【有关高中数学教学的】高中数学经典大题150道
高中数学经典高考难题集锦

《高中数学经典高考难题集锦》一、集合问题1. 已知集合A={x|x^25x+6=0},求集合A的元素。
解答思路:我们需要解方程x^25x+6=0,找出满足条件的x的值。
然后,将这些值组成集合A。
2. 已知集合A={x|x^25x+6=0},集合B={x|x^24x+3=0},求集合A∩B。
解答思路:我们需要解方程x^25x+6=0和x^24x+3=0,找出满足条件的x的值。
然后,找出同时属于集合A和集合B的元素,即求出集合A∩B。
3. 已知集合A={x|x^25x+6=0},集合B={x|x^24x+3=0},求集合A∪B。
解答思路:我们需要解方程x^25x+6=0和x^24x+3=0,找出满足条件的x的值。
然后,找出属于集合A或集合B的元素,即求出集合A∪B。
二、函数问题1. 已知函数f(x)=x^25x+6,求函数f(x)的零点。
解答思路:函数的零点即函数图像与x轴的交点,也就是使函数值为0的x的值。
因此,我们需要解方程x^25x+6=0,找出满足条件的x的值,这些值即为函数f(x)的零点。
2. 已知函数f(x)=x^25x+6,求函数f(x)的单调区间。
解答思路:函数的单调性是指函数在其定义域内是否单调递增或单调递减。
我们可以通过求函数的一阶导数f'(x),然后判断f'(x)的符号来确定函数的单调性。
当f'(x)>0时,函数单调递增;当f'(x)<0时,函数单调递减。
3. 已知函数f(x)=x^25x+6,求函数f(x)的极值。
解答思路:函数的极值是指函数在其定义域内的最大值或最小值。
我们可以通过求函数的一阶导数f'(x)和二阶导数f''(x),然后判断f'(x)和f''(x)的符号来确定函数的极值。
当f'(x)=0且f''(x)>0时,函数在该点取得极小值;当f'(x)=0且f''(x)<0时,函数在该点取得极大值。
(完整版)高中数学试题及答案

(完整版)高中数学试题及答案一、选择题1. 下列哪个数是实数?A. 2B. 3C. 4D. 52. 下列哪个图形是圆形?A. 正方形B. 长方形C. 三角形D. 圆形3. 下列哪个式子是等式?A. 2 + 3 = 5B. 2 + 3 = 6C. 2 + 3 = 7D. 2 + 3 = 84. 下列哪个图形是三角形?A. 正方形B. 长方形C. 三角形D. 圆形5. 下列哪个数是整数?B. 3.5C. 4.5D. 5.5二、填空题6. 2 + 3 = ________7. 3 × 4 = ________8. 5 2 = ________9. 6 ÷ 2 = ________10. 7 + 8 = ________三、解答题11. 解方程:2x + 3 = 712. 解方程:3x 2 = 513. 解方程:4x + 5 = 914. 解方程:5x 6 = 815. 解方程:6x + 7 = 10答案:一、选择题1. A2. D3. A4. C5. D二、填空题7. 128. 39. 310. 15三、解答题11. x = 212. x = 313. x = 114. x = 215. x = 1(完整版)高中数学试题及答案一、选择题1. 下列哪个数是实数?A. 2B. 3C. 4D. 52. 下列哪个图形是圆形?A. 正方形B. 长方形C. 三角形D. 圆形3. 下列哪个式子是等式?A. 2 + 3 = 5B. 2 + 3 = 6C. 2 + 3 = 7D. 2 + 3 = 84. 下列哪个图形是三角形?A. 正方形B. 长方形C. 三角形D. 圆形5. 下列哪个数是整数?A. 2.5B. 3.5C. 4.5D. 5.5二、填空题6. 2 + 3 = ________7. 3 × 4 = ________8. 5 2 = ________9. 6 ÷ 2 = ________10. 7 + 8 = ________三、解答题11. 解方程:2x + 3 = 712. 解方程:3x 2 = 513. 解方程:4x + 5 = 914. 解方程:5x 6 = 815. 解方程:6x + 7 = 10答案:一、选择题1. A2. D3. A4. C5. D二、填空题6. 57. 128. 39. 310. 15三、解答题11. x = 212. x = 313. x = 114. x = 215. x = 1四、应用题16. 小明有5个苹果,小红有3个苹果,他们一共有多少个苹果?答案:小明和小红一共有8个苹果。
高中数学解析几何大题精选

