知识讲解 二项式定理(理)(基础)110
二项定理知识点总结

二项定理知识点总结一、二项式定理的概念二项式定理是代数的一个重要定理,它描述了任意一个实数非负指数幂的二项式的展开式。
在数学中,二项式定理是一种在代数表达式中展开和化简幂次和的数学技巧,同时也是计算组合数及二项式系数的重要方法。
(一)二项式定理的表述在数学中,二项式定理的表述如下:$$(a+b)^n = C_n^0 a^n b^0 + C_n^1 a^{n-1} b^{1} + C_n^2 a^{n-2} b^{2} + ... + C_n^k a^{n-k} b^{k} + ... + C_n^n a^0 b^n $$其中,$C_n^k$是组合数,表示从n个不同元素中取出k个元素的组合数。
它的计算公式为:$$C_n^k = \frac{n!}{k!(n-k)!}$$$C_n^0$表示n个元素中选0个元素的组合数,$C_n^1$表示n个元素中选1个元素的组合数,依此类推,直到$C_n^n$表示n个元素中选n个元素的组合数。
(二)二项式定理的推导与应用二项式定理的推导主要基于组合数学理论。
我们可以使用数学归纳法来证明二项式定理,在证明的过程中需要注意组合数的性质,以及二项式定理的递推关系。
而二项式定理的应用可以涵盖整数幂次和的展开,二项式系数的计算,二项式展开式的应用等。
二、二项定理的具体应用二项式定理在数学中有许多具体的应用,这里将介绍其中一些常见的应用。
(一)整数幂次和的展开二项定理可以用来展开整数幂次和,例如:$$(a+b)^2 = a^2 + 2ab + b^2$$$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$通过二项式定理,我们可以方便地将整数幂次和展开为多项式的形式。
(二)二项式系数的计算二项式定理可以用来计算二项式系数,即展开式中各项的系数。
例如,在展开$(a+b)^n$的过程中,每一项的系数为$C_n^k$,通过组合数的计算公式可以轻松地得到这些系数。
高中数学二项式定理知识点总结

高中数学二项式定理知识点总结二项式定理是高中数学中的重要知识点,它是代数中的一个基本定理,也是数学中的一个重要定理。
二项式定理在数学中有着广泛的应用,不仅在数学理论中有着重要的地位,而且在实际问题中也有着重要的应用价值。
本文将对高中数学二项式定理的知识点进行总结,希望能够帮助大家更好地理解和掌握这一重要的数学知识点。
一、二项式定理的基本概念。
二项式定理是指对于任意实数a、b和非负整数n,都有以下公式成立:\((a+b)^n = C_n^0a^n b^0 + C_n^1a^{n-1} b^1 + C_n^2a^{n-2} b^2 + ... +C_n^na^0 b^n\)。
其中,\(C_n^k\)表示组合数,即从n个不同元素中取出k个元素的组合数,它的计算公式是:\(C_n^k = \frac{n!}{k!(n-k)!}\)。
二项式定理的基本概念就是利用组合数的性质,将二项式展开成多项式的形式,从而方便进行计算和运用。
二、二项式定理的应用。
1. 多项式展开。
二项式定理可以方便地将一个二项式展开成多项式的形式,从而简化计算。
例如,对于(a+b)²和(a+b)³,可以利用二项式定理将其展开成多项式的形式,从而方便进行计算。
2. 组合数的计算。
二项式定理中的组合数\(C_n^k\)在实际问题中有着重要的应用,例如在概率论、统计学等领域中,经常需要计算从n个不同元素中取出k个元素的组合数,而二项式定理提供了一种方便快捷的计算方法。
3. 概率计算。
二项式定理在概率计算中有着重要的应用,例如在二项分布中,就涉及到了二项式定理的应用。
通过二项式定理,可以方便地计算出在n次独立重复试验中成功次数为k的概率。
三、二项式定理的推广。
除了普通的二项式定理外,还有二项式定理的推广形式,如多项式定理、负指数幂的二项式定理等。
这些推广形式在数学理论和实际问题中都有着重要的应用价值,可以进一步丰富和拓展二项式定理的应用领域。
(完整版)二项式定理知识点及典型题型总结

二项式定理一、基本知识点1、二项式定理:)()(1110*--∈+++++=+N n b C b a C b a C a C b a n n n r r n r n n n n nn 2、几个基本概念(1)二项展开式:右边的多项式叫做n b a )(+的二项展开式 (2)项数:二项展开式中共有1+n 项(3)二项式系数:),,2,1,0(n r C rn=叫做二项展开式中第1+r 项的二项式系数 (4)通项:展开式的第1+r 项,即),,1,0(1n r b a C T rr n r nr ==-+ 3、展开式的特点(1)系数 都是组合数,依次为C 1n ,C 2n ,C nn ,…,C nn(2)指数的特点①a 的指数 由n 0( 降幂)。
