GPS测量基本原理

合集下载

第四章-GPS定位基本原理

第四章-GPS定位基本原理

为P 码和W 码,然后再利用P
码来测距
原理
Z跟踪技术
将接收到的L1 和L2 信号分别和接 收机生成的、以P 码信号为基础的 复制信号相关,频带宽度降低到保 密W 码的带宽,从而得到未知的W 码调制信号的估值
应用反向频率信号处理法,将接收 到的信号减去这一W 码的估值, 就可以大部分消除W 码的影响, 进而恢复P 码
在相对定位中,至少其中一点或几个点的位置是已知的, 即其在WGS-84坐标系的坐标为已知,称之为基准点。
相对定位是高精度定位的基本方法
广泛应用于高精度大地控制网、精密工程测量、地球动 力学、地震监测网和导弹和火箭等外弹道测量方面。
动态定位
至少一台接收机处于运动状态,确定各观测时刻运动中 的接收机的绝对或相对位置关系。
GPS系统的定位过程可简述为如下步骤: 跟踪、选择卫星、接收选定卫星的信号。 解读、解算出卫星。 测量得到卫星和用户之间的相对位置。 解算得到用户的最可信赖位置。
“交会法” 定位
已知一颗卫星的位置和接收器到它的距离,就可以确定接收器在一个球面上。 已知两颗卫星的位置和接收器到它们的距离,就可以确定接收器在一个环上。 如果知道三颗卫星的位置和接收器到它们的距离,通常可以确定接收器一定
对于非特需用户, 采用Z 跟踪技术进行PRN 相关处理的积分 时间很短, 导致测量精度降低, 对于其他方式, 由于利用W 码 的近似信息和增加处理环节
导致伪距测量结果的误差增大
原来的高精度P 码在最终的伪距测量结果中并不是总能得到保证
虽然是采用同样的P 码, 由于测量方式和过程不同, 非特需 用户得到的P 码伪距精度低于特需用户的相应结果。
近来基本区分方法
静态:
接收机天线在测量期间静止不动。 测量的参数在测量期间是不随时间变化的。 目的是测量点位的坐标。