解析几何大量精选1.在直角坐标系xOy中,点M到点F13,0,F23,0的距离之和是4,点M的轨迹是C与x轴的负半轴交于点A,不过点A的直线l:y kx b与轨迹C交于不同的两点P和Q.⑴求轨迹C的方程;⑵当AP AQ0时,求k与b的关系,并证明直线l过定点.【解析】⑴2x421y.y⑵将y kx b代入曲线C的方程,整理得222(14k)x8kbx4b40,P因为直线l与曲线C交于不同的两点P和Q,A Ox所以22222264k b4(14k)(4b4)16(4k b1)0①Q且28kb4b4设P x1,y1,Q x2,y2,则12,x x x x212214k14k22b4k22y y(kx b)(kx b)k x x kb(x x)b,12121212214k②显然,曲线C与x轴的负半轴交于点A2,0,所以A P x12,y1,AQ x22,y2.由AP AQ0,得(x2)(x2)y y0.1212将②、③代入上式,整理得2212k16kb5b0.所以(2k b)(6k5b)0,即b2k或6b k.经检验,都符合条件①5当b2k时,直线l的方程为y kx2k.显然,此时直线l经过定点2,0点.即直线l经过点A,与题意不符.当6b k时,直线l的方程为566y kx k k x.55显然,此时直线l经过定点65,0点,满足题意.综上,k与b的关系是6b k,且直线l经过定点565,02.已知椭圆C22x y:122a b(a b0)的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线x y60相切.⑴求椭圆C的方程;⑵设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连结PB交椭圆C于另一点E,证明直线AE与x轴相交于定点Q;⑶在⑵的条件下,过点Q的直线与椭圆C交于M,N两点,求OM ON的取值范围.【解析】⑴22x y431.⑵由题意知直线PB的斜率存在,设直线PB的方程为y k(x4).y k(x4),由x2y2得1.432222(4k3)x32k x64k120.①设点B(x1,y1),E(x2,y2),则A(x1,y1).直线AE的方程为y y21y y(x x)22x x21.令y0,得x x2y(x x)221y y21.将y1k(x14),y2k(x24)代入整理,得x 2x x4(x x)1212x x128.②2232k64k12由①得x xx x,1221224k34k3所以直线AE与x轴相交于定点Q(1,0).代入②整理,得x1.⑶5 4,4.3.设椭圆22x yC:1(a b0)22a b的一个顶点与抛物线2C:x43y的焦点重合,F1,F2分别是椭圆的左、右焦点,且离心率点.1e,过椭圆右焦点F2的直线l与椭圆C交于M、N两2⑴求椭圆C的方程;⑵是否存在直线l,使得OM ON2.若存在,求出直线l的方程;若不存在,说明理由.【解析】⑴22x y431.⑵由题意知,直线l与椭圆必有两个不同交点.①当直线斜率不存在时,经检验不合题意.②设存在直线l为y k(x1)(k0),且M(x1,y1),N(x2,y2).22x y1由,得43y k(x1)2222(34k)x8k x4k120,28kx x12234k ,24k12x x12234k,2OM ON x1x2y1y2x1x2k[x1x2(x1x2)1]2224k128k5k12222(1k)k k222234k34k34k,所以k2,故直线l的方程为y2(x1)或y2(x1).本题直线l的方程也可设为my x1,此时m一定存在,不能讨论,且计算时数据更简单.4.如图,椭圆2 2x yC1 : 2 2 1 a b 0a b的离心率为32,x 轴被曲线 2C2 : y x b 截得的线段长等于C的长半轴长.1⑴求C1 ,C2 的方程;⑵设C与y 轴的交点为M ,过坐标原点O 的直线l 与C2 相交于点A,B ,直线2MA ,MB分别与C相交与 D ,E .1①证明:MD⊥ME ;②记△MAB ,△MDE 的面积分别是S1 ,S2 .问是否存在直线l ,使得S1S21732?请说明理由.【解析】⑴2x42 1 2 1y ,y x .y⑵①由题意知,直线l 的斜率存在,设为k ,则直线l 的方程为y kx .A由y kx得2 1y x2 1 0x kx ,E DOx设A xy Bx yx x ,,,,则,是上述方程的两1 21122个实根,于是x1 x2 k ,x1 x2 1.BM又点M 的坐标为0, 1 ,所以k kMA MB2y 1 y 1kx 1 kx 1 k x x k x x 11 2 1 2 1 21 2x x x x x x1 2 1 2 1 21 ,故MA MB ,即MD⊥ME .