f x g )()()(''-=,因为()()f x f x '>,所以0)('>x g ;即函数)(x g 在R 上为增函数,则20092011)2009()2011(ef e f >,即2)2009()2011(e f f >. 7.【答案】D 【解析】()()tan f x f x x '<⋅0cos sin )(cos )(0cos sin )()('<'-⇔<⋅-⇔xxx f x x f x x x f x f ,又因为0cos ),2,0(>∴∈x x π,从而有:0sin )(cos )(<'-x x f x x f ;构造函数,sin )()(xx f x F =则)2,0(,0sin cos )(sin )()(2π∈>-'='x xx x f x x f x F ,从而有)(x F 在(0,)2π上是增函数,所以有)3()6(ππF F <即:)3()6(33sin )3(6sin )6(ππππππf f f f <⇒<,故选D.8.【答案】A 试题分析:∵f(x)在(0,)+∞上单调递减,∴'()0f x <,又∵x x f x f >')()(,∴f(x)<'()xf x ,令0)()(')('g ,)()(g 2>-=∴=x x f x xf x x x f x ,∴g(x)在(0,)+∞上单调递增,∴g(2)>g(1),即2)2(f 3)3(f >,即3f(2)<2f(3),A 正确. 9.【答案】A 【解析】构造函数g(x)=e x ·f(x)-e x ,因为g′(x)=e x ·f(x)+e x ·f′(x)-e x =e x [f(x)+f′(x)]-e x >e x -e x =0, 所以g(x)=e x ·f(x)-e x 为R 上的增函数. 又因为g(0)=e 0·f(0)-e 0=1, 所以原不等式转化为g(x)>g(0), 解得x>0.故选A.10.【答案】B 【解析】()221)(x x f x g -=,()()0>-'='x x f x g ,()()()()02=--+=-+x x f x f x g x g ,所以()x g 既是增函数又是奇函数,()()()()()()22221,2221222122a a f a g a a a f a a f a g -=-+--=---=-,由已知,得()()⇔≥-a g a g 21222≤⇒≥⇒≥-a a a a ,故选B.11.【答案】C 【解析】试题分析:构造函数()()x g x e f x =,则''()()()x x g x e f x e f x =+0<,∴()g x 在R 内单调递减,所以(a)g(0)g <,即:()(0)a e f a f <,∴()()0af f a e<. 12.【答案】C 试题分析:构造函数()()36g x f x x =--,则()()30g x f x ''=->,所以函数()g x 是增函数,又()()1130g f -=--=,所以()0g x <的解集是(),1-∞-,即()36f x x <+的解集是(),1-∞-.13.【答案】A 试题分析:函数()f x 为定义在(,)-∞+∞上的可导函数,满足()()f x f x '>,则函数为指数函数,可设函数()()xf xg x e=,则导函数'''22()()(()())()x x x x xf x e f x e f x f x eg x e e --==,因为()()f x f x '>,所以'()0g x <,()g x 在(,)-∞+∞上为减函数,(2013)(2014)g g >,即20132014(2013)(2014)f f e e>,从而得20132014(2014)(2013)e f e f ⋅<⋅.(2)()22f a f a a --≥-14.【答案】D 试题分析:根据2()()0xf x f x x '-<和构造的函数()()f x g x x=在(0,+∞)上单调递减,又)(x f 是定义在R 上的奇函数,故)(x f 是定义在R 上单调递减. 因为f (2)=0,所以在(0,2)内恒有f (x )>0;在(2,+∞)内恒有f (x )<0.又因为f (x )是定义在R 上的奇函数,所以在(-∞,-2)内恒有f (x )>0;在(-2,0)内恒有f (x )<0.又不等式x 2f (x )>0的解集,即不等式f (x )>0的解集.所以答案为(-∞,-2)∪(0,2).15.【答案】A 试题分析:212)(+<x x f 可化为0212)(<--x x f ,令212)()(--=x x f x g ,则21)()(-'='x f x g ,因为21)(<'x f ,所以0)(<'x g 0,所以)(x g 在R 上单调递减,当1>x 时,02121)1()1()(=--=<f g x g ,即212)(+<x x f .所以不等式212)(+<x x f 的解集为),1(+∞.故选A .16.【答案】12试题分析:因为(,0)x ∈-∞时,()()xf x f x '<-,所以当(,0)x ∈-∞时,()()0xf x f x '--<,又因为函数()y f x =是定义在R 上的奇函数,所以当(,0)x ∈-∞时,()()0xf x f x '+<,构造函数()()g x xf x =,则()()()0,(,0)g x xf x f x x ''=+<∈-∞,所以()g x 在(,0)-∞上是减函数,又()()g x g x -=,所以()g x 是R 上的偶函数,所以()g x 在(0,)+∞上是增函数,因2lg 30>>>,所以(2)(lg 3)g g g >>,而21(2)(2)(log )4g g g =->,所以有c a b >>,选A.17.【答案】C 试题分析:令()()x f x g x e=,则'''2()()()()()x x x xf x e f x e f x f xg x e e --==,因为对任意x R ∈都有'()()0f x f x ->,所以'()0g x >,即()g x 在R 上单调递增,又ln 2ln3<,所以(ln 2)(ln3)g g <,即ln 2ln3(ln 2)(ln 3)f f e e <,所以(ln 2)(ln 3)23f f <,即3(ln 2)2(ln3)f f <,故选C .。

导数应用精选50题(含有答案)

导数应用精选50题(含有答案)

)
99
A. a b c
B. c > b > a
C. c > a > b
D. a > c > b
10. f (x)是函数f (x)的导函数, 将y f (x)和y f (x) 的图象画在同一直角坐标系中,不
可能正确的是
()
11.已知函数 y xf (x) 的图象如图 3 所示(其中 f (x) 是函数 f (x) 的导函数).下面四个图 象中, y f (x) 的图象大致是( )
30.(本大题满分 14 分) 设 x=3 是函数 f(x)=(x2+a+b)e3-x(x∈R)的一个极值点. (1)求 a 与 b 的关系式(用 a 表示 b),并求 f(x)的单调区间;(2)a>0,g(x)=( a+ 25 ) ex.若
4 存在 x1、x2∈[0,4]使得| f(x1)- g(x2)|<1 成立,求 a 的取值范围.
(3)若函数 y=f(x)+g(x)有两个不同的极值点 x1,x2(xl <x2),且 x2 -xl >1n2,求实数 a 的取值范围.
28.(本题满分 14 分)
5
已知函数 f x a ln x 1 a x 1 x2, a R
2
(1)当 0 a 1时,求函数 f x 的单调区间;
(2)已知 f x 0 对定义域内的任意 x 恒成立,求实数 a 的范围.
(1)求 a, b 的值;(2)求函数 f (x) 的极小值.
26.(本小题满分 13 分)已知定义在正实数集上的函数 f (x) 1 x2 2ex , g(x) 3e2 ln x b (其中 e 为常数, e 2.71828 ),若这两个函数

导数及其应用测试题(有详细答案)

导数及其应用测试题(有详细答案)

《导数及其应用》一、选择题1。

0()0f x '=是函数()f x 在点0x 处取极值的:A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 2、设曲线21y x =+在点))(,(x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象可以为A 。

B. C 。

D.3.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )4.若曲线y =x 2+ax +b在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1 5.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a 等于( )A .2B .3C .4D .56。

设函数()f x 的导函数为()f x ',且()()221f x x x f '=+⋅,则()0f '等于 ( )A 、0B 、4-C 、2-D 、27。

直线y x =是曲线ln y a x =+的一条切线,则实数a 的值为( )A .1-B .eC .ln 2D .18。

若函数)1,1(12)(3+--=k k x x x f 在区间上不是单调函数,则实数k 的取值范围( ) A .3113≥≤≤--≤k k k 或或 B .3113<<-<<-k k 或C .22<<-kD .不存在这样的实数k9.函数()f x 的定义域为(),a b ,导函数()f x '在(),a b 内的图像如图所示, 则函数()f x 在(),a b 内有极小值点 ( )A .1个B .2个C .3个D .4个 10.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .3 B .52 C .2 D .32二、填空题(本大题共4个小题,每小题5分,共20分) 11。

导数专题训练(含答案)

导数专题训练(含答案)