gps测量的原理

gps测量的原理

gps测量的原理
GPS(Global Positioning System)是一种通过卫星信号和接收器
来测量和确定地理位置的技术。

GPS系统由全球范围内的一
组卫星组成,它们绕地球轨道运行,并通过无线电信号传输时间和位置信息。

GPS测量的原理是基于卫星定位和三角测量原理。

当接收器
接收到至少四颗卫星发出的信号后,它会使用卫星信号传输的时间信息来计算每颗卫星与接收器之间的距离。

通过同时测量多颗卫星与接收器之间的距离,可以确定接收器的精确位置。

具体来说,GPS接收器会接收多颗卫星发出的信号,信号中
包含卫星的识别码和发射时间等信息。

接收器会记录下信号接收时间和卫星的发射时间,然后计算信号传播的时间差。

由于光速是已知的,可以通过时间差乘以光速来计算信号传播的距离。

然后,接收器会将测得的多个卫星与接收器之间的距离与卫星的位置信息结合起来,使用三角测量方法来确定接收器的位置。

三角测量原理是利用三个已知的点(即卫星的位置)与这些点到未知位置(接收器位置)的距离来计算未知位置。

通过多次三角测量,可以提高测量的精度和确定性。

值得注意的是,由于卫星位置的精确度以及信号传播的误差等因素的影响,GPS测量的精度会受到一定的限制。

然而,通
过采用多个卫星进行测量并使用各种校正技术,可以提高
GPS测量的准确性。

GPS_百度百科

GPS_百度百科

GPS_百度百科一、GPS的基本概念和原理GPS,全称为全球定位系统(Global Positioning System),是一种基于卫星导航系统的定位技术。

它由一系列的卫星、地面控制站和用户设备组成,能够准确测量地球上任意点的位置坐标,并提供导航、定位等功能。

GPS的原理主要基于三个方面:卫星发射的信号、接收器接收的信号和测量时间。

首先,GPS系统中有24颗卫星(包括备用卫星),它们通过人造卫星轨道在地球上的分布。

这些卫星以恒定速度绕地球旋转,每颗卫星每天都会固定几次跟踪站的位置,并通过无线电信号发送卫星的位置信息。

其次,GPS接收器位于地面或者其他移动设备中,用来接收卫星发射的信号。

接收器会接收到至少四颗卫星的信号,并通过测量信号的传播时间来计算接收器到每颗卫星的距离。

通过将这些距离进行三角测量,GPS接收器能够确定接收器所在的位置。

最后,GPS接收器需要测量时间来确定信号传播的速度,并精确计算出定位信息。

GPS接收器内置一个高精度的原子钟,用来测量信号传播的时间。

接收器通过比较卫星发射信号的时间和它接收到信号的时间差来计算信号的传播时间,从而得出定位信息。

二、GPS的应用领域GPS的应用广泛,涵盖了几乎所有与位置有关的领域。

下面简要介绍几个主要的GPS应用领域:1.车辆导航和交通管理:GPS可以实时导航汽车、飞机等交通工具,提供最佳路线和交通信息,并帮助交通管理部门监控交通流量和疏导交通。

2.航海和航空:GPS已经成为航海和航空领域的重要工具,可用于船舶和飞机的导航定位、航线规划等。

3.军事应用:GPS最初是作为军事导航系统而研发的,现在仍广泛应用于军事领域,用于战术导航、目标定位、军事通信等。

4.地质勘探和测绘:GPS能够提供高精度的地球表面位置坐标,因此在地质勘探、测绘和地质灾害预警等方面有重要应用。

5.环境监测和气象预测:GPS可以用于监测大气湿度、气压和大气延迟等数据,从而提供准确的气象预测和环境监测。

GPS测量基本原理

GPS测量基本原理

1> 概述测量学中有测距交会确定点位的方法。

与其相似,无线电导航定位系统、卫星激光测距定位系统,其定位原理也是利用测距交会的原理定位。

就无线电导航定位来说,设想在地面上有三个无线电发射台,其坐标为已知,用户接收机在某一时刻采用无线电测距的方法分别测得了接收机至三个发射台的距离d1,d2,d3。

只需以三个发射台为球心,以d1,d2,d3为半径作出三个定位球面,即可交会出用户接收机的空间位置。

如果只有两个无线电发射台的话,则可根据用户接收机的概略位置交会出接收机的平面位置。

这种无线电导航定位系统是迄今为止仍在使用的飞机船舶的的中导航定位方法。

近代卫星大地测量中的卫星激光测距定位也是应用了测距交会定位的原理和方法。

虽然用于测距的卫星(表面安装有激光反射镜)是在不停的运动中,但总可以利用固定于地面上三个已知点上的卫星激光测距仪同时测定某一时刻至卫星的距离d1,d2,d3,应用测距交会的原理便可确定该时刻卫星的空间位置。

如此,可以确定三可以上卫星的空间位置。

如果第四个地面点上(坐标未知)也有一台卫星测距仪同时参与了测定改点到三颗卫星的空间距离,则利用所测定的三个空间距离可交会出该地面点的空间位置。

将无线电信号发射台从地面搬到卫星上,组成一颗卫星导航定位系统,应用无线电测距交会的原理,便可利用三个以上地面已知点(控制站)交会处卫星的位置,反之利用三颗以上的卫星的已知空间位置又可交会出地面未知点(用户接收机)的位置。

这便是GPS卫星定位的基本原理。

GPS卫星发射测距信号和导航电文,导航电文中含有卫星的位置信息。

用户用GPS接收机在某一时刻同时接收三个以上的GPS卫星信号,测量出测站点(接收机天线中心)P至三颗以上GPS卫星的距离并解算出该时刻GPS卫星的空间位置坐标,据此利用距离交会法解算出测站P的位置坐标,如下图所示,设在时刻t i在在测站P用GPS接收机同时测出P点至三颗GPS卫星的距离ρ1,ρ2,ρ3,通过GPS电文解释出该时刻三颗GPS卫星的三维坐标分别为(Xi,Yi,Zi),j=1,2,3。