②b 的指数由0 n (升幂)。
③a 和b 的指数和为n 。
(3)展开式是一个恒等式,a ,b 可取任意的复数,n 为任意的自然数。
4、二项式系数的性质: (1)对称性:在二项展开式中,与首末两端等距离的任意两项的二项式系数相等.即 (2)增减性与最值二项式系数先增后减且在中间取得最大值当n 是偶数时,中间一项取得最大值2n nC当n 是奇数时,中间两项相等且同时取得最大值21-n nC=21+n nC(3)二项式系数的和:奇数项的二项式系数的和等于偶数项的二项式系数和.即mn n m n C C -=nnn k n n n n C C C C C 2210=+⋅⋅⋅++⋅⋅⋅+++∴0213n-1n n n n C +C +=C +C +=2二项式定理的常见题型一、求二项展开式1.“n b a )(+”型的展开式 例1.求4)13(xx +的展开式;a2. “n b a )(-”型的展开式 例2.求4)13(xx -的展开式;3.二项式展开式的“逆用”例3.计算c C C C nn n n n n n 3)1( (279313)21-++-+-;二、通项公式的应用 1.确定二项式中的有关元素例4.已知9)2(x x a -的展开式中3x 的系数为49,常数a 的值为2.确定二项展开式的常数项 例5.103)1(xx -展开式中的常数项是3.求单一二项式指定幂的系数 例6. 92)21(xx -展开式中9x 的系数是三、求几个二项式的和(积)的展开式中的条件项的系数例7.5432)1()1()1()1()1(-+---+---x x x x x 的展开式中,2x 的系数等于例8.72)2)(1-+x x (的展开式中,3x 项的系数是四、利用二项式定理的性质解题 1. 求中间项 例9.求(103)1xx -的展开式的中间项;。
二项式定理百科

二项式定理百科二项式定理(Binomial theorem)是数学中的一个重要定理,它描述了如何展开一个二项式的幂。
这个定理在代数、组合数学、概率论等领域都有广泛应用。
本文将详细介绍二项式定理及其应用。
一、二项式定理的定义二项式定理是指对于任意实数a和b以及非负整数n,都有以下等式成立:$$(a+b)^n=\sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k$$其中,$\binom{n}{k}$表示组合数,计算公式为$$\binom{n}{k}=\frac{n!}{k!(n-k)!}$$式中的$\binom{n}{k}$可以读作n选择k,它表示从n个元素中选择k个元素的组合数。
二项式系数$\binom{n}{k}$决定了二项式展开后各项的系数。
二、二项式定理的展开式通过二项式定理,可以将一个二项式的幂展开成多个项的和。
例如,对于$(a+b)^3$,应用二项式定理,展开式为:$$(a+b)^3=\binom{3}{0}a^3b^0+\binom{3}{1}a^2b^1+\binom{3}{2}a ^1b^2+\binom{3}{3}a^0b^3$$化简得:$$a^3+3a^2b+3ab^2+b^3$$可以看出,展开后的每一项的指数和为3,且系数由组合数$\binom{3}{k}$确定。
三、二项式定理的应用1. 代数应用二项式定理常用于代数运算中,特别是求解多项式的展开式和系数。
通过二项式定理,可以快速计算高次幂的二项式展开式,简化复杂计算过程。
同时,二项式定理也可用于证明其他代数恒等式。
2. 组合数学组合数学研究的是离散结构和计数问题。
二项式定理的组合数$\binom{n}{k}$用于计算从n个元素中选择k个元素的方法数。
这对于排列组合、概率计算等问题都具有重要意义。
3. 概率论在概率论中,二项分布是一种重要的离散概率分布,它描述了一系列独立重复实验中成功次数的概率分布。
二项式定理可以用于计算二项分布的概率,判断在一定概率下,事件发生k次的概率。
二项式定理

二项式定理二项式定理是高中数学的重要内容之一、它是一个基本的公式,用来展开二项式的幂次。
在代数学中有广泛应用,并在组合数学、高等数学等领域中发挥了重要作用。
本文将介绍二项式定理的概念、基本公式以及一些常见的应用。
一、二项式定理的概念和基本公式二项式定理的概念:二项式定理是用来展开二项式的幂次的公式。
简而言之,就是把形如(a+b)^n的表达式展开成多项式的形式。