导数专题训练及答案专题一导数的几何意义及其应用导数的几何意义是高考重点考查的内容之一,常与解析几何知识交汇命题,主要题型是利用导数的几何意义求曲线上某点处切线的斜率或曲线上某点的坐标或过某点的切线方程,求解这类问题的关键就是抓住切点P(x0,f(x0)),P点的坐标适合曲线方程,P点的坐标也适合切线方程,P点处的切线斜率k=f′(x0).解题方法:(1) 解决此类问题一定要分清“在某点处的切线”,还是“过某点的切线”的问法.(2)解决“过某点的切线”问题,一般是设切点坐标为P(x0,y0),然后求其切线斜率k=f′(x0),写出其切线方程.而“在某点处的切线”就是指“某点”为切点.(3)曲线与直线相切并不一定只有一个公共点,当曲线是二次曲线时,我们知道直线与曲线相切,有且只有一个公共点,这种观点对一般曲线不一定正确.[例1]已知曲线y=13x3+43.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为4的曲线的切线方程.[变式训练]已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.专题二导数在研究函数单调性中的应用利用导数的符号判断函数的单调性,进而求出函数的单调区间,是导数几何意义在研究曲线变化规律时的一个重要应用,体现了数形结合思想.这类问题要注意的是f(x)为增函数⇔f′(x)≥0且f′(x)=0的根有有限个,f(x)为减函数⇔f′≤0且f′(x)=0的根有有限个.解题步骤:(1)确定函数的定义域;(2)求导数f′(x);(3)①若求单调区间(或证明单调性),只需在函数f(x)的定义域内解(或证明)不等式f′(x)>0或f′(x)<0.②若已知函数f(x)的单调性,则将原问题转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题,再进行求解.[例2]设函数f(x)=x e a-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.(1)求a,b的值;(2)求f(x)的单调区间.[变式训练]设函数f(x)=xekx(k≠0).(1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(-1,1)内单调递增,求k的取值范围.专题三 导数在求函数极值与最值中的应用利用导数可求出函数的极值或最值,反之,已知函数的极值或最值也能求出参数的值或取值范围.该部分内容也可能与恒成立问题、函数零点问题等结合在一起进行综合考查,是高考的重点内容.解题方法:(1)运用导数求可导函数y =f(x)的极值的步骤:①先求函数的定义域,再求函数y =f(x)的导数f ′(x);②求方程f ′(x)=0的根;③检查f ′(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值,如果左负右正,那么f(x)在这个根处取得极小值.(2)求闭区间上可导函数的最值时,对函数极值是极大值还是极小值,可不再作判断,只需要直接与端点的函数值比较即可获得.(3)当连续函数的极值点只有一个时,相应的极值点必为函数的最值.[例3] 已知函数f (x )=-x 3+ax 2+bx 在区间(-2,1)内,当x =-1时取极小值,当x =23时取极大值.(1)求函数y =f (x )在x =-2时的对应点的切线方程;(2)求函数y =f (x )在[-2,1]上的最大值与最小值.[变式训练] 设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线方程与x 轴平行,求a ;(2)若f (x )在x =2处取得极小值,求a 的取值范围.专题四 导数在证明不等式中的应用在用导数方法证明不等式时,常构造函数,利用单调性和最值方法证明不等式.解题方法:一般地,如果证明f(x)>g(x),x ∈(a ,b),可转化为证明F(x)=f(x)-g(x)>0,若F ′(x)>0,则函数F(x)在(a ,b)上是增函数,若F(a)≥0,则由增函数的定义知,F(x)>F(a)≥0,从而f(x)>g(x)成立,同理可证f(x)<g(x),f(x)>g(x).[例4] 已知函数f (x )=ln x -(x -1)22. (1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1.[变式训练] 已知函数f (x )=a e x -ln x -1.(1)设x =2是f (x )的极值点,求a ,并求f (x )的单调区间;(2)证明:当a ≥1e 时,f (x )≥0.专题五 定积分及其应用定积分的基本应用主要有两个方面:一个是求坐标平面上曲边梯形的面积,另一个是求变速运动的路程(位移)或变力所做的功.高考中要求较低,一般只考一个小题.解题方法:(1)用微积分基本定理求定积分,关键是找出被积函数的原函数,这就需要利用求导运算与求原函数是互逆运算的关系来求原函数.(2) 利用定积分求平面图形的面积的步骤如下:①画出图形,确定图形范围;②解方程组求出图形交点坐标,确定积分上、下限;③确定被积函数,注意分清函数图形的上、下位置;④计算定积分,求出平面图形面积.(3)利用定积分求加速度或路程(位移),要先根据物理知识得出被积函数,再确定时间段,最后用求定积分方法求出结果.[例5] 已知抛物线y =x 2-2x 及直线x =0,x =a ,y =0围成的平面图形的面积为43,求a 的值.[变式训练] (1)若函数f (x )在R 上可导,f (x )=x 3+x 2f ′(1),则∫20f (x )d x = ____;(2)在平面直角坐标系xOy 中,直线y =a (a >0)与抛物线y =x 2所围成的封闭图形的面积为823,则a =____.专题六 化归与转化思想在导数中的应用化归与转化就是在处理问题时,把待解决的问题或难解决的问题,通过某种转化过程,归结为一类已解决或易解决的问题,最终求得问题的解答.解题方法:与函数相关的问题中,化归与转化思想随处可见,如,函数在某区间上单调可转化为函数的导数在该区间上符号不变,不等式的证明可转化为最值问题等.[例6] 设f (x )=e x1+ax 2,其中a 为正实数. (1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.[变式训练] 如果函数f(x)=2x2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.答案例1 解:(1)因为P (2,4)在曲线y =13x 3+43上,且y ′=x 2,所以在点P (2,4)处的切线的斜率k =y ′|x =2=4.所以曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y -13x 3+43与过点P (2,4)的切线相切于点A ⎝ ⎛⎭⎪⎫x 0,13x 30+43,则切线的斜率k =y ′|x =x 0=x 20,所以切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0), 即y =x 20·x -23x 30+43.因为点P (2,4)在切线上,所以4=2x 20-23x 30+43,即x 30-3x 20+4=0,所以x 30+x 20-4x 20+4=0,所以(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y +2=0.(3)设切点为(x 1,y 1),则切线的斜率k =x 21=4,得x 0=±2.所以切点为(2,4),⎝ ⎛⎭⎪⎫-2,-43, 所以切线方程为y -4=4(x -2)和y +43=4(x +2),即4x -y -4=0和12x -3y +20=0.变式训练 解:(1)因为f (2)=23+2-16=-6,所以点(2,-6)在曲线上.因为f ′(x )=(x 3+x -16)′=3x 2+1,所以在点(2,-6)处的切线的斜率为k =f ′(2)=3×22+1=13,所以切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)设切点坐标为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,所以直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16.又因为直线l 过点(0,0),所以0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得x 30=-8,所以x 0=-2,y 0=(-2)3+(-2)-16=-26,所以k =3×(-2)2+1=13,所以直线l 的方程为y =13x ,切点坐标为(-2,-26).例2 解:(1)因为f (x )=x e a -x +bx ,所以f ′(x )=(1-x )e a -x +b .依题设,知⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x .由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号. 令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值,从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞).变式训练 解:(1)f ′(x )=(1+kx )e kx (k ≠0), 令f ′(x )=0得x =-1k (k ≠0).若k >0,则当x ∈⎝ ⎛⎭⎪⎫-∞,-1k 时,f ′(x )<0,函数f (x )单调递减,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )>0,函数f (x )单调递增; 若k <0,则当x ∈⎝⎛⎭⎪⎫-∞,-1k 时,f ′(x )>0,函数f (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )<0,函数f (x )单调递减. (2)由(1)知,若k >0时,则当且仅当-1k ≤-1,即k ≤1,函数f (x )在(-1,1)上单调递增.若k <0时,则当且仅当-1k ≥1,即k ≥-1时,函数f (x )在(-1,1)上单调递增.综上可知,函数f (x )在(-1,1)上单调递增时,k 的取值范围是[-1,0)∪(0,1].例3 解:(1)f ′(x )=-3x 2+2ax +b .又x =-1,x =23分别对应函数取得极小值、极大值的情况,所以-1,23为方程-3x 2+2ax +b =0的两个根.所以a =-12,b =2,则f (x )=-x 3-12x 2+2x . x =-2时,f (x )=2,即(-2,2)在曲线上. 又切线斜率为k =f ′(x )=-3x 2-x +2, f ′(-2)=-8,所求切线方程为y -2=-8(x +2), 即为8x +y +14=0.(2)x 在变化时,f ′(x )及f (x )的变化情况如下表: ↘↗↘则f (x )在[-2,1]上的最大值为2,最小值为-32.变式训练 解:(1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[2ax -(4a +1)]e x +[ax 2-(4a +1)x +4a +3]e x =[ax 2-(2a +1)x +2]e x .所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点.综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.例4 (1)解:f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞). 由f ′(x )>0得⎩⎪⎨⎪⎧x >0,-x 2+x +1>0,解得0<x <1+52. 故f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,1+52. (2)证明:令F (x )=f (x )-(x -1),x ∈(0,+∞). 则有F ′(x )=1-x 2x .当x ∈(1,+∞)时,F ′(x )<0, 所以F (x )在[1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.变式训练 (1)解:f (x )的定义域为(0,+∞),f ′(x )=a e x -1x .由题设知,f ′(2)=0,所以a =12e 2. 从而f (x )=12e 2e x -ln x -1,f ′(x )=12e 2e x -1x . 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增. (2)证明:当a ≥1e 时,f (x )≥e xe -ln x -1. 设g (x )=e x e -ln x -1,则g ′(x )=e x e -1x . 当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e 时,f (x )≥0.例5 解:作出y =x 2-2x 的图象如图所示.(1)当a <0时,S =∫0a (x 2-2x )d x =⎝⎛⎭⎪⎫13x 3-x 2|0a =-a 33+a 2=43,所以(a +1)(a -2)2=0, 因为a <0,所以a =-1. (2)当a >0时, ①若0<a ≤2,则S =-∫a 0(x 2-2x )d x = -⎝ ⎛⎭⎪⎫13x 3-x 2|a 0=a 2-a 33=43, 所以a 3-3a 2+4=0, 即(a +1)(a -2)2=0. 因为a >0,所以a =2. ②当a >2时,不合题意. 综上a =-1或a =2.变式训练 解析:(1)因为f (x )=x 3+x 2f ′ 所以f ′(x )=3x 2+2xf ′(x ), 所以f ′(1)=3+2f ′(1), 所以f ′(1)=-3,所以∫20f (x )d x =⎝⎛⎭⎪⎫14x 4+13x 3f ′(1)|20=-4.(2)由⎩⎪⎨⎪⎧y =x 2,y =a 可得A (-a ,a ),B (a ,a ),S = (a -x 2)d x=⎝ ⎛⎭⎪⎫ax -13x 3|=2⎝ ⎛⎭⎪⎫a a -13a a =4a 323=823, 解得a =2. 答案:(1)-4 (2)2例6 解:(1)对f (x )求导得f ′(x )=e x·1+ax 2-2ax (1+ax 2)2.①当a =43时,若f ′(x )=0,则4x 2-8x +3=0, 解得x 1=32,x 2=12. 综合①,可知: ↗↘↗所以,x 1=32是极小值点,x 2=12是极大值点. (2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0, 知ax 2-2ax +1≥0在R 上恒成立, 因此Δ=4a 2-4a =4a (a -1)≤0, 由此并结合a >0,知0<a ≤1.变式训练 解析:显然函数f (x )的定义域为(0,+∞), y ′=4x -1x =4x 2-1x .由y ′>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞; 由y ′<0,得函数f (x )的单调递减区间为⎝⎛⎭⎪⎫0,12,由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎨⎧k -1<12<k +1,k -1≥0,解得1≤k <32. 答案:⎣⎢⎡⎭⎪⎫1,32。