gps测量基本原理

gps测量基本原理

gps测量基本原理
GPS测量基本原理是通过使用全球定位系统(GPS)技术来确定一个接收器的位置。

GPS系统由一组卫星、地面控制站和
用户接收器组成。

首先,GPS系统中的卫星通过发送信号来广播自己的位置和
时间信息。

这些信号到达地面上的接收器,接收器通过测量信号的传播时间来计算卫星与其之间的距离。

接收器同时接收并处理至少四个卫星的信号,然后使用三角测量原理来确定自身的位置。

通过比较接收器与卫星之间的距离,可以确定接收器与每个卫星之间的球面上的交点。

多个卫星的交点交叉在一起,确定了接收器的位置。

为了提高测量精度,GPS系统还使用了精确的时钟和差分
GPS技术。

精确时钟对于精确测量信号的传播时间至关重要。

差分GPS技术使用附近的基准站的位置信息来纠正接收器位
置的误差,从而提高测量的准确度。

总结来说,GPS测量基本原理是通过测量接收器与卫星之间
的距离来确定接收器的位置。

这是通过接收卫星的信号,计算信号传播时间并使用三角测量原理来实现的。

同时,精确时钟和差分GPS技术也是提高测量精度的重要因素。

全球卫星定位系统的原理

全球卫星定位系统的原理

全球卫星定位系统的原理一、概述全球卫星定位系统(GPS,GlobalPositioningSystem)是由美国国防部开发的一种全天候、全球性的卫星导航系统。

该系统利用人造卫星广播位置信息,用户设备通过接收卫星信号,计算出自身在地球上的位置。

GPS系统广泛应用于航空、航海、车辆导航、地震监测、地形测量等领域。

二、工作原理1.卫星定位原理GPS系统由24颗卫星组成,均匀分布在地球的六个轨道上(轨道高度约20000公里)。

用户设备通过接收至少三颗卫星的信号,来确定自身的位置。

卫星信号包括卫星的位置信息(纬度、经度、高度)和时钟信息。

2.伪距测量用户设备通过测量卫星信号的传输时间,计算出与卫星的距离,称为伪距。

伪距测量涉及到多边差分算法,以提高测量精度。

3.坐标系GPS系统使用WGS84坐标系,这是一种全球性的地理坐标系,具有固定的椭球参数。

用户设备可以根据接收到的卫星位置和伪距测量结果,计算出自身的纬度、经度和高度。

三、应用领域1.导航与定位GPS系统广泛应用于车辆导航、移动设备定位、户外活动定位等场景。

通过接收卫星信号,用户可以获得自身的位置信息,并实现路径规划、导航等功能。

2.农业与土地资源调查GPS系统可用于农业领域的土地资源调查、农田管理等。

通过GPS 定位,可以实现精准播种、施肥、灌溉等作业。

3.地震监测与应急救援GPS系统可用于地震监测和应急救援。

在地震发生后,GPS系统可以用于确定地震位置、受灾程度等信息。

同时,救援队伍可以利用GPS 系统进行快速定位和救援。

4.地形测量与城市规划GPS系统可用于地形测量和城市规划。

通过接收卫星信号,可以获取地形的三维信息,为城市规划和土地资源开发提供数据支持。

四、结论全球卫星定位系统是一种高效、精确的导航和定位工具,广泛应用于各个领域。

了解GPS系统的原理和应用,对于更好地发挥GPS系统的优势具有重要意义。

随着技术的不断进步,GPS系统的应用场景也将不断拓展,为人类生活带来更多便利。

gps 测量 原理

gps 测量 原理

gps 测量原理
GPS测量原理是基于卫星信号的接收和计算。

基本原理如下:
1. 卫星发射信号:GPS系统由全球一定数量的卫星组成,它
们以非常准确的时间间隔向地面发射无线电信号。

2. 接收器接收信号:GPS接收器接收到卫星发射的信号。


收器内部有一块接收天线用来接收信号,并将信号送入接收器电路。

3. 测量信号延迟时间:接收器通过测量信号从卫星发射到接收器的时间差,计算出信号所经过的距离。

信号的传播速度为光速,所以信号延迟时间可以转化为距离。

4. 信号三角定位:接收器至少接收到3颗卫星信号后,可以通过三角定位的方法计算出自身的位置。

这是因为每颗卫星都处于已知的轨道上,接收器通过计算与每颗卫星的距离,得到三个距离值,再通过三角计算得到准确的位置。

5. 改善精度:接收器接收到的卫星信号可能会受到空气湿度、大气延迟、接收器钟差等因素的影响,会导致测量结果不够准确。

为了提高定位精度,GPS测量还会使用一些校正方法,
如差分GPS和载波相位测量等。