②设直线KM 的斜率为k1 ,则直线的方程为y k1x 1,由y k x12y x11,解得xy1或x k12y k1 1,则点A的坐标为 2k1 ,k1 1 .又直线MB的斜率为1k1,同理可得点 B 的坐标为1 1,.12k k1 1于是21 1 1 1 1 k2 1S | MA | |MB | 1 k |k| 1 | |1 1 1 22 2 k k 2 |k |1 1 1.由y k x112 2x 4y 4 0得 2 21 4k x 8k x 0,1 1解得xy1或xy8k121 4k124k 1121 4k1,则点 D 的坐标为28k 4k 11 1,;2 21 4k 1 4k1 1又直线MB的斜率为1k1,同理可得点 E 的坐标28k 4 k1 1,.2 24 k 4 k1 1于是232 1 k | k |11 1S |MD | |ME |2 2 22 1 4k 4 k1 1.因此2 2S (1 4k )(4 k ) 1 41 1 1 24k 172 1 2S 64k 64 k2 1 1,由题意知,141724k171264k321解得2k14或12k.14又由点A,B的坐标可知,21k12k1k k11k1k11k1,所以3k.2故满足条件的直线l存在,且有两条,其方程分别为3y x和23y x.25.在直角坐标系xOy中,点M到点F13,0,F23,0的距离之和是4,点M的轨迹是C与x轴的负半轴交于点A,不过点A的直线l:y kx b与轨迹C交于不同的两点P和Q.⑴求轨迹C的方程;⑵当AP AQ0时,求k与b的关系,并证明直线l过定点.2x21【解析】⑴y.4⑵将y kx b代入曲线C的方程,整理得222(14k)x8kbx4b40,y P因为直线l与曲线C交于不同的两点P和Q,OA x所以22222264k b4(14k)(4b4)16(4k b1)0①Q28kb4b4设P x1,y1,Q x2,y2,则12x xx x,212214k14k22b4k22且y y(kx b)(kx b)k x x kb(x x)b,12121212214k显然,曲线C与x轴的负半轴交于点A2,0,②所以A P x12,y1,AQ x22,y2.由AP AQ0,得(x2)(x2)y y0.1212将②、③代入上式,整理得2212k16kb5b0.所以(2k b)(6k5b)0,即b2k或6b k.经检验,都符合条件①5当b2k时,直线l的方程为y kx2k.显然,此时直线l经过定点2,0点.即直线l经过点A,与题意不符.当6b k时,直线l的方程为566y kx k k x.55显然,此时直线l经过定点65,0点,满足题意.综上,k与b的关系是6b k,且直线l经过定点565,0.。
高中数学经典试题及答案

高中数学经典试题及答案一、选择题1. 下列哪个选项是函数y=f(x)=x^2的反函数?A. y=√xB. y=x^2C. y=1/xD. y=x^3答案:A2. 计算下列极限:lim (x→0) [sin(x)/x]A. 0B. 1C. 2D. ∞答案:B3. 已知函数f(x)=2x+3,求f(-1)的值。
A. 1B. -1C. -5D. 5答案:C4. 一个等差数列的首项为3,公差为2,求第5项的值。
A. 13B. 15C. 17D. 19答案:A二、填空题5. 已知圆的方程为x^2+y^2-6x-8y+25=0,求圆心坐标。
答案:(3,4)6. 将复数z=3+4i转换为极坐标形式。
答案:5∠arctan(4/3)7. 一个直角三角形的两条直角边长分别为3和4,求斜边长度。
答案:5三、解答题8. 解方程组:\[\begin{cases}x + y = 5 \\2x - y = 1\end{cases}\]答案:将方程组写成增广矩阵形式并使用高斯消元法求解,得到x=2,y=3。
9. 求函数f(x)=x^3-3x^2+4在区间[1,2]上的最大值和最小值。
答案:首先求导数f'(x)=3x^2-6x,令f'(x)=0,解得x=0或x=2(不在区间内)。
在区间端点处,f(1)=2,f(2)=0。
因此,最大值为2,最小值为0。
10. 已知等比数列的前三项分别为2, 6, 18,求该数列的通项公式。
答案:设首项为a,公比为r,则有a=2,ar=6,ar^2=18。
解得r=3,因此通项公式为an=2*3^(n-1)。
高中数学优秀试题及答案

高中数学优秀试题及答案一、选择题(每题3分,共15分)1. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,根据勾股定理的逆定理,这个三角形是直角三角形。