高考数学导数及其应用专题训练参考答案

高考数学导数及其应用专题训练参考答案

高考数学:导数及其应用专题训练【参考答案】1.A2.A3.D4.A5.C6.C7.A8.A9.C10.⎩⎨⎧⎭⎬⎫x | 12<x<2 ; 11. 4 ; 12. 32; 13.—16 ; 14.y =3x +1 ; 15.3-1【部分习题解析】4.解析:f ′(x)=6x(x -2),∵f(x)在(-2,0)上为增函数,在(0,2)上为减函数,∴当x =0时,f(x)=m 最大.∴m =3,f(-2)=-37,f(2)=-5.答案:A5.解析:因为y ′=-x2+81,所以当x >9时,y ′<0;当x ∈(0,9)时,y ′>0,所以函数y =-13x3+81x -234在(9,+∞)上单调递减,在(0,9)上单调递增,所以x =9是函数的极大值点,又因为函数在(0,+∞)上只有一个极大值点,所以函数在x =9处取得最大值. 答案:C6.解析:∵f(x)=-12x2+bln(x +2)在(-1,+∞)上是减函数,∴f ′(x)=-x +bx +2<0在(-1,+∞)上恒成立,即b<x(x +2)在(-1,+∞)上恒成立.设g(x)=x(x +2)=(x +1)2-1在(-1,+∞)上单调递增, ∴g(x)>-1. ∴当b ≤-1时,b<x(x +2)在(-1,+∞)上恒成立.即f(x)=-12x2+bln(x +2)在(-1,+∞)上是减函数.答案:C7.解析:由函数f(x)可知f(x -1)=⎩⎪⎨⎪⎧x x <1,-x x ≥1.①当x <1时,原不等式等价于x +(x +1)x ≤3,解得-3≤x ≤1,又x <1,所以-3≤x <1;②当x ≥1时,原不等式等价于x +(x+1)(-x)≤3,即x2≥-3恒成立,所以x ≥1,综合①②可知,不等式的解集为{x|x ≥-3}.9.解析:船速度为x(x>0)时,燃料费用为Q 元,则Q =kx3,由6=k ×103可得k =3500,∴Q =3500x3.∴总费用y =⎝⎛⎭⎫3500x3+96·1x =3500x2+96x ,y ′=6500x -96x2.令y ′=0得x =20,当x ∈(0,20)时,y ′<0,此时函数单调递减,当x ∈(20,+∞)时,y ′>0,此时函数单调递增,∴当x =20时,y 取得最小值,∴此轮船以20公里/小时的速度使行驶每公里的费用总和最小.答案:C10.[解析] 由题意可知a>0,且-2,1是方程ax2+bx +c =0的两个根,则⎩⎨⎧-ba=-1,ca =-2,解得⎩⎪⎨⎪⎧b =a ,c =-2a ,所以不等式cx2+bx +a>c(2x -1)+b 可化为-2ax2+ax +a>-2a(2x -1)+a ,整理得2x2-5x +2<0,解得12<x<2.∴原不等式的解集为⎩⎨⎧⎭⎬⎫x | 12<x<2.11.解析:若x =0,则不论a 取何值,f(x)≥0显然成立. 当x >0,即x ∈(0,1]时,f(x)=ax3-3x +1≥0可化为a ≥3x2-1x3.设g(x)=3x2-1x3,则g ′(x)=31-2x x4,所以g(x)在区间⎝⎛⎦⎤0,12上单调递增,在区间⎣⎡⎦⎤12,1上单调递减,因此g(x)max =g ⎝⎛⎭⎫12=4,从而a ≥4. 当x <0,即x ∈[-1,0]时, 同理,a ≤3x2-1x3. g(x)在区间[-1,0)上单调递增,∴g(x)min =g(-1)=4,从而a ≤4,综上,可知a =4. 答案:412.解析:由题意得f ′(x)=3x2-12,令f ′(x)=0得x =±2,且f(-3)=17,f(-2)=24,f(2)=-8,f(3)=-1,所以M =24,m =-8,M -m =32. 答案:3215.解析:f ′(x)=x2+a -2x2x2+a 2=a -x2x2+a 2,当x >a 时,f ′(x)<0,f(x)单调递减,当-a <x <a 时,f ′(x)>0,f(x)单调递增,当x =a 时,f(x)=a 2a =33,a =32<1,不合题意. ∴f(x)max =f(1)=11+a =33,a =3-1. 答案:3-116.解:(1)f ′(x)=3x2-9x +6=3(x -1)(x -2),因为x ∈(-∞,+∞),f ′(x)≥m , 即3x2-9x +(6-m)≥0恒成立.所以Δ=81-12(6-m)≤0,得m ≤-34,即m 的最大值为-34.17.解析:(1)∵f(x)=1-x ax +lnx ,∴f ′(x)=ax -1ax2(a>0).∵函数f(x)在[1,+∞)上为增函数,∴f ′(x)=ax -1ax2≥0对x ∈[1,+∞)恒成立.∴ax -1≥0对x ∈[1,+∞)恒成立.即a ≥1x 对x ∈[1,+∞)恒成立. ∴a ≥1.(2)当a =1时,f ′(x)=x -1x2.∴当x ∈⎣⎡⎭⎫12,1时,f ′(x)<0, 故f(x)在x ∈⎣⎡⎭⎫12,1上单调递减;当x ∈(1,2]时,f ′(x)>0,故f(x)在x ∈(1,2]上单调递增. ∴f(x)在区间⎣⎡⎦⎤12,2上有唯一极小值点,故f(x)min =f(x)极小值=f(1)=0. 又f ⎝⎛⎭⎫12=1-ln2,f(2)=-12+ln2,f(12)-f(2)=32-2ln2=lne3-ln162, ∵e3>16,∴f ⎝⎛⎭⎫12-f(2)>0,即f ⎝⎛⎭⎫12>f(2). ∴f(x)在区间⎣⎡⎦⎤12,2上的最大值f(x)max =f ⎝⎛⎭⎫12=1-ln2. 综上可知,函数f(x)在⎣⎡⎦⎤12,2上的最大值是1-ln2,最小值是0.(3)当a =1时,f(x)=1-x x +lnx ,f ′(x)=x -1x2,故f(x)在[1,+∞)上为增函数.当n>1时,令x =nn -1,则x>1,故f(x)>f(1)=0. ∴f ⎝⎛⎭⎫n n -1=1-n n -1n n -1+ln n n -1=-1n +ln n n -1>0, 即ln n n -1>1n . ∴ln 21>12,ln 32>13,ln 43>14,…,ln n n -1>1n .∴ln 21+ln 32+ln 43+…+ln n n -1>12+13+14+…+1n .∴lnn>12+13+14+ (1).即对大于1的任意正整数n ,都有lnn>12+13+14+…+1n .本题的关键在于f(x)=1-x x +lnx ,f ′(x)=x -1x2,故f(x)在[1,+∞)上为增函数.当n>1时,令x =n n -1,则x>1,故f(x)>f(1)=0,∴f ⎝⎛⎭⎫n n -1=1-nn -1n n -1+lnnn -1=-1n +ln n n -1>0,即ln n n -1>1n.怎么想到要这么做,主要受前面两小题的强烈提示.通过本题的学习,我们要掌握此类问题一般规律.本题出错在于同学完全没有想到利用前面的结论,而直接讨论函数f(x)=ln x x -1-1x 的单调性求解,可以试试看,肯定行不通.18.解:(1)由f(x)=g(x),得k =lnxx2.令h(x)=lnx x2,所以方程f(x)=g(x)在区间⎣⎡⎦⎤1e ,e 内解的个数即为函数h(x)=lnxx2,x ∈⎣⎡⎦⎤1e ,e 的图象与直线y =k 交点的个数.h ′(x)=1-2lnxx3,当h ′(x)=0时,x = e.当x 在区间⎣⎡⎦⎤1e ,e 内变化时,h ′(x),h(x)变化如下: x ⎣⎡⎭⎫1e ,ee (e ,e] h ′(x) + 0 - h(x)递增12e递减当x =1e 时,y =-e2;当x =e 时,y =12e ;当x =e 时,y =1e2.所以,①当k>12e 或k<-e2时,该方程无解.②当k =12e 或-e2≤k<1e2时,该方程有一个解.③当1e2≤k<12e 时,该方程有两个解.(2)由(1)知lnx x2≤12e ,∴lnx x4≤12e ·1x2.∴ln224+ln334+…+lnn n4≤12e ⎝⎛⎭⎫122+132+…+1n2. ∵122+132+…+1n2<11·2+12·3+…+1n -1·n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1-1n =1-1n <1.∴ln224+ln334+…+lnn n4<12e. 19.解析:设包装盒的高为h(cm),底面边长为a(cm).由已知得a =2x ,h =60-2x2=2(30-x),0<x <30.(1)S =4ah =8x(30-x)=-8(x -15)2+1 800,所以当x =15时,S 取得最大值.(2)V =a2h =22(-x3+30x2),V ′=62x(20-x). 由V ′=0得x =0(舍去)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0. 所以当x =20时,V 取得极大值,也是最大值. 此时h a =12. 即包装盒的高与底面边长的比值为12.引入恰当的变量、建立适当的模型是解题的关键.第(1)中侧面积 S是关于 x 的二次函数,可以利用抛物线的性质求最值,也可以利用导数求解;而第(2)题中容积 V 是关于 x 的三次函数,因此只能利用导数求最值.20.解析:(1)f ′(x)=3ax2+2bx +c ,依题意⎩⎪⎨⎪⎧ f ′1=3a +2b +c =0,f ′-1=3a -2b +c =0⇒⎩⎪⎨⎪⎧b =0,3a +c =0. 又f ′(0)=-3,∴c =-3,a =1. ∴f(x)=x3-3x.(2)设切点为(x0,x30-3x0),∵f ′(x)=3x2-3,∴f ′(x0)=3x20-3. ∴切线方程为y -(x30-3x0)=(3x20-3)(x -x0), 又切线过点A(2,m),∴m -(x30-3x0)=(3x20-3)(2-x0). ∴m =-2x30+6x20-6. 令g(x)=-2x3+6x2-6,则g ′(x)=-6x2+12x =-6x(x -2). 由g ′(x)=0得x =0或x =2.g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2. 画出草图知(如图4-3-3),当-6<m <2时,m =-2x3+6x2-6有三解, ∴ m 的取值范围是(-6,2).21.解析:(1)由已知有f ′(x)=x +1x ,当x ∈[1,e]时,f ′(x)>0,f(x)在[1,e]上为增函数,∴f(x)max =f(e)=12e2+1,f(x)min =f(1)=12.(2)证明:设F(x)=12x2+lnx -23x3, 则F ′(x)=x +1x -2x2=1-x 1+x +2x2x当x ∈[1,+∞)时,F ′(x)<0,F(x)在[1,+∞)上为减函数,且F(1)=-16<0故x ∈[1,+∞)时,F(x)<0. ∴12x2+lnx <23x3.∴在[1,+∞)上,函数f(x)的图像在函数g(x)=23x3图像的下方.方法点睛 一般地,在闭区间[a ,b]上的连续函数f(x)必有最大值与最小值,在开区间(a ,b)内的连续函数不一定有最大值与最小值,若函数y =f(x)在闭区间[a ,b]上单调递增,则f(a)是最小值,f(b)是最大值;反之,则f(a)是最大值,f(b)是最小值.22.解析:(1)f ′(x)=3x2+2ax.由已知条件⎩⎪⎨⎪⎧ f 1=0,f ′1=-3,即⎩⎪⎨⎪⎧a +b +1=0,2a +3=-3,解得⎩⎪⎨⎪⎧a =-3,b =2. (2)由(1)知f(x)=x3-3x2+2,f ′(x)=3x2-6x =3x(x -2),f ′(x)与f(x)随x 变化情况如下:x (-∞,0) 0 (0,2) 2 (2,+∞) f ′(x)+-+f(x) 2 ↘ -2由f(x)=f(0)解得x =0,或x =3.因此根据f(x)的图像当0<t ≤2时,f(x)的最大值为f(0)=2,最小值为f(t)=t3-3t2+2; 当2<t ≤3时,f(x)的最大值为f(0)=2,最小值为f(2)=-2; 当t >3时,f(x)的最大值为f(t)=t3-3t2+2,最小值为f(2)=-2. 23.解析:(1)函数f(x)的定义域为(-∞,+∞),因为f ′(x)=x +ex -(ex +xex)=x(1-ex), 由f ′(x)=x(1-ex)>0得x <0,f ′(x)<0得x >0,则f(x)的单调递增区间为(-∞,0),单调递减区间为(0,+∞). (2)由(1)知,f(x)在[0,2]上单调递减,在[-2,0)上单调递增,又f(-2)=2+3e2,f(2)=2-e2,且2+3e2>2-e2,所以x ∈[-2,2]时,[f(x)]min =2-e2,故m <2-e2时,不等式f(x)>m 恒成立.【方法点睛】 1.不等式恒成立问题一般转化为函数的最值(或值域)来求解.其解题步骤为①分离参数;②构造函数;③求函数的最值(或值域);④由恒成立得出参数的取值范围.2.在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合,用导数求解实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义该极值点就是最值点.24.规范解题:(1)f ′(x)=a ⎝⎛⎭⎫x +1x -lnx x +12-bx2.(1分)由于直线x +2y -3=0的斜率为-12,且过点(1,1).故⎩⎪⎨⎪⎧f 1=1,f ′1=-12,(3分) 即⎩⎪⎨⎪⎧b =1,a 2-b =-12.解得a =1,b =1.(4分)(2)证明:由(1)知f(x)=lnx x +1+1x ,所以f(x)-lnx x -1=11-x2⎝⎛⎭⎫2lnx -x2-1x .(5分) 考虑函数h(x)=2lnx -x2-1x(x >0),(6分)则h ′(x)=2x -2x2-x2-1x2=-x -12x2.(8分)所以当x ≠1时,h ′(x)<0.而h(1)=0,故 当x ∈(0,1)时,h(x)>0,可得11-x2h(x)>0;(9分)当x ∈(1,+∞)时,h(x)<0,可得11-x2h(x)>0.(10分)从而当x >0,且x ≠1时,f(x)-lnxx -1>0,即f(x)>lnxx -1.(12分)【方法点睛】模板构建:利用导数证明不等式的基本步骤: 第一步 作差f(x)-lnxx -1; 第二步 构造新的函数h(x); 第三步 对h(x)求导;第四步 利用h ′(x)判断11-x2h(x)的正负;第五步 结论.。