总的来说,GPS测量原理是通过接收卫星发射的信号,测量
信号延迟时间并利用三角定位原理计算出位置坐标。

同时还需进行额外的校正以提高精度。

GPS定位原理及介绍

GPS定位原理及介绍

GPS定位原理及介绍GPS(Global Positioning System,全球定位系统)是一种利用人造卫星进行导航和定位的技术。

它由多颗卫星和地面控制站组成,可以提供全球范围内的三维定位服务。

GPS的原理是基于三角定位原理。

GPS接收器接收到来自多颗卫星的信号,并测量信号的传播时间来计算距离。

通过同时接收多颗卫星的信号,接收器可以利用三角定位原理计算出自己的位置。

GPS系统主要由三部分组成:卫星系统、地面控制站和用户接收器。

卫星系统是GPS系统的核心部分,由24颗运行在中轨道上的卫星组成。

这些卫星以几乎相同的轨道和速度运行,并在全球范围内分布,以确保至少有四颗卫星同时可见。

地面控制站用于监控卫星的运行状态和轨道参数,并传输相关数据给卫星。

用户接收器是GPS系统的终端,用于接收卫星信号并进行定位计算。

GPS定位的过程包括信号传播延迟补偿、距离计算、定位计算和坐标转换。

首先,接收器需要对接收到的卫星信号进行补偿,以消除信号传播过程中的延迟,得到准确的传播时间。

接下来,通过测量接收到的卫星信号的传播时间,可以计算出接收器与卫星之间的距离。

通过同时测量多颗卫星的距离,可以利用三角定位原理计算出接收器的二维位置。

最后,通过测量接收到的卫星信号的相位差,可以计算出接收器与卫星之间的高度差,从而得到接收器的三维位置。

GPS定位具有精度高、全球覆盖、实时性好等特点,已广泛应用于航空航天、军事、交通、测绘、导航、地质勘探等领域。

在航空航天领域,GPS技术可以用于导航系统、卫星轨道确定、导弹制导、飞行控制等方面,为飞行员提供准确的定位和导航信息。

在军事领域,GPS技术可以用于士兵定位、导弹导航、军舰航行等方面,提升军队的作战能力。

在交通运输领域,GPS技术可以用于车辆导航、交通监控、路况预测等方面,提供准确的导航服务和交通管理信息。

在测绘领域,GPS技术可以用于地图制作、地质勘探、土地测量等方面,提高测绘精度和效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1> 概述测量学中有测距交会确定点位的方法。

与其相似,无线电导航定位系统、卫星激光测距定位系统,其定位原理也是利用测距交会的原理定位。

就无线电导航定位来说,设想在地面上有三个无线电发射台,其坐标为已知,用户接收机在某一时刻采用无线电测距的方法分别测得了接收机至三个发射台的距离d1,d2,d3。

只需以三个发射台为球心,以d1,d2,d3为半径作出三个定位球面,即可交会出用户接收机的空间位置。

如果只有两个无线电发射台的话,则可根据用户接收机的概略位置交会出接收机的平面位置。

这种无线电导航定位系统是迄今为止仍在使用的飞机船舶的的中导航定位方法。

近代卫星大地测量中的卫星激光测距定位也是应用了测距交会定位的原理和方法。

虽然用于测距的卫星(表面安装有激光反射镜)是在不停的运动中,但总可以利用固定于地面上三个已知点上的卫星激光测距仪同时测定某一时刻至卫星的距离d1,d2,d3,应用测距交会的原理便可确定该时刻卫星的空间位置。

如此,可以确定三可以上卫星的空间位置。

如果第四个地面点上(坐标未知)也有一台卫星测距仪同时参与了测定改点到三颗卫星的空间距离,则利用所测定的三个空间距离可交会出该地面点的空间位置。

将无线电信号发射台从地面搬到卫星上,组成一颗卫星导航定位系统,应用无线电测距交会的原理,便可利用三个以上地面已知点(控制站)交会处卫星的位置,反之利用三颗以上的卫星的已知空间位置又可交会出地面未知点(用户接收机)的位置。

这便是GPS卫星定位的基本原理。

GPS卫星发射测距信号和导航电文,导航电文中含有卫星的位置信息。

用户用GPS接收机在某一时刻同时接收三个以上的GPS卫星信号,测量出测站点(接收机天线中心)P至三颗以上GPS卫星的距离并解算出该时刻GPS卫星的空间位置坐标,据此利用距离交会法解算出测站P的位置坐标,如下图所示,设在时刻t i在在测站P用GPS接收机同时测出P点至三颗GPS卫星的距离ρ1,ρ2,ρ3,通过GPS电文解释出该时刻三颗GPS卫星的三维坐标分别为(Xi,Yi,Zi),j=1,2,3。