基本公式:根据二项式定理,我们可以得到二项式的展开式。
对于(a+b)^n,其中a和b为任意实数,n为非负整数,根据二项式定理,展开式为:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+C(n,2)a^(n-2)b^2+...+C(n,k)a^(n-k)b^k+...+C(n,n)b^n其中,C(n,k)表示组合数,即从n个元素中选择k个元素的组合数。
C(n,k)可以用组合数公式计算得到:C(n,k)=n!/(k!(n-k)!)C(n,k)即为"n choose k",读作"n中取k"。
二、二项式定理的应用1.二项式定理的应用于计算:二项式定理可以用于计算各种二项式的展开式,特别是高次幂的情况。
通过展开式,我们可以计算出结果,以及每一项的系数。
例如,我们可以用二项式定理来计算(a+b)^4的展开式为:(a+b)^4 = C(4,0)a^4 + C(4,1)a^3b + C(4,2)a^2b^2 + C(4,3)ab^3 + C(4,4)b^4= a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^42.二项式定理的应用于排列组合问题:二项式定理在排列组合问题中也有广泛的应用。
对于排列组合问题,可以使用组合数来解决。
而组合数又可以使用二项式定理来计算。
例如,我们要从n个元素中选取k个元素,所有可能的方案数可以用组合数C(n,k)表示。
由于组合数可以用二项式定理来计算,我们可以直接得到结果。
知识讲解二项式定理(理)(基础)

x
∵
Tr
1
为有理项,∴
30
6
5r
Z
,
即 r 是 6 的倍数,又因为 0 r 15 ,所以 r =0,6,12
故展开式中的有理项为 T1 (1)0 C105 x5 x5 , T7 5005 , T13 420 x5 .
【总结升华】 使二项展开式的某一项为常数项,就是使这一项不含“变元”,一般采用令变元的指数为零的方法
如(a-b)n 的二项展开式的通项是Tr1 (1)r Cnr anrbr ,在这里对应项的二项式系数都是 Cnr ,但项的
系数是 (1)r Cnr ,可以看出,二项式系数与项的系数是不同的概念.
3. (a b c)n 展开式中 a pbqcr 的系数求法( p, q, r 0 的整数且 p q r n )
(4) a0 a2 a4
f (1) f (-1) 2
(5) a1 a3 a5
f (1) - f (-1) 2
3.利用二项式定理证明整除问题及余数的求法:
如:求证: 32n2 8n 9 能被 64 整除( n N * )
4.证明有关的不等式问题: 有些不等式,可应用二项式定理,结合放缩法证明,即把二项展开式中的某些正项适当删去(缩
……
……
……
上表叫做二项式系数的表, 也称杨辉三角(在欧洲,这个表叫做帕斯卡三角),反映了二项式系数的性 质。表中每行两端都是 1,而且除 1 以外的每一个数都等于它肩上的两个数的和。
用组合的思想方法理解(a+b)n 的展开式中 anrbr 的系数 Cnr 的意义:为了得到(a+b)n 展开式中 anrbr
n
N
*
),
知识讲解二项式定理(理)(基础)

二项式定理【学习目标】1.理解并掌握二项式定理,了解用计数原理证明二项式定理的法. 2.会用二项式定理解决与二项展开式有关的简单问题.【要点梳理】 要点一:二项式定理1.定义一般地,对于任意正整数n ,都有:nn n r r n r n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110)((*N n ∈),这个公式所表示的定理叫做二项式定理, 等号右边的多项式叫做n b a )(+的二项展开式。
式中的rn rr n C ab -做二项展开式的通项,用T r+1表示,即通项为展开式的第r+1项:1r n r rr nT C a b -+=, 其中的系数rn C (r=0,1,2,…,n )叫做二项式系数, 2.二项式(a+b)n的展开式的特点:(1)项数:共有n+1项,比二项式的次数大1;(2)二项式系数:第r+1项的二项式系数为rn C ,最大二项式系数项居中;(3)次数:各项的次数都等于二项式的幂指数n .字母a 降幂排列,次数由n 到0;字母b 升幂排列,次数从0到n ,每一项中,a ,b 次数和均为n ;3.两个常用的二项展开式:①011()(1)(1)n n n r r n r r n n nn n n n a b C a C a b C a b C b ---=-++-⋅++-⋅L L (*N n ∈) ②122(1)1n r r nn n n x C x C x C x x +=++++++L L要点二、二项展开式的通项公式公式特点:①它表示二项展开式的第r+1项,该项的二项式系数是rn C ; ②字母b 的次数和组合数的上标相同; ③a 与b 的次数之和为n 。