高二数学导数的实际应用试题答案及解析

高二数学导数的实际应用试题答案及解析

高二数学导数的实际应用试题答案及解析1.已知函数,则()A.0B.1C.2D.【答案】C【解析】,.【考点】导数公式的应用.2.已知函数,则=____________。

【答案】0;【解析】,所以;【考点】三角函数求导公式;3.函数的定义域为开区间,其导函数在内的图象如图所示,则函数在开区间内极小值点的个数为()A.1个B.2个C.3个D.4个【答案】A【解析】在极小值点处满足:,由图可知在右边第二个零点处满足条件,故A.【考点】极值点定义.4.已知..(1)求函数在区间上的最小值;(2)对一切实数,恒成立,求实数的取值范围;(3) 证明对一切,恒成立.【答案】(1)见解析;(2);(3)见解析.【解析】(1)对于研究非常规的初等函数的最值问题,往往都需要求函数的导数.根据函数导数的正负判断函数的单调性,利用单调性求函数在某个区间上的最值;(2)恒成立问题,一般都需要将常数和变量分离开来(分离常数法)转化为最值问题处理;(3)证明不等式恒成立问题,往往将不等式转化为函数来证明恒成立问题.但有些时候这样转化后不等会乃然很难实现证明,还需对不等式经行恒等变形以达到化简不等式的目的,然后再证.试题解析:⑴,当,,单调递减,当,,单调递增. 1分(由于的取值范围不同导致所处的区间函数单调性不同,故对经行分类讨论.)①,t无解; 2分②,即时, 3分③,即时,在上单调递增,;所以 5分由题可知:,则.因对于,恒成立,故,设,则.单调递增,单调递减.所以,即.问题等价于证明(为了利用第(1)小问结论,并考虑到作差做函数证明不方便,下证的最值与最值的关系.)由(1)可知在的最小值是,当且仅当时取到.设,则,易得,当且仅当时取到.从而对于一切,都有恒成立.【考点】(1)含参量函数最值的讨论;(2)含参恒成立问题,参数取值范围;(3)利用倒数证明不等式.5.已知是的导函数,,且函数的图象过点.(1)求函数的表达式;(2)求函数的单调区间和极值.【答案】(1);(2)函数的单调减区间为,单调增区间为极小值是,无极大值.【解析】⑴注意到是常数,所以从而可求得;又因为函数的图象过点,所以点的坐标满足函数解析式,从而可求出m的值,进而求得的解析式.(2)由⑴可得的解析式及其定义域,进而就可应用导数求其单调区间和极值.试题解析:⑴,,函数的图象过点,,解得:函数的表达式为:(2)函数的定义域为,当时,;当时,函数的单调减区间为,单调增区间为极小值是,无极大值.【考点】1.函数的导数;2.函数的单调区间;3.函数的极值.6.已知函数的导函数为,且满足关系式,则的值等于()A.B.-1C.4D.2【答案】A【解析】对求导,知,令可得,解得.【考点】求导.7.函数的导函数的图像如图所示,则的图像最有可能的是()【答案】C.【解析】从的图像中可以看到,当时,,当时,,∴在上是减函数,在上是增函数,∴选C.【考点】导数的运用.8.函数在x=4处的导数= .【答案】.【解析】∵,∴,∴.【考点】复合函数的导数.9.函数的单调递增区间是()A.B.C.D.【答案】D【解析】,单调递增区间有,,可得.【考点】由导数求函数的单调性.10.已知函数在上是单调递减函数,方程无实根,若“或”为真,“且”为假,求的取值范围。

(典型题)高中数学高中数学选修2-2第三章《导数应用》测试卷(含答案解析)

(典型题)高中数学高中数学选修2-2第三章《导数应用》测试卷(含答案解析)