用距离交会的方法求解出P点的三维坐标(X,Y,Z)的观测方程为121122222232332X X Y Y ()X X Y Y ()X X Y Y ()Z Z Z Z Z Z =-++-=-++-=-++-221222223ρ()(-)ρ()(-)ρ()(-)在GPS定位中,GPS卫星是高速运动的卫星,其坐标随时间在快速变化着,需要实时地由GPS卫星信号测量测站至卫星之间的距离,实时地由卫星的导航电文解算出卫星的坐标值,并标定测站点的定位,依据测距的原理,其定位原理与方法主要由伪距法定位,载波相位测量定位以及差分GPS定位等,对于待定点来说,根据其运动状态可以将GPS定位分为静态定位和动态定位。

静态定位指的是对于固定不动的待定点,将GPS接收机安置于其上,观测数分钟乃至更长的时间,以确定该点的三维坐标,又叫绝对定位,若以两台GPS接收机分别置于两个不同的固定不动的待定点上,则通过一定时间的观测,可以确定两个待定点之间的相对位置,又叫相对定位。

而动态定位则至少有一台GPS接收机处于运动状态,测定的是各观测时刻(观测历元)运动中的接收机的点位(绝对点位或相对定位)利用接收到的卫星信号(测距码)或载波相位,均可进行静态定位。

实际应用中,为了减弱卫星的轨道误差、卫星钟差、接收机钟差以及电离层和对流层的折射误差的影响常采用载波相位观测值的各种线性组合(即差分值)作为观测值,获得两点之间高精度的GPS 基线向量(即坐标差)。

2> 伪距测量伪距法定位是由GPS 接收机在某一时刻测出得到四颗以上GPS 卫星的伪距以及已知点的卫星位置,采用距离交会的方法求定接收机天线所在点的三维坐标。

所测伪距就是由卫星发射的测距码信号到达接收机的传播时间乘以光速所得的量测距离。

由于卫星钟、接收机钟的误差以及无线电信号经过电离层和对流层中的延迟,实际测出的距离ρ’与卫星到接收机的几何距离有一定的差距,因此一般称量测出的距离为伪距。

用C/A 码进行测量的伪距为C/A 码伪距,用P 码测量出来的伪距为P 码伪距。

伪距法定位虽然一次定位精度不高(P 码定位误差约为10cm,C/A 码定位误差为20~30m),但因其有定位速度快,且无多值性问题等优点,仍然是GPS定位系统进行导航的最基本的方法。

同时,所测伪距又可以作为载波相位测量中解决整波数不确定性问题(模糊度)的辅助资料。

因此,有必要了解伪距测量以及伪距法定位的基本原理。

2.1 伪距测量GPS卫星依据自己的时钟发出某一结构的测距码,该测距码经过τ时间的传播后的到达接收机。

接收机在自己的时钟控制下产生一组结构完全相同的测距码——复制码,并通过时延器使其延迟时间τ’将这两组测距码进行相关处理,若自相关系数R(τ’)≠1,则继续调整延迟时间τ’直至自相关系数R(τ’)=1为止。

使接收机所产生的复制码与接收到的GPS卫星测距码完全对齐,那么其延迟时间τ’即为GPS卫星信号从卫星传播到接收机所用的时间τ。

GPS卫星信号的传播时一种无线电信号的传播,其速度等于光速c,卫星至接收机的距离即为τ’与c的乘积。

为什么采用码相关技术来确定伪距呢?GPS卫星发射出的测距码是按照某一规律排列的,在一个周期内每个码对应某一特定的时间。

应该说识别出每一个码的形状特征,即用每个码的某一标志推算出时延值τ进行伪距测量。

但实际上每个码在产生过程中都带有随机误差,并且信号经过长距离传播后也会产生在自相关系数R(τ’)=MAX的情况下来确定信号的传播时间τ。

这样就排除了随机误差的影响,实质上就是采用了多个码特征来确定τ的方法。

由于测距码和复制码在产生的过程中均不可避免地带有误差,而且测距码在传播过程中还会由于各种外界干扰而产生形变,因而自相关系数往往不可避免地带有误差,而其自相关系数不可能达到“1”,只能在自相关系数为最大的情况下来确定伪距,也就是本地码和接收码基本上对齐了。