要点诠释:(1)二项式(a+b)n的二项展开式的第r+1项r n rr n C ab -和(b+a)n 的二项展开式的第r+1项r n r rn C b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换位置的.(2)通项是针对在(a+b)n 这个标准形式下而言的,如(a -b)n的二项展开式的通项是1(1)r r n r rr n T C a b -+=-(只需把-b 看成b 代入二项式定理)。
知识讲解 二项式定理(理)(基础)110

二项式定理【学习目标】1.理解并掌握二项式定理,了解用计数原理证明二项式定理的方法. 2.会用二项式定理解决与二项展开式有关的简单问题.【要点梳理】 要点一:二项式定理1.定义一般地,对于任意正整数n ,都有:nn n r r n r n n n n n n b C b a C b a C a C b a +++++=+-- 110)((*N n ∈),这个公式所表示的定理叫做二项式定理, 等号右边的多项式叫做n b a )(+的二项展开式。
式中的rn rr n C ab -做二项展开式的通项,用T r+1表示,即通项为展开式的第r+1项:1r n r rr nT C a b -+=, 其中的系数rn C (r=0,1,2,…,n )叫做二项式系数, 2.二项式(a+b)n 的展开式的特点:(1)项数:共有n+1项,比二项式的次数大1;(2)二项式系数:第r+1项的二项式系数为rn C ,最大二项式系数项居中;(3)次数:各项的次数都等于二项式的幂指数n .字母a 降幂排列,次数由n 到0;字母b 升幂排列,次数从0到n ,每一项中,a ,b 次数和均为n ;3.两个常用的二项展开式:①011()(1)(1)n n n r r n r r n n nn n n n a b C a C a b C a b C b ---=-++-⋅++-⋅(*N n ∈)②122(1)1n r r n n n n x C x C x C x x +=++++++要点二、二项展开式的通项公式公式特点:①它表示二项展开式的第r+1项,该项的二项式系数是rn C ; ②字母b 的次数和组合数的上标相同; ③a 与b 的次数之和为n 。
要点诠释:(1)二项式(a+b)n 的二项展开式的第r+1项r n rr n C ab -和(b+a)n 的二项展开式的第r+1项r n r rn C b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换位置的.(2)通项是针对在(a+b)n 这个标准形式下而言的,如(a -b)n 的二项展开式的通项是1(1)r r n r rr n T C a b -+=-(只需把-b 看成b 代入二项式定理)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项式定理【学习目标】1.理解并掌握二项式定理,了解用计数原理证明二项式定理的方法. 2.会用二项式定理解决与二项展开式有关的简单问题.【要点梳理】 要点一:二项式定理1.定义一般地,对于任意正整数n ,都有:nn n r r n r n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110)((*N n ∈),这个公式所表示的定理叫做二项式定理, 等号右边的多项式叫做n b a )(+的二项展开式。
式中的rn rr n C ab -做二项展开式的通项,用T r+1表示,即通项为展开式的第r+1项:1r n r rr nT C a b -+=, 其中的系数rn C (r=0,1,2,…,n )叫做二项式系数, 2.二项式(a+b)n 的展开式的特点:(1)项数:共有n+1项,比二项式的次数大1;(2)二项式系数:第r+1项的二项式系数为rn C ,最大二项式系数项居中;(3)次数:各项的次数都等于二项式的幂指数n .字母a 降幂排列,次数由n 到0;字母b 升幂排列,次数从0到n ,每一项中,a ,b 次数和均为n ;3.两个常用的二项展开式:①011()(1)(1)n n n r r n r r n n nn n n n a b C a C a b C a b C b ---=-++-⋅++-⋅L L (*N n ∈)②122(1)1n r r nn n n x C x C x C x x +=++++++L L要点二、二项展开式的通项公式公式特点:①它表示二项展开式的第r+1项,该项的二项式系数是rn C ; ②字母b 的次数和组合数的上标相同; ③a 与b 的次数之和为n 。