一、选择题1.已知函数()3f x x ax =-在(1,1)-上单调递减,则实数a 的取值范围为( )A .()1,+∞B .[)3,+∞C .(],1-∞D .(],3-∞2.已知定义在()1,+∞上的函数()f x ,()f x '为其导函数,满足()()1ln 20f x f x x x x++=′,且()2f e e =-,若不等式()f x ax ≤对任意()1,x ∈+∞恒成立,则实数a 的取值范围是( )A .[),e +∞B .()2,2e -C .(),2e -D .[),e -+∞3.若函数()22ln 45f x x x bx =+++的图象上的任意一点的切线斜率都大于0,则b 的取值范围是( ) A .(),8-∞- B .()8,-+∞ C .(),8-∞D .()8,+∞4.若曲线21:(0)C y ax a =>与曲线2:x C y e =存在公共切线,则a 的取值范围为( )A .2[,)8e +∞B .2(0,]8eC .2[4e ,)+∞D .2(0,]4e5.设()f x 在定义域内可导,其图象如图所示,则导函()'f x 的图象可能是( )A .B .C .D .6.若函数21()ln 2f x kx x x =-在区间(0,]e 上单调递增,则实数k 的取值范围是( ) A .2(,]e -∞B .(,1]-∞C .[1,)+∞D .2[,)e+∞7.在半径为r 的半圆内作一内接梯形,使其底为直径,其他三边为圆的弦,则梯形面积最大时,其梯形的上底为A .r 2B 3C 3D .r8.已知函数21()43ln 2f x x x x =-+-在[,1]t t +上不单调,则t 的取值范围是( ) A .(0,1)(2,3)⋃B .(0,2)C .(0,3)D .(0,1][2,3)⋃9.已知函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,若()()F x f x kx =-有3个零点,则k 的取值范围为( ) A .(21e -,0) B .(12e-,0) C .(0,12e) D .(0,21e) 10.已知函数21()sin cos 2f x x x x x =++,则不等式(23)(1)0f x f +-<的解集为( ) A .(2,)-+∞B .(1,)-+∞C .(2,1)--D .(,1)-∞-11.若对于任意的120x x a <<<,都有211212ln ln 1x x x x x x ->-,则a 的最大值为( ) A .2eB .eC .1D .1212.设动直线x m =与函数2()f x x =,()ln g x x =的图像分别交于,M N ,则MN 的最小值为( ) A .11ln 222+ B .11ln 222- C .1ln2+ D .ln21-二、填空题13.已知函数()()21,0e ,0x x x f x x ⎧+≤⎪=⎨>⎪⎩,若函数()()g x f x x m =--恰好有2个零点,则实数m 的取值范围为______.14.函数()f x 定义在0,2π⎛⎫⎪⎝⎭上,26f π⎛⎫= ⎪⎝⎭()f x ',且()()cos sinx f x x f x '⋅<⋅恒成立,则不等式()22sinx f x >的解集为_____________.15.已知函数()211020x e x x x ef x lnx x x⎧--+≤⎪⎪=⎨⎪⎪⎩,,>,若方程f (x )﹣m =0恰有两个实根,则实数m 的取值范围是_____.16.如图所示,ABCD 是边长为30cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个底面是正方形的长方体包装盒,若要包装盒容积3()V cm 最大,则EF 的长为________cm .17.函数()()21xf x x =-的最小值是______.18.已知函数21ln ,0()log ,0xx f x x x x +⎧>⎪=⎨⎪<⎩方程2()2()0()f x mf x m R -=∈有五个不相等的实数根,则实数m 的取值范围是______.19.已知函数()1ln 2f x x x ax ⎛⎫=-⎪⎝⎭有两个极值点,则实数a 的取值范围是_________. 20.若函数()21ln f x x x a x =-++在()0,∞+上单调递增,则实数a 的取值范围是________.三、解答题21.已知函数()212f x x =,()ln g x a x =.设()()()h x f x g x =+ (1)试讨论函数()h x 的单调性. (2)若对任意两个不等的正数12,x x ,都有()()12122h x h x x x ->-恒成立,求实数a 的取值范围;22.在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v(米/单位时间),每单位时间的用氧量为+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为 (米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y(升). (1)求y 关于v 的函数关系式;(2)若c≤v≤15(c>0),求当下潜速度v 取什么值时,总用氧量最少. 23.已知函数()2xf x eax b =-+(0a >,b R ∈,其中e 为自然对数的底数).(1)求函数()f x 的单调递增区间;(2)若函数()f x 有两个不同的零点12,x x ,当a b =时,求实数a 的取值范围.24.设函数21()2x f x x e =. (1)求f (x )的单调区间;(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.25.一件要在展览馆展出的文物类似于圆柱体,底面直径为0.8米,高1.2米,体积约为0.5立方米,为了保护文物需要设计各面是玻璃平面的正四棱柱形无底保护罩,保护罩底面边长不少于1.2米,高是底面边长的2倍,保护罩内充满保护文物的无色气体,气体每立方米500元,为防止文物发生意外,展览馆向保险公司进行了投保,保险费用和保护罩的占地面积成反比例,当占地面积为1平方米时,保险费用为48000元. (1)若保护罩的底面边长为2.5米,求气体费用和保险费用之和; (2)为使气体费用和保险费用之和最低,保护罩该如何设计? 26.已知函数2()2ln f x x mx x =-+ (m R ∈).(1)若()f x 在其定义域内单调递增,求实数m 的取值范围; (2)若45m <<,且()f x 有两个极值点12,x x ,其中12x x <,求12()()f x f x -的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据'()0f x ≤在(1,1)-上恒成立求解. 【详解】∵3()f x x ax =-,∴2'()3f x x a =-.又函数()f x 在()1,1-上单调递减,∴2'()30f x x a =-≤在(1,1)-上恒成立,即23a x ≥在(1,1)-上恒成立.∵当(1,1)x ∈-时,3033x ≤<,∴3a ≥. 所以实数a 的取值范围是[3,)+∞. 故选:B . 【点睛】本题考查根据导函数研究函数的单调性,以及不等式的恒成立问题,注意当'()0()f x x D <∈时,则函数()f x 在区间D 上单调递减;而当函数()f x 在区间D 上单调递减时,则有'()0f x ≤在区间D 上恒成立.解题时要注意不等式是否含有等号,属于中档题.2.D解析:D 【分析】利用导数的运算法则,求出函数()f x 的解析式,然后参数分离,将不等式的恒成立问题转化为ln xa x≥-对任意()1,x ∈+∞恒成立,构造函数,利用导数研究函数的单调性,进而求出函数的最大值,从而得解. 【详解】()()1ln 20f x f x x xx++=′, ()2ln f x x x C ∴+=, ()2ln f e e e C ∴+=,()2f e e =-,∴22e e C -+=,解得0C =,()2ln 0f x x x ∴+=,()2ln x f x x∴=-()1x >,不等式()f x ax ≤对任意()1,x ∈+∞恒成立,∴2ln x ax x-≤对任意()1,x ∈+∞恒成立,即ln xa x≥-对任意()1,x ∈+∞恒成立, 令()ln x g x x=-,则()()21ln ln x g x x -=′, 令()()21ln 0ln xg x x -==′,解得x e =,∴1x e <<时,()0g x '>,()g x 在()1,e 上单调递增;x e >时,()0g x '<,()g x 在(),e +∞上单调递减, ∴当x e =时,()g x 取得极大值,也是最大值,()()max ln eg x g e e e==-=-, a e ∴≥-,∴实数a 的取值范围是[),e -+∞.故选:D. 【点睛】本题考查利用导数研究不等式的恒成立问题,具体考查导数的运算法则及利用导数研究函数的最值问题,求出函数()f x 的解析式是本题的解题关键,属于中档题.不等式恒成立问题关键在于利用转化思想,常见的有:()f x a >恒成立⇔()min f x a >;()f x a <恒成立⇔()max f x a <;()f x a >有解⇔()max f x a >;()f x a <有解⇔()min f x a <;()f x a >无解⇔()max f x a ≤;()f x a <无解⇔()min f x a ≥. 3.B解析:B 【分析】对函数()f x 求导,得到()f x ',然后根据题意得到()0f x '>恒成立,得到 【详解】因为函数()22ln 45f x x x bx =+++,定义域()0,∞+所以()28f x x b x'=++, 因为()f x 图象上的任意一点的切线斜率都大于0, 所以()280f x x b x'=++>对任意的()0,x ∈+∞恒成立, 所以28b x x>--, 设()28g x x x=--,则()max b g x > ()228g x x'=- 令()0g x '=,得到12x =,舍去负根, 所以当10,2x ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增, 当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0g x '<,()g x 单调递减, 所以12x =时,()g x 取最大值,为()max182g x g ⎛⎫==- ⎪⎝⎭,所以8b >-, 故选B. 【点睛】本题考查利用导数求函数图像切线的斜率,不等式恒成立,利用导数研究函数的单调性、极值、最值,属于中档题.4.C解析:C 【分析】求出两个函数的导函数,由导函数相等列方程,再由方程有根转化为求最值,求得a 的范围. 【详解】 由2(0)y axa =>,得2y ax '=,由xy e =,得x y e '=,曲线21:(0)C y ax a =>与曲线2:x C y e =存在公共切线, 则设公切线与曲线1C 切于点211(,)x ax ,与曲线2C 切于点22(,)xx e ,则22211212x x e ax ax e x x -==-,将212x e ax =代入2211212x e ax ax x x -=-,可得2122=+x x ,11212+∴=x e a x ,记12()2+=x e f x x,则122(2)()4xex f x x +-'=,当(0,2)x ∈时,()0f x '<,当(2,)x ∈+∞时,()0f x '>. ∴当2x =时,2()4mine f x =. a ∴的范围是2[,)4e +∞. 故选:C 【点睛】本题主要考查了利用导数研究过曲线上某点处的切线方程,考查了方程有根的条件,意在考查学生对这些知识的理解掌握水平.5.B解析:B 【详解】试题分析:函数的递减区间对应的()0f x '<,函数的递增区间对应()0f x '>,可知B 选项符合题意.考点:函数的单调性与导数的关系.6.C解析:C 【分析】求出函数导数,由题意知()0f x '≥即ln 1x k x+≥在(0,]e 上恒成立,利用导数求出函数ln 1()x g x x+=在(0,]e 上的最大值即可求得k 的范围. 