以下哪个选项不是直角三角形?A. a=3, b=4, c=5B. a=5, b=12, c=13C. a=6, b=8, c=10D. a=7, b=24, c=252. 函数f(x) = 2x^3 - 3x^2 + x - 5的导数是:A. 6x^2 - 6x + 1B. 6x^2 - 6x + 2C. 6x^2 - 12x + 1D. 6x^3 - 6x^2 + 13. 已知集合A={1, 2, 3},集合B={2, 3, 4},求A∪B的结果是:A. {1, 2, 3}B. {2, 3}C. {1, 2, 3, 4}D. {1, 4}4. 抛物线y = x^2 - 2x + 1的顶点坐标是:A. (1, 0)B. (1, 1)C. (-1, 0)D. (0, 1)5. 已知等差数列的首项a1=3,公差d=2,求此数列的第5项a5是:A. 11B. 13C. 15D. 17二、填空题(每题3分,共15分)6. 若直线y = 2x + 3与x轴相交,交点的坐标是________。
7. 函数f(x) = x^2 + 1在x=-2处的切线斜率是________。
8. 已知sinθ = 3/5,且θ为锐角,求cosθ的值是________。
9. 圆的半径为5,圆心到直线x + 2y - 15 = 0的距离是________。
10. 已知等比数列的首项a1=2,公比q=3,求此数列的第4项a4是________。
三、解答题(每题10分,共70分)11. 证明:对于任意实数x,不等式e^x ≥ x + 1恒成立。
12. 已知函数f(x) = x^3 - 3x^2 + 2,求其在区间[1, 2]上的最大值和最小值。
13. 解不等式:|x - 1| + |x - 3| ≤ 4。
高中数学经典大题150道

高中数学经典大题150道在高中数学学习过程中,经典大题是不可避免的重要内容。
这些经典大题既考察了学生对知识点的掌握程度,又锻炼了他们的思维能力和解题技巧。
下面将列举150道高中数学经典大题,供同学们复习和练习。
1. 一元二次方程求解:求方程$2x^2 - 5x + 3 = 0$的解;2. 直角三角形斜边求长:已知直角三角形的一个锐角为$30^\circ$,斜边长为10,求另外两边的长度;3. 函数求极值:已知函数$f(x) = x^2 - 4x$,求$f(x)$的最小值;4. 三角函数化简:化简$\sin^2x - \cos^2x$;5. 平面向量运算:已知向量$\vec{a} = 2\vec{i} - 3\vec{j}$,$\vec{b} = \vec{i} + \vec{j}$,求$3\vec{a} - 2\vec{b}$的模;6. 不等式求解:解不等式$2x - 5 > 3$;7. 集合运算:已知集合$A = \{1, 2, 3\}$,$B = \{2, 3, 4\}$,求$A\cap B$;8. 对数方程求解:求解方程$\log_x 32 = 5$;9. 三视图绘制:根据给定的正方体的三个视图绘制其立体图形;10. 空间向量垂直判定:已知向量$\vec{a} = 2\vec{i} - 3\vec{j} +\vec{k}$,$\vec{b} = 3\vec{i} + 2\vec{j} - 4\vec{k}$,判断$\vec{a}$和$\vec{b}$是否垂直。
11. 二次函数图象:画出函数$f(x) = x^2 - 4x + 3$的图象;12. 三角函数图象:画出函数$y = \sin x$和$y = \cos x$在同一坐标系内的图像;13. 集合的运算:已知集合$A = \{1, 2, 3\}$,$B = \{3, 4, 5\}$,$C = \{2, 4, 6\}$,求$(A \cup B) \cap C$;14. 对数幂运算:计算$\log_2 8^3$的值;15. 消元解方程组:解方程组$\begin{cases} 2x - 3y = 7 \\ 4x + y = 1 \end{cases}$;16. 平面几何证明:证明过直径的正圆周角是直角;17. 空间几何证明:证明立体对顶点所在直线上的中位线相等;18. 三角函数证明:证明$\sin^2x + \cos^2x = 1$;19. 向量证明:证明向量的模长公式;20. 立体几何体积计算:计算正方体的体积。
高中数学试题及答案大全
高中数学试题及答案大全一、选择题(每题3分,共30分)1. 若函数f(x)=2x+1,则f(-1)的值为()。