要点诠释:(1)二项式(a+b)n 的二项展开式的第r+1项r n rr n C ab -和(b+a)n 的二项展开式的第r+1项r n r rn C b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换位置的.(2)通项是针对在(a+b)n 这个标准形式下而言的,如(a -b)n 的二项展开式的通项是1(1)r r n r rr n T C a b -+=-(只需把-b 看成b 代入二项式定理)。
要点三:二项式系数及其性质1.杨辉三角和二项展开式的推导。
在我国南宋,数学家杨辉于1261年所著的《详解九章算法》如下表,可直观地看出二项式系数。
n b a )(+展开式中的二项式系数,当n 依次取1,2,3,…时,如下表所示:1)(b a +………………………………………1 1 2)(b a +……………………………………1 2 1 3)(b a +…………………………………1 3 3 14)(b a +………………………………1 4 6 4 1 5)(b a +……………………………1 5 10 10 5 1 6)(b a +…………………………1 6 15 20 15 6 1…… …… ……上表叫做二项式系数的表, 也称杨辉三角(在欧洲,这个表叫做帕斯卡三角),反映了二项式系数的性质。
表中每行两端都是1,而且除1以外的每一个数都等于它肩上的两个数的和。
用组合的思想方法理解(a+b)n 的展开式中n r r a b -的系数rn C 的意义:为了得到(a+b)n 展开式中n r r a b -的系数,可以考虑在()()()na b a b a b +++L 14444244443这n 个括号中取r 个b ,则这种取法种数为rn C ,即为n r r a b -的系数.2.()na b +的展开式中各项的二项式系数0n C 、1n C 、2n C …nn C 具有如下性质:①对称性:二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即rn n r n C C -=; ②增减性与最大值:二项式系数在前半部分逐渐增大,在后半部分逐渐减小,在中间取得最大值.其中,当n 为偶数时,二项展开式中间一项的二项式系数2n n C 最大;当n 为奇数时,二项展开式中间两项的二项式系数21-n n C ,21+n n C 相等,且最大.③各二项式系数之和为2n,即012342nn n n n nn n C C C C C C ++++++=L ;④二项展开式中各奇数项的二项式系数之和等于各偶数项的二项式系数之和,即15314202-=+++=+++n n n n n n nC C C C C C ΛΛ。
要点诠释:二项式系数与展开式的系数的区别:二项展开式中,第r+1项r r n r nb a C -的二项式系数是组合数rn C ,展开式的系数是单项式r r n r n b a C -的系数,二者不一定相等。
如(a -b)n 的二项展开式的通项是1(1)r r n r r r n T C a b -+=-,在这里对应项的二项式系数都是rn C ,但项的系数是(1)r rn C -,可以看出,二项式系数与项的系数是不同的概念.3.()na b c ++展开式中p q ra b c 的系数求法(,,0p q r ≥的整数且p q r n ++=)rq q r n q r n r n r r n r n n n c b aC C c b a C c b a c b a ----=+=++=++)(])[()( 如:10)(c b a ++展开式中含523c b a 的系数为!5!2!3!105527310⨯⨯=C C C要点诠释:三项或三项以上的展开式问题,把某两项结合为一项,利用二项式定理解决。
要点四:二项式定理的应用1.求展开式中的指定的项或特定项(或其系数).2.利用赋值法进行求有关系数和。
二项式定理表示一个恒等式,对于任意的a ,b ,该等式都成立。
利用赋值法(即通过对a 、b 取不同的特殊值)可解决与二项式系数有关的问题,注意取值要有利于问题的解决,可以取一个值或几个值,也可以取几组值,解决问题时要避免漏项等情况。