【详解】()ln 1f x kx x '=--,由题意知()0f x '≥在(0,]e 上恒成立, 即ln 1x k x +≥在(0,]e 上恒成立,令ln 1()x g x x+=,则2ln ()x g x x -'=, 当(0,1)x ∈时,()0g x '>,()g x 单调递增;当(1,]x e ∈时,()0g x '<,()g x 单调递减,所以max ()(1)1g x g ==,故1k .故选C 【点睛】本题考查导数在研究函数中的应用,涉及已知函数的单调区间求参数的取值范围、利用导数求函数的最值,属于基础题.7.D解析:D 【解析】设=COB θ∠,则上底为2cos r θ,高为sin r θ, 因此梯形面积为21(2cos 2)sin (1cos )sin 022S r r r r πθθθθθ=+=+∈,(,) 因为由22222=(sin cos cos )(1cos 2cos )0S r r θθθθθ'-++=-++=,得1cos 2θ=,根据实际意义得1cos 2θ=时,梯形面积取最大值,此时上底为2cos =r r θ,选D.点睛:利用导数解答函数最值的一般步骤:第一步:利用()0f x '=得可疑最值点;第二步:比较极值同端点值的大小.在应用题中若极值点唯一,则极值点为开区间的最值点.8.A解析:A 【详解】试题分析:此题考查导数的应用;2343(1)(3)()4x x x x f x x x x x-+--=-+-'=-=-,所以当(0,1),(3,)x ∈+∞时,原函数递减,当(1,3)x ∈原函数递增;因为在[],1t t +上不单调,所以在[],1t t +上即有减又有增,所以01{113t t <<<+<或13{31t t <<<+,01t ∴<<或23t <<,故选A.考点:函数的单调性与导数.9.C解析:C 【分析】由函数()()F x f x kx =-在R 上有3个零点,当0x >时,令()0F x =,可得y k =和()2ln x g x x=有两个交点;当0x <时,y k =和()1g x x =有一个交点,求得0k >,即可求解,得到答案. 【详解】 由题意,函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,要使得函数()()F x f x kx =-在R 上有3个零点, 当0x >时,令()()0F x f x kx =-=, 可得2ln xk x =, 要使得()0F x =有两个实数解, 即y k =和()2ln xg x x=有两个交点, 又由()312ln xg x x-'=, 令12ln 0x -=,可得x =当x ∈时,()0g x '>,则()g x 单调递增;当)x ∈+∞时,()0g x '<,则()g x 单调递减,所以当x =()max 12g x e=, 若直线y k =和()2ln xg x x =有两个交点, 则1(0,)2k e∈,当0x <时,y k =和()21g x x =有一个交点, 则0k >,综上可得,实数k 的取值范围是1(0,)2e. 故选:C. 【点睛】本题主要考查了函数与方程的综合应用,以及利用导数研究函数的单调性与最值的综合应用,着重考查了转化思想以及推理与运算能力.属于中档题.10.C解析:C 【分析】根据条件先判断函数是偶函数,然后求函数的导数,判断函数在[0,)+∞上的单调性,结合函数的奇偶性和单调性的关系进行转化求解即可. 【详解】解:2211()sin()cos()sin cos ()22f x x x x x x x x x f x -=--+-+=++=,则()f x 是偶函数,()sin cos sin cos (1cos )f x x x x x x x x x x x '=+-+=+=+,当0x 时,()0f x ',即函数在[0,)+∞上为增函数,则不等式(23)(1)0f x f +-<得()()231f x f +<,即()()|23|1f x f +<, 则|23|1x +<,得1231x -<+<,得21x -<<-, 即不等式的解集为(2,1)--, 故选:C . 【点睛】本题主要考查不等式的求解,结合条件判断函数的奇偶性和单调性,利用函数奇偶性和单调性的关系进行转化是解决本题的关键.属于中档题.11.C解析:C【分析】整理所给的不等式,构造新函数,结合导函数研究函数的单调性,即可求得结果.【详解】解:由已知可得,211212ln ln x x x x x x -<-,两边同时除以12x x , 则121221ln ln 11x x x x x x -<-,化简有1212ln 1ln 1x x x x ++<, 而120x x <<,构造函数()ln 1x f x x+=,()2ln x f x x -'=, 令()0f x '>,则01x <<;令()0f x '<,则1x > ,所以函数()f x 在()0,1上为增函数,在()1,+∞上为减函数, 由1212ln 1ln 1x x x x ++<对于120x x a <<<恒成立, 即()f x 在()0,a 为增函数,则01a <≤,故a 的最大值为1.故选:C.【点睛】本题考查导数研究函数的单调性,考查分析问题能力,属于中档题.12.A解析:A【分析】将两个函数作差,得到函数()()y f x g x =-,利用导数再求此函数的最小值,即可得到结论.【详解】设函数()()()2ln 0=-=->y f x g x x x x , ()212120-'∴=-=>x y x x x x, 令0y '<,0x,02∴<<x,函数在2⎛⎫ ⎪⎝⎭上为单调减函数; 令0y '>,0x,∴>x,函数在⎫+∞⎪⎪⎝⎭上为单调增函数.2x ∴=时,函数取得极小值,也是最小值为111ln ln 22222-=+. 故所求MN 的最小值即为函数2ln y x x =-的最小值11ln 222+.故选:A.【点睛】本题主要考查利用导数研究函数的最值,属于中档题.二、填空题13.【分析】转化为函数的图象与直线恰有2个交点作出函数的图象利用图象可得结果【详解】因为函数恰好有2个零点所以函数的图象与直线恰有2个交点当时当时所以函数在上为增函数函数的图象如图:由图可知故答案为:【 解析:34m > 【分析】 转化为函数()y f x x =-的图象与直线y m =恰有2个交点,作出函数的图象,利用图象可得结果.【详解】因为函数()()g x f x x m =--恰好有2个零点,所以函数()y f x x =-的图象与直线y m =恰有2个交点,当0x ≤时,22133()1()244y f x x x x ==++=++≥, 当0x >时,()x y f x x e x =-=-,10x y e '=->,所以函数()x y f x x e x =-=-在(0,)+∞上为增函数,函数()y f x x =-的图象如图:由图可知,34m >. 故答案为:34m >【点睛】 方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.14.【分析】构造函数再利用函数的单调性解不等式即可【详解】解:构造函数则当时在单调递增不等式即即故不等式的解集为故答案为:【点睛】关键点点睛:本题解题的关键是根据题目的特点构造一个适当的函数利用它的单调 解析:,62ππ⎛⎫ ⎪⎝⎭【分析】构造函数()()sin f x g x x =,再利用函数的单调性解不等式即可. 【详解】解:()()cos sin f x x f x x '<()()sin cos 0f x x x f x '∴->,构造函数()()sin f x g x x =, 则()()()2sin cos f x x f x x g x sin x'-'=, 当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>, ()g x ∴在0,2π⎛⎫ ⎪⎝⎭单调递增, ∴不等式()f x x >,即()6sin sin 26f f x x ππ⎛⎫ ⎪⎝⎭>== 即()6xg g π⎛>⎫ ⎪⎝⎭, 26x ππ∴<< 故不等式的解集为,62ππ⎛⎫⎪⎝⎭. 故答案为:,62ππ⎛⎫ ⎪⎝⎭. 【点睛】关键点点睛:本题解题的关键是根据题目的特点,构造一个适当的函数,利用它的单调性进行解题.15.【分析】通过求导得出分段函数各段上的单调性从而画出图像若要方程f (x )﹣m=0恰有两个实根只需y=m 与y=f (x )恰有两个交点即可从而得出的取值范围【详解】(1)x≤0时f′(x )=ex ﹣x ﹣1易知解析:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭, 【分析】通过求导,得出分段函数各段上的单调性,从而画出图像.若要方程f (x )﹣m =0恰有两个实根,只需y =m 与y =f (x )恰有两个交点即可,从而得出m 的取值范围.【详解】(1)x ≤0时,f ′(x )=e x ﹣x ﹣1,易知f ′(0)=0,而f ″(x )=e x ﹣1<0,所以f ′(x )在(﹣∞,0]上递减,故f ′(x )≥f ′(0)=0,故f (x )在(﹣∞,0]上递增, 且f (x )≤f (0)11e=+,当x →﹣∞时,f (x )→﹣∞. (2)x >0时,()21'lnx f x x-=,令f ′(x )>0,得0<x <e ;f ′(x )<0得x >e ; 故f (x )在(0,e )上递增,在(e ,+∞)递减, 故x >0时,()1()max f x f e e==;x →0时,f (x )→﹣∞;x →+∞时,f (x )→0. 由题意,若方程f (x )﹣m =0恰有两个实根,只需y =m 与y =f (x )恰有两个交点,同一坐标系画出它们的图象如下:如图所示,当直线y =m 在图示①,②位置时,与y =f (x )有两个交点,所以m 的范围是:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭,. 故答案为:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭,. 【点睛】本题考查了方程根的问题转化为函数图像交点问题,以及利用导数求函数单调性.考查了转化思想和数形结合,属于中档题.16.【分析】设cm 根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式利用导数研究体积的最大值即可【详解】设cm 则cm 包装盒的高为cm 因为cm 所以包装盒的底面边长为cm 所以包装盒的体积 解析:10【分析】设EF x =cm ,根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式,利用导数研究体积(x)V 的最大值即可.【详解】设EF x =cm ,则302x AE BF -== cm ,包装盒的高为22GE x = cm , 因为302x AE AH -== cm ,2A π∠=,所以包装盒的底面边长为2=(30)2HE x - cm , 所以包装盒的体积为232222()[(30)](60900)224V x x x x x x =-⋅=-+,030x <<, 则22()(3120900)4V x x x '=-+,令()0V x '=解得10x =, 当(0,10)x ∈时,()0V x '>,函数(x)V 单调递增;当(10,30)x ∈时,()0V x '<,函数(x)V 单调递减,所以3max 2()(10)(100060009000)10002()4V x V cm ==-+=,即当10EF cm =时包装盒容积3()V cm 取得最大值310002()cm .故答案为:10【点睛】本题考查柱体的体积,利用导数解决面积、体积最大值问题,属于中档题.17.【分析】对求导利用导数即可求得函数单调性和最小值【详解】因为故可得令解得;故当时单调递减;当时单调递增;当时单调递减且当趋近于1时趋近于正无穷;当趋近于正无穷时趋近于零函数图像如下所示:故的最小值为解析:14- 【分析】对()f x 求导,利用导数即可求得函数单调性和最小值,【详解】因为()()21xf xx=-,故可得()()311xf xx---'=,令()0f x'=,解得1x=-;故当(),1x∈-∞-时,()f x单调递减;当()1,1x∈-时,()f x单调递增;当()1,x∈+∞时,()f x单调递减.且()114f-=-,当x趋近于1时()f x趋近于正无穷;当x趋近于正无穷时,()f x趋近于零.函数图像如下所示:故()f x的最小值为14-.故答案为:14-.【点睛】本题考查利用导数研究函数的最值,属综合基础题.18.