这样可以最大幅度地消除各种随机误差的影响,以达到提高精度的目的。

测定自相关系数R(τ’)的工作由接收机锁相环路中的相关器和积分器来完成。

如下图由卫星钟控制的测距码α(t)在GPS时间t时刻自卫星天线发出,经传播延迟τ到达GPS接收机,接收机所接收到的信号为α(t-τ)。

由接收机钟控制的本地码发生器产生一个与卫星发播相同的本地码α’(t+Δt),Δt 为接收机钟与卫星钟的钟差。

经过码移位电路将本地码延迟τ’,送至相关器与所接收到的卫星发播信号进行相关运算,经过积分器后,即可得到自相关系数R (τ’)输出:T1()(dt T R t t t τ'=α-τ)α(+∆-τ')⎰伪距测量原理图调整本地码延迟τ’,可使相关输出达到最大值max ()()R t R t t t t ττ=⎧⎪⎨'-=+∆-⎪⎩(1)可得 t nT c t n ττρρλ⎧'=+∆+⎨'=+∆+⎩ (2)式中:ρ’为伪距测量值,ρ为卫星到接收机的几何距离,T 为测距码的周期,λ=cT 为相应测距码的波长,n=0,1,2,3……是整数值,c 为信号传播速度。

式(2)中即为伪距测量的基本方程。

式中n λ称为测距模糊度。

如果已知待测距离小于测距码的波长(如用P 码测距),则n=0,具有ρ’=ρ+c Δt (3)称为无模糊度测距。

由式(3)可知,伪距观测值ρ’的待测距离与钟差等效距离之和。

钟差Δt 包含接收机钟差k δt 与卫星钟差j δt ,即jk t=-δt +δt ∆,若考虑到信号传播经电离层和大气对流层的延迟,则(3)式改写为:j 12k c t c t ρρδρδρδδ'=+++- (4)(4)式即为所测伪距与真正的几何距离之间的关系式。

式中1δρ,2δρ分别为电离层和对流层的改正项。

k δt 的下标表示接收机号,j δt 的上标j 表示卫星号。

2.2 伪距定位观测方程从(4)式中可以看出,电离层和对流层改正可以按照一定的模型进行计算,卫星钟差 jδt 可以自导航电文中取得。

而几何距离ρ与卫星坐标(X ,Y ,Z )与接收机坐标(X ,Y ,Z )之间有如下关系: 2222()()()s s s X X Y Y Z Z ρ=-+-+- (5)式中,卫星坐标可根据导航电文求得,所以式中只包含接收机坐标三个未知数。

如果将接收机钟差k δt 也作为未知数,则共有四个未知数,接收机必须同时至少测定四颗卫星的距离才能解算出接收机的三维坐标值。

为此,将(5)式代入(4)式,有:1/2222s (X )(Y )()jj j s s kX Y Z Z c t δ⎡⎤-+-+--⎣⎦12j j j j c t ρδρδρδ'=++- (6)式中,j=1,2,3……。

式(6)即为伪距定位的观测方程组。

3> 载波相位测量利用测距码进行伪距测量是全球定位系统的基本测距方法。

然而由于测距码的码元长度较大,对于一些高精度应用来讲其测距精度还显得过低无法满足需要。

如果观测精度均取至测距码波长的百分之一,则伪距测量对P 码而言量测精度为30cm ,对C/A 码而言为3m 左右。

而如果把载波作为量测信号,由于载波的波长短,1L λ=19cm ,2L λ=24cm ,所以就可以达到很高的精度。

目前的大地型接收机的载波相位测量精度一般为1~2mm ,有的精度更高。

但载波信号是一种周期性的正弦信号,而相位相关有只能测定不足一个波长的部分,因而存在着整周期数不确定的问题,使解算过程变得比较复杂。

在GPS 信号中由于已用相位调整的方法在载波上调制了测距码和导航电文,因而接收到的载波的相位一不在连续,所以在进行载波相位测量以前,首先要进行解调工作,设法将调制在载波上的测距码和卫星电文去掉,重新获得载波,这一工作称为重建载波,重建载波一般可以采用两种方法,一种是码相关法,另一种是平方法。

采用前者,用户可同时提取测距信号和卫星电文,但用户必须知道测距码的结构;采用后者,用户无须知道测距码的结构,但只能获得载波信号而无法获得测距码和导航电文。

3.1 载波相位测距原理载波相位测量的观测量是GPS 接收机所接收的卫星载波信号,与接收机本振参考信号的相位差相位差,以jk ()k t ψ表示k 接收机在接收机钟面时刻k t 时所接收到的j 卫星载波信号的相位值,k ()k t ψ 表示k 接收机在面钟时刻k t 时所产生的本地参考信号的相位值,则k 接收机在接收机钟面时刻k t 时观测j 卫星所取得的相位观测可写为k ()()()j j k k k k k t t t ψψψ=- (7)通常的相位或者相位差测量只是测出一周以内的相位值。

相关文档
最新文档