A. -1B. 1C. 3D. -32. 下列哪个选项是不等式x^2 - 4x + 3 < 0的解集()。
A. (1, 3)B. (-∞, 1) ∪ (3, +∞)C. (-∞, 1) ∪ (3, +∞)D. (1, 3)3. 圆心在原点,半径为5的圆的方程是()。
A. x^2 + y^2 = 25B. x^2 + y^2 = 5C. (x-5)^2 + y^2 = 25D. (x+5)^2 + y^2 = 254. 函数y = 3x - 2的反函数是()。
A. y = (x + 2) / 3B. y = (x - 2) / 3C. y = 3x + 2D. y = 3x - 25. 集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B的元素个数是()。
A. 1B. 2C. 3D. 46. 函数y = sin(x)在区间[0, π]上的最大值是()。
A. 0B. 1C. -1D. π7. 直线y = 2x + 3与x轴的交点坐标是()。
A. (-3/2, 0)B. (3/2, 0)C. (0, -3)D. (0, 3)8. 抛物线y = x^2 - 4x + 3的顶点坐标是()。
A. (2, -1)B. (2, 1)C. (-2, -1)D. (-2, 1)9. 等差数列{an}的首项a1 = 2,公差d = 3,则第五项a5的值为()。
A. 17B. 14C. 10D. 710. 函数y = ln(x)的定义域是()。
A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. (-∞, 0) ∪ (0, +∞)二、填空题(每题4分,共20分)1. 函数f(x) = x^3 - 3x^2 + 2的极大值点是______。
2. 等比数列{bn}的首项b1 = 4,公比q = 1/2,则第六项b6的值为______。
(完整版)高中数学经典50题(附答案)
高中数学题库1. 求下列函数的值域:解法2 令t =sin x ,则f (t )=-t 2+t +1,∵ |sin x |≤1, ∴ |t |≤1.问题转化为求关于t 的二次函数f (t )在闭区间[-1,1]上的最值.本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的内在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。
2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此慧星离地球相距m 万千米和m 34万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为32ππ和,求该慧星与地球的最近距离。
解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆的方程为12222=+by a x (图见教材P132页例1)。
当过地球和彗星的直线与椭圆的长轴夹角为3π时,由椭圆的几何意义可知,彗星A 只能满足)3(3/ππ=∠=∠xFA xFA 或。
作m FA FB Ox AB 3221B ==⊥,则于故由椭圆第二定义可知得⎪⎪⎩⎪⎪⎨⎧+-=-=)32(34)(22m c c a a c m c ca a c m两式相减得,23)4(21.2,3231c c c m c a m a c m =-==∴⋅=代入第一式得 .32.32m c c a m c ==-∴=∴答:彗星与地球的最近距离为m 32万千米。
说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a +(2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。
高中数学经典例题100道
高中数学经典例题100道(共44页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--例1 判定以下关系是否正确 (1){a}{a}⊆(2){1,2,3}={3,2,1}(3){0}∅⊂≠ (4)0∈{0}(5){0}(6){0}∅∅∈=分析 空集是任何集合的子集,是任何非空集合的真子集.解 根据子集、真子集以及集合相等的概念知①②③④是正确的,后两个都是错误的.说明:含元素0的集合非空.例2 列举集合{1,2,3}的所有子集.分析 子集中分别含1,2,3三个元素中的0个,1个,2个或者3个.