设2012()()n nn f x ax b a a x a x a x =+=++++L(1) 令x=0,则0(0)na fb ==(2)令x=1,则012(1)()nn a a a a f a b ++++==+L(3)令x=-1,则0123(1)(1)()n nn a a a a a f a b -+-+-=-=-+L(4)024(1)(-1)2f f a a a ++++=L(5)135(1)-(-1)2f f a a a +++=L3.利用二项式定理证明整除问题及余数的求法:如:求证:98322--+n n 能被64整除(*N n ∈)4.证明有关的不等式问题:有些不等式,可应用二项式定理,结合放缩法证明,即把二项展开式中的某些正项适当删去(缩小),或把某些负项删去(放大),使等式转化为不等式,然后再根据不等式的传递性进行证明。
①nx x n +>+1)1(;②22)1(1)1(x n n nx x n -++>+;(0>x ) 如:求证:n n)11(2+< 【典型例题】类型一、求二项展开式的特定项或特定项的系数例1. 求41(1)x+的二项式的展开式.【思路点拨】 按照二项式的展开式或按通项依次写出每一项,但要注意符号. 【解析】解一: 411233444411111(1)1()()()()C C C x x x x x +=++++23446411x x x x =++++. 解二:4444413123444111(1)()(1)()1x x C x C x C x x x x⎡⎤+=+=++++⎣⎦ 23446411x x x x=++++. 【总结升华】记准、记熟二项式(a+b)n 的展开式,是解答好与二项式定理有关问题的前提条件,对较复杂的二项式,有时先化简再展开会更简捷. 举一反三:【变式】求二项式52322x x ⎛⎫- ⎪⎝⎭的展开式.【答案】 (1)解法一:52322x x ⎛⎫- ⎪⎝⎭2305142332555522223333(2)(2)(2)(2)2222C x C x C x C x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭4545552233(2)22C x C x x ⎛⎫⎛⎫+-+- ⎪ ⎪⎝⎭⎝⎭52471018013540524332120832x x x x x x=-+-+- 解法二:5352103(43)2232x x x x -⎛⎫-= ⎪⎝⎭ 0351342332332343455555555101[(4)(4)(3)(4)(3)(4)(3)(4)(3)(3)]32C x C x C x C x C x C x =+-+-+-+-+- 1512963101(10243840576043201620243)32x x x x x x=-+-+- 52471018013540524332120832x x x x x x =-+-+-。
例2.(1)求7(12)x +的展开式的第四项的系数;(2)求91()x x-的展开式中3x 的系数及二项式系数【思路点拨】先根据已知条件求出二项式的指数n ,然后再求展开式中含x 的项.因为题中条件和求解部分都涉及指定项问题,故选用通项公式.【解析】(1)7(12)x +的展开式的第四项是333317(2)280T C x x +==,∴7(12)x +的展开式的第四项的系数是280.(2)∵91()x x-的展开式的通项是9921991()(1)r r r r r r r T C x C x x--+=-=-,∴923r -=,3r =,∴3x 的系数339(1)84C -=-,3x 的二项式系数3984C =.【总结升华】1.利用通项公式求给定项时避免出错的关键是弄清共有多少项,所求的是第几项,相应的r 是多少;2. 注意系数与二项式系数的区别;3. 在求解过程中要注意幂的运算公式的准确应用。
举一反三:【变式1】求5)2(b a +的展开式的第3项的二项式系数和系数; 【答案】10,80;2510C =2323235(2)80T C a b a b =⋅⋅=【变式2】求(x 3-22x)5的展开式中x 5的系数; 【答案】(1)T r +1=r r r r r rx C xx C 51552535)2()2()(---=-依题意15-5r =5,解得r =2 故(-2)2rC 5=40为所求x 5的系数例3.(1)(2x 2-x1)6的展开式中的常数项; (2)求153)1(xx -的展开式中的有理项.【思路点拨】常数项就是项的幂指数为0的项,有理项,就是通项中x 的指数为正整数的项,可以根据二项式定理的通项公式求。