【分析】作出函数的图象结合图象可求实数的取值范围【详解】当时当时函数为增函数;当时函数为减函数;极大值为且;作出函数的图象如图方程则或由图可知时有2个解所以有五个不相等的实数根只需要即;故答案为:【解析:1(0,)2【分析】作出函数21ln,0()log,0xxf x xx x+⎧>⎪=⎨⎪<⎩的图象,结合图象可求实数m的取值范围.【详解】当0x >时,2ln ()x f x x'=-,当01x <<时,()0f x '>,函数为增函数; 当1x >时,()0f x '<,函数为减函数;极大值为(1)1f =,且x →+∞,()0f x →; 作出函数21ln ,0()log ,0x x f x x x x +⎧>⎪=⎨⎪<⎩的图象,如图,方程2()2()0()f x mf x m R -=∈,则()0f x =或()2f x m =,由图可知()0f x =时,有2个解,所以2()2()0f x mf x -=有五个不相等的实数根,只需要021m <<,即102m <<; 故答案为:1(0,)2.【点睛】 本题主要考查导数的应用,利用研究方程根的问题,作出函数的简图是求解的关键,侧重考查数学抽象的核心素养.19.【分析】对函数进行求导得则方程在时有两个根利用导数研究函数的值域即可得答案;【详解】在时有两个根令令当时当时在单调递增在单调递减且当时当时与要有两个交点故答案为:【点睛】本题考查利用导数研究函数的值 解析:01a <<【分析】对函数进行求导得()1f x lnx ax '=+-,则方程ln 1x a x +=在0x >时有两个根,利用导数研究函数ln 1()x g x x+=的值域,即可得答案; 【详解】 ()1ln 2f x x x ax ⎛⎫=- ⎪⎝⎭,()1f x lnx ax '=+-. ∴ln 1x a x+=在0x >时有两个根,令ln 1()x g x x+=, 令()1g x lnx ax =+-,'221(ln 1)ln ()x x x x g x x x ⋅-+==- 当01x <<时,'()0g x >,当1x >时,'()0g x <, ∴()g x 在(0,1)单调递增,在(1,)+∞单调递减,且(1)1g =,当x →+∞时,()0g x →,当0x →时,()g x →-∞,y a =与()y g x =要有两个交点,∴01a <<故答案为:01a <<.【点睛】本题考查利用导数研究函数的值域,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意参变分离法的运用.20.【分析】依题意可得在上恒成立参变分离得到在上恒成立令求出的最大值即可求出参数的取值范围;【详解】解:因为的定义域为且函数在上单调递增在上恒成立即在上恒成立令当时所以即故答案为:【点睛】本题考查利用导 解析:18a ≥ 【分析】依题意可得()210a f x x x'=-+≥在()0,x ∈+∞上恒成立,参变分离得到22a x x ≥-在()0,x ∈+∞上恒成立,令()22g x x x =-,求出()g x 的最大值即可求出参数的取值范围;【详解】解:因为()21ln f x x x a x =-++的定义域为()0,x ∈+∞,且函数()21ln f x x x a x =-++在()0,∞+上单调递增,()210a f x x x'∴=-+≥在()0,x ∈+∞上恒成立, 即22a x x ≥-在()0,x ∈+∞上恒成立,令()22112248g x x x x ⎛⎫=-=--+ ⎪⎝⎭ 当14x =时()max 18g x = 所以18a ≥即1,8a ⎡⎫∈+∞⎪⎢⎣⎭故答案为:1,8⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查利用导数研究函数的单调性,不等式恒成立问题,属于中档题. 三、解答题21.(1)答案见解析;(2)[)1,+∞.【分析】(1)求导后,分别在0a ≥和0a <两种情况下讨论导函数的正负即可得到结果; (2)将恒成立的不等式转化为()()112222h x x h x x ->-对于任意的12x x >恒成立,从而只需构造函数()()2t x h x x =-,证明()t x 在()0,∞+上单调递增即可,从而将问题进一步转化为()0t x '≥在()0,∞+上恒成立,进而利用分离变量的方法可求得结果.【详解】(1)()()21ln 02h x x a x x =+>,则()()20a x a h x x x x x+'=+=>, 当0a ≥时,()0h x '>恒成立,()h x ∴在()0,∞+上单调递增;当0a <时,若(x ∈,()0h x '<;若)x ∈+∞,()0h x '>; ()h x ∴在(上单调递减,在)+∞上单调递增. (2)设12x x >,则()()12122h x h x x x ->-等价于()()112222h x x h x x ->-, 即()()112222h x x h x x ->-对于任意的12x x >恒成立. 令()()212ln 22t x h x x x a x x =-=+-,则只需()t x 在()0,∞+上单调递增, ()2a t x x x '=+-,∴只需()0t x '≥在()0,∞+上恒成立即可. 令()200a x x x+-≥>,则()220a x x x ≥-+>, 当1x =时,()2max 21x x-+=,1a ∴≥,即实数a 的取值范围为[)1,+∞.【点睛】 关键点点睛:本题主要考查导数在函数中的应用,以及不等式的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.22.(1)见解析;(2)若c<3102,则当v =3102时,总用氧量最少;若c≥3102,则当v =c 时,总用氧量最少.【分析】(1)结合题意可得y 关于v 的函数关系式.(2)由(1)中的函数关系,求导后得到当0<v<3102时,函数单调递减;当v>3102时,函数单调递增.然后再根据c 的取值情况得到所求的速度. 【详解】(1)由题意,下潜用时 (单位时间),用氧量为×=+ (升),水底作业时的用氧量为10×0.9=9(升),返回水面用时= (单位时间),用氧量为×1.5= (升), 因此总用氧量232409,(0)50v y v v=++>. (2)由(1)得232409,(0)50v y v v=++>, ∴y′=-=,令y′=0得v =32当0<v<3102y′<0,函数单调递减;当v>32y′>0,函数单调递增.①若c<32 ,则函数在(c ,32上单调递减,在(310215)上单调递增, ∴ 当v =32②若c≥32,则y 在[c ,15]上单调递增,∴ 当v =c 时,总用氧量最少.【点睛】(1)在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.(2)用导数求实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义可知该极值点就是最值点.23.(1)1ln ,22a ⎛⎫+∞⎪⎝⎭(2)32a e > 【分析】(1)直接求出函数的导函数,令()0f x '>,解不等式即可;(2)由题意容易知道2102222a ln a a a f ln e ln a ⎛⎫=-+< ⎪⎝⎭,解出即可求得实数a 的取值范围; 【详解】解:(1)因为()2x f x e ax b =-+所以()()220x f x e a a '=->,令()0f x '>,得1ln 22a x >,∴函数()f x 的单调递增区间为1ln ,22a ⎛⎫+∞ ⎪⎝⎭(2)由(1)知,函数()f x 在1,ln 22a ⎛⎫-∞ ⎪⎝⎭递减,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭递增, ∴x →-∞时,()f x →+∞;x →+∞,()f x →+∞,∵函数()f x 有两个零点12,x x ,∴1ln 022a f ⎛⎫< ⎪⎝⎭,又a b =, ∴ln 21ln ln 02222a a a a f e a ⎛⎫=-+< ⎪⎝⎭, 即ln 0222a a a a -+< 所以3ln02a -< 所以32a e >【点睛】本题考查利用导数研究函数的单调性及最值问题,考查导数中零点问题,考查转化思想及运算求解能力,属于中档题.24.(1)(,2)(0,)()f x -∞-+∞和为的增区间,(2,0)()f x -为的减区间.(2)m <0 .【详解】解:(1)21()(2)22xxx e f x xe x e x x '=+=+ 令(2)0,02,(,2)(0,)()2xe x x x xf x +>><-∴-∞-+∞或和为的增区间, (2)0,20,(2,0)()2xe x x xf x +<-<<∴-为的减区间. (2)x ∈[-2,2]时,不等式f (x )>m 恒成立等价于min ()f x >m, 令:21()(2)022xxx e f x xe x e x x =+'=+= ∴x=0和x=-2,由(1)知x=-2是极大值点,x=0为极小值点2222(2),(2)2,(0)0,()[0,2]f f e f f x e e-===∴∈, ∴m <0 25.(1)23055元;(2)保护罩为底面边长为2米,高为4米的正四棱柱【分析】(1)根据定义先求保险费用,再计算正四棱柱体积,进而求气体费用,最后求和得结果; (2)先列出气体费用和保险费用之和函数关系式,再利用导数求最值,即得结果.【详解】(1)保险费用为24800076802.5= 正四棱柱体积为22.5(2 2.5)⨯⨯所以气体费用为2500[2.5(2 2.5)0.5]15375⨯⨯⨯-=因此气体费用和保险费用之和为76801537523055+=(元);(2)设正四棱柱底面边长为a 米,则 1.2a ≥因此气体费用和保险费用之和23224800048000500[(2)0.5]1000250y a a a a a=+⨯⨯-=+- 因为2396000300002y a a a'=-+=∴= 当2a >时,0y '>,当1.22a ≤<时,0y '<, 因此当2a =时,y 取最小值,保护罩为底面边长为2米,高为4米的正四棱柱时,气体费用和保险费用之和最低.【点睛】本题考查利用导数求函数最值、列函数解析式,考查基本分析求解能力,属中档题. 26.(1)4m ≤;(2)1504ln 24⎛⎫- ⎪⎝⎭,.【分析】(1)由题意结合导数与函数单调性的关系可转化条件为22m x x ≤+在(0,)+∞上恒成立,利用基本不等式求得22x x+的最小值即可得解; (2)由题意结合函数极值点的概念可得122m x x +=,121x x ⋅=,进而可得1112x <<,转化条件为21211211()()4ln f x f x x x x -=-+,令221()4ln g x x x x =-+(112x <<),利用导数求得函数()g x 的值域即可得解.【详解】(1)()f x 的定义域为(0,)+∞,∵()f x 在(0,)+∞上单调递增, ∴2()20f x x m x '=-+≥在(0,)+∞上恒成立,即22m x x≤+在(0,)+∞上恒成立,又224x x +≥=,当且仅当1x =时等号成立, ∴4m ≤;(2)由题意2222()2x mx f x x m x x-+'=-+=, ∵()f x 有两个极值点12,x x ,∴12,x x 为方程2220x mx -+=的两个不相等的实数根, 由韦达定理得122m x x +=,121x x ⋅=, ∵120x x <<,∴1201x x <<<, 又121112()2()(4,5)m x x x x =+=+∈,解得1112x <<, ∴()()2212111222()()2ln 2ln f x f x x mx x x mx x -=-+--+ ()()()()22121212122ln ln 2x x x x x x x x =-+--+-()()2221122ln ln x x x x =-+- 2112114ln x x x =-+, 设221()4ln g x x x x =-+(112x <<), 则4222333242(21)2(1)()20x x x g x x x x x x ---+--=-+='=<, ∴()g x 在1,12⎛⎫ ⎪⎝⎭上为减函数, 又1111544ln 4ln 22424g ⎛⎫=-+=- ⎪⎝⎭,(1)1100g =-+=, ∴150()4ln 24g x <<-, 即12()()f x f x -的取值范围为1504ln 24⎛⎫- ⎪⎝⎭,.【点睛】本题考查了导数的综合应用,考查了运算求解能力与逻辑推理能力,牢记函数单调性与导数的关系、合理转化条件是解题关键,属于中档题.。

高三数学导数的实际应用试题答案及解析

高三数学导数的实际应用试题答案及解析

高三数学导数的实际应用试题答案及解析1.已知函数 ().(1)若,求函数的极值;(2)设.①当时,对任意,都有成立,求的最大值;②设的导函数.若存在,使成立,求的取值范围.【答案】(1)参考解析;(2)①-1-e-1,②(-1,+∞)【解析】(1)由函数 (),且,所以对函数求导,根据导函数的正负性可得到结论(2)①当时,对任意,都有成立,即时,恒成立. 由此可以通过分离变量或直接求函数的最值求得结果,有分离变量可得b≤x2-2x-在x∈(0,+∞)上恒成立.通过求函数h(x)=x2-2x- (x>0)的最小值即可得到结论.②若存在,使.通过表示即可得到=,所以求出函数u(x)=(x>1)的单调性即可得到结论.(1)当a=2,b=1时,f (x)=(2+)e x,定义域为(-∞,0)∪(0,+∞).所以f ′(x)=e x. 2分令f ′(x)=0,得x1=-1,x2=,列表(0,)(,+∞)-↗极大值极小值↗由表知f (x)的极大值是f (-1)=e-1,f (x)的极小值是f ()=4. 4分(2)①因为g (x)=(ax-a)e x-f (x)=(ax--2a)e x,当a=1时,g (x)=(x--2)e x.因为g (x)≥1在x∈(0,+∞)上恒成立,所以b≤x2-2x-在x∈(0,+∞)上恒成立. 7分记h(x)=x2-2x- (x>0),则h′(x)=.当0<x<1时,h′(x)<0,h(x)在(0,1)上是减函数;当x>1时,h′(x)>0,h(x)在(1,+∞)上是增函数;所以h(x)min=h(1)=-1-e-1;所以b的最大值为-1-e-1. 9分解法二:因为g (x)=(ax-a)e x-f (x)=(ax--2a)e x,当a=1时,g (x)=(x--2)e x.因为g (x)≥1在x∈(0,+∞)上恒成立,所以g(2)=-e2>0,因此b<0. 5分g′(x)=(1+)e x+(x--2)e x=.因为b<0,所以:当0<x<1时,g′(x)<0,g(x)在(0,1)上是减函数;当x>1时,g′(x)>0,g(x)在(1,+∞)上是增函数.所以g(x)min=g(1)=(-1-b)e-1 7分因为g (x)≥1在x∈(0,+∞)上恒成立,所以(-1-b)e-1≥1,解得b≤-1-e-1因此b的最大值为-1-e-1. 9分②解法一:因为g (x)=(ax--2a)e x,所以g ′(x)=(+ax--a)e x.由g (x)+g ′(x)=0,得(ax--2a)e x+(+ax--a)e x=0,整理得2ax3-3ax2-2bx+b=0.存在x>1,使g (x)+g ′(x)=0成立.等价于存在x>1,2ax3-3ax2-2bx+b=0成立. 11分因为a>0,所以=.设u(x)=(x>1),则u′(x)=.因为x>1,u′(x)>0恒成立,所以u(x)在(1,+∞)是增函数,所以u(x)>u(1)=-1,所以>-1,即的取值范围为(-1,+∞). 14分解法二:因为g (x)=(ax--2a)e x,所以g ′(x)=(+ax--a)e x.由g (x)+g ′(x)=0,得(ax--2a)e x+(+ax--a)e x=0,整理得2ax3-3ax2-2bx+b=0.存在x>1,使g (x)+g ′(x)=0成立.等价于存在x>1,2ax3-3ax2-2bx+b=0成立. 11分设u(x)=2ax3-3ax2-2bx+b(x≥1)u′(x)=6ax2-6ax-2b=6ax(x-1)-2b≥-2b 当b≤0时,u′(x)≥0此时u(x)在[1,+∞)上单调递增,因此u(x)≥u(1)=-a-b因为存在x>1,2ax3-3ax2-2bx+b=0成立所以只要-a-b<0即可,此时-1<≤0 12分当b>0时,令x0=>=>1,得u(x)=b>0,又u(1)=-a-b<0于是u(x)=0,在(1,x)上必有零点即存在x>1,2ax3-3ax2-2bx+b=0成立,此时>0 13分综上有的取值范围为(-1,+∞)------14分【考点】1.函数的极值.2.函数最值.3.函数恒成立问题.4.存在性的问题.5.运算能力.2.将一个边长分别为a、b(0<a<b)的长方形的四个角切去四个相同的正方形,然后折成一个无盖的长方体形的盒子.若这个长方体的外接球的体积存在最小值,则的取值范围是________.【答案】【解析】设减去的正方形边长为x,其外接球直径的平方R2=(a-2x)2+(b-2x)2+x2,由R′=0,∴x=(a+b).∵a<b,∴x∈,∴0<(a+b)< ,∴1<<.3.对于三次函数,给出定义:是函数的导函数,是的导函数,若方程有实数解,则称点为函数的“拐点”.某同学经研究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且拐点就是对称中心.若,请你根据这一发现,求:(1)函数的对称中心为__________;(2)=________.【答案】(1);(2)2013.【解析】,,令,∴,∴∴对称中心为,∴,∴.【考点】1.新定义题;2.导数.4.已知,函数.(1)当时,写出函数的单调递增区间;(2)当时,求函数在区间[1,2]上的最小值;(3)设,函数在(m,n)上既有最大值又有最小值,请分别求出m,n的取值范围(用a表示).【答案】(1);(2);(3)详见解析.【解析】(1)对于含绝对值的函数一般可通过讨论去掉绝对值化为分段函数再解答,本题当时,函数去掉绝对值后可发现它的图象是由两段抛物线的各自一部分组成,画出其图象,容易判断函数的单调递增区间;(2)时,所以,这是二次函数,求其在闭区间上的最小值,一般要分类讨论,考虑对称轴和区间的相对位置关系,从而判断其单调性,从而求出最小值;(3)函数在开区间上有最大值和最小值,必然要使开区间上有极大值和极小值,且使极值为最值,由于函数是与二次函数相关,可考虑用数形结合的方法解答.试题解析:(1)当时,, 2分由图象可知,的单调递增区间为. 4分(2)因为,所以. 6分当,即时,; 7分当,即时,. 8分. 9分(3), 10分①当时,图象如图1所示.图1由得. 12分②当时,图象如图2所示.图2由得. 14分【考点】含绝对值的函数、二次函数.5.设,当时,恒成立,则实数的取值范围为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数应用测试题一、选择题:(本大题共12小题,每小题5分, 共60分) 1.设函数f(x)在0x 处可导,则xx f x x f x ∆-∆-→∆)()(lim000等于 ( )A .)('0x fB .)('0x f -C .)('0x f --D .)(0x f -- 2.若13)()2(lim000=∆-∆+→∆xx f x x f x ,则)('0x f 等于 ( ) A .32 B .23C .3D .2 3.曲线x x y 33-=上切线平行于x轴的点的坐标是( )A .(-1,2)B .(1,-2)C .(1,2)D .(-1,2)或(1,-2) 4.若函数f(x)的导数为f ′(x)=-sinx ,则函数图像在点(4,f (4))处的切 线的倾斜角为( )A .90°B .0°C .锐角D .钝角5.函数5123223+--=x x x y 在[0,3]上的最大值、最小值分别是 ( )A .5,-15B .5,-4C .-4,-1D .5,-166.一直线运动的物体,从时间t 到t+△t 时,物体的位移为△s ,那么ts t ∆∆→∆0lim 为( )A .从时间t 到t+△t 时,物体的平均速度B .时间t 时该物体的瞬时速度C .当时间为△t 时该物体的速度D .从时间t 到t+△t 时位移的平均变化率7.关于函数762)(23+-=x x x f ,下列说法不正确的是( )A .在区间(∞-,0)内,)(x f 为增函数B .在区间(0,2)内,)(x f 为减函数C .在区间(2,∞+)内,)(x f 为增函数D .在区间(∞-,0)),2(+∞⋃内,)(x f 为增函数8.对任意x ,有34)('x x f =,f(1)=-1,则此函数为 ( ) A .4)(x x f = B .2)(4-=x x f C .1)(4+=x x f D .2)(4+=x x f9.函数y=2x 3-3x 2-12x+5在[0,3]上的最大值与最小值分别是 ( )A.5 , -15B.5 , 4C.-4 , -15D.5 , -1610.抛物线y=x 2到直线x-y-2=0的最短距离为 ( )A .2B 。

827 C 。

22 D 。

以上答案都不对 11.设f(x)在0x 处可导,下列式子中与)('0x f 相等的是 ( ) (1)x x x f x f x ∆∆--→∆2)2()(lim000; (2)x x x f x x f x ∆∆--∆+→∆)()(lim 000;(3)x x x f x x f x ∆∆+-∆+→∆)()2(lim000(4)xx x f x x f x ∆∆--∆+→∆)2()(lim 000。

A .(1)(2)B .(1)(3)C .(2)(3)D .(1)(2)(3)(4)12.f (x )是定义在区间[-c,c]上的奇函数,其图象如图所示:令g (x )=af (x )+b ,则下列关于函数g (x )的叙述正确的是( )A .若a <0,则函数g (x )的图象关于原点对称.B .若a =-1,-2<b<0,则方程g (x )=0有大于2的实根.C .若a ≠0,b=2,则方程g (x )=0有两个实根.D .若a ≥1,b<2,则方程g (x )=0有三个实根.二、填空题:(本大题共4个小题,每小题4分,共16分) 13.设xx x f 1)(-=,则它与x 轴交点处的切线的方程为______________。

14.设3)('0-=x f ,则=---→hh x f h x f h )3()(lim000_____________。

15.垂直于直线2x-6y+1=0,且与曲线5323-+=x x y 相切的直线的方程是________.16.P 是抛物线2x y =上的点,若过点P 的切线方程与直线121+-=x y 垂直,则过P 点处的切线方程是____________。

三、解答题:(本大题共6个小题, 共76分)17.在抛物线2x y =上求一点P ,使过点P 的切线和直线3x-y+1=0的夹角为4π。

18.判断函数⎩⎨⎧<-≥=)0()0()(x x x x x f 在x=0处是否可导。

19.求曲线y=xcosx 在2π=x 处的切线方程。

20. a 、b 、x 、y 均为正数 且1=+b a N n ∈ 1>n求证:n n n by ax by ax )(+≥+21.(1)求函数x y =在x=1处的导数;(2)求函数b ax x y ++=2(a 、b 为常数)的导数。

22.已知,0>a 函数),0[,)(3+∞∈-=x a x x f ,设01>x ,记曲线)(x f y =在点))(,(11x f x M 处的切线为l 。

(Ⅰ)求l 的方程;(Ⅱ)设l 与x 轴的交点为)0,(2x ,证明:①312a x >;②若311a x >,则1231x x a <<。

参考答案:一、选择题:(本大题共12小题,每小题5分, 共60分) 1-5 CBDCA ; 6-10 BDBAB ; 11—12 BB 二、填空题:(本大题共4个小题,每小题4分,共16分)13.y=2(x-1)或y=2(x+1)14.-6 15.3x+y+6=0 16.2x-y-1=0三、解答题:(本大题共6个小题, 共76分)17.由导数定义得f′(x)=2x ,设曲线上P 点的坐标为),(00y x ,则该点处切线的斜率为02x k p =,根据夹角公式有13213200=⋅+-x x解得10-=x 或410=x , 由10-=x ,得10=y ;由410=x ,得1610=y ; 则P (-1,1)或)161,41(P 。

18.10lim )0()0(lim lim 000=∆-∆=∆-∆+=∆∆+++→∆→∆→∆xx x f x f x y x x x ,10l i m )0()0(l i ml i m 000-=∆-∆-=∆-∆+=∆∆---→∆→∆→∆xx x f x f x y x x x , ∵xy x y x x ∆∆≠∆∆-+→∆→∆00lim lim ,∴xyx ∆∆→∆0lim 不存在。

∴函数f(x)在x=0处不可导。

19.Y ’=x'cosx+x ·(cosx)'=cosx-xsinx 2|'2ππ-==x y ,切点为⎪⎭⎫⎝⎛0,2π, ∴切线方程为:)2(20ππ--=-x y即0422=-+ππy x 。

20.证:由对称性不妨设 y x ≥(1)若y x = 显然成立(2)若y x > 设 nn n by ax by ax x f )()(+-+=∴ a by ax n nby naxx f n n n ⋅+-+='---111)()(])()[(111---+-+=n n n by ax x b a na ])()[(11--+-+=n n by ax bx ax na∵ y x > ∴ 0)(>'x f ∴ ),(∞+∈y x 时 ↑)(x f∴ 0)()(=>y f x f ∴ nn n by ax by ax )(+≥+21.分析:根据导数的定义求函数的导数,是求导数的基本方法。

解(1)11-∆+=∆x y11111+∆+=∆-∆+=∆∆x x x x y , 21111l i ml i m 00=+∆+=∆∆→∆→∆x xyx x ,∴21|'1==x y 。

(2))(])()[(22b ax x b x x a x x y ++-+∆++∆+=∆ x a x x x ∆⋅+∆+∆⋅=2)(2,x a x xx x a x x y ∆++=∆∆+∆+=∆∆)2()()2(2。

[]ax x a x x yx x +=∆++==∆∆→∆→∆2)2(lim lim∴y ′=2x+a 说明应熟练掌握依据导数的定义求函数的导数的三个步骤。

22.解:(1))(x f 的导数23)(x x f =',由此得切线l 的方程 )(3)(12131x x x a x y -=--,(2)依题意,在切线方程中令0=y ,得2131213112323x a x x a x x x +=--=, (ⅰ))32(3131213121312a x a x x a x -+=-0)2()(31311231121≥+-=a x a x x ,∴312a x ≥,当且仅当311a x =时取等成立。

(ⅱ)若311a x >,则031>-a x ,03213112<-=-x ax x x ,且由(ⅰ)312a x ≥,所以1231x x a <<。

相关文档
最新文档