解含有个元素的子集有:; 0∅含有1个元素的子集有{1},{2},{3};含有2个元素的子集有{1,2},{1,3},{2,3}; 含有3个元素的子集有{1,2,3}.共有子集8个.说明:对于集合,我们把和叫做它的平凡子集.A A ∅例已知,,,,,则满足条件集合的个数为≠3 {a b}A {a b c d}A ⊆⊂________.分析 A 中必含有元素a ,b ,又A 是{a ,b ,c ,d}真子集,所以满足条件的A 有:{a ,b},{a ,b ,c}{a ,b ,d}.答 共3个.说明:必须考虑A 中元素受到的所有约束.例设为全集,集合、,且,则≠4 U M N U N M ⊂⊆ [ ]分析 作出4图形.答 选C .说明:考虑集合之间的关系,用图形解决比较方便.点击思维例5 设集合A ={x|x =5-4a +a 2,a ∈R},B ={y|y =4b 2+4b +2,b ∈R},则下列关系式中正确的是[ ]A AB B A BC A BD A B .=...≠≠⊇⊂⊃分析 问题转化为求两个二次函数的值域问题,事实上x =5-4a +a 2=(2-a)2+1≥1,y =4b 2+4b +2=(2b +1)2+1≥1,所以它们的值域是相同的,因此A =B .答 选A .说明:要注意集合中谁是元素.M 与P 的关系是[ ]A .M =U PB .M =PC M PD M P ..≠⊃⊆分析 可以有多种方法来思考,一是利用逐个验证(排除)的方法;二是利用补集的性质:M =U N =U (U P)=P ;三是利用画图的方法.答 选B .说明:一题多解可以锻炼发散思维. 例7 下列命题中正确的是[ ]A .U (U A)={A}B A B B A BC A {1{2}}{2}A.若∩=,则.若=,,,则≠⊆⊂ϕD A {123}B {x|x A}A B .若=,,,=,则∈⊆分析 D 选择项中A ∈B 似乎不合常规,而这恰恰是惟一正确的选择支.∵选择支中,中的元素,,即是集合的子集,而的子D B x A x A A ⊆集有,,,,,,,,,,,,,而∅{1}{2}{3}{12}{13}{23}{123}B是由这所有子集组成的集合,集合A 是其中的一个元素.∴A ∈B . 答 选D .说明:选择题中的选项有时具有某种误导性,做题时应加以注意. 例8 已知集合A ={2,4,6,8,9},B ={1,2,3,5,8},又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集;若各元素都减2后,则变为B 的一个子集,求集合C .分析 逆向操作:A 中元素减2得0,2,4,6,7,则C 中元素必在其中;B 中元素加2得3,4,5,7,10,则C 中元素必在其中;所以C 中元素只能是4或7.答 C ={4}或{7}或{4,7}.说明:逆向思维能力在解题中起重要作用.例9 设S ={1,2,3,4},且M ={x ∈S|x 2-5x +p =0},若S M ={1,4},则p =________.分析 本题渗透了方程的根与系数关系理论,由于S M ={1,4},且,≠M S ⊂ ∴M ={2,3}则由韦达定理可解. 答 p =2×3=6.说明:集合问题常常与方程问题相结合.例10 已知集合S ={2,3,a 2+2a -3},A ={|a +1|,2},S A ={a+3},求a 的值.S 这个集合是集合A 与集合S A 的元素合在一起“补成”的,此外,对这类字母的集合问题,需要注意元素的互异性及分类讨论思想方法的应用.解 由补集概念及集合中元素互异性知a 应满足()1a 3 3 |a 1|a 2a 3 a 2a 3 2 a 2a 3 3 222+=①+=+-②+-≠③+-≠④⎧⎨⎪⎪⎩⎪⎪或+=+-①+=②+-≠③+-≠④(2)a 3a 2a 3 |a 1| 3 a 2a 3 2 a 2a 3 3 222⎧⎨⎪⎪⎩⎪⎪在(1)中,由①得a =0依次代入②③④检验,不合②,故舍去. 在(2)中,由①得a =-3,a =2,分别代入②③④检验,a =-3不合②,故舍去,a =2能满足②③④.故a =2符合题意.说明:分类要做到不重不漏.例年北京高考题集合==π+π,∈,=11 (1993)M {x|x k Z}N {k 24x|x k Z}=π+π,∈则k 42[ ]A .M =NB M NC M N..≠≠⊃⊂D .M 与N 没有相同元素分析 分别令k =…,-1,0,1,2,3,…得M {}N {}M N =…,-π,π,π,π,π,…,=…,π,π,π,π,π,…易见,.≠44345474423454⊂ 答 选C .说明:判断两个集合的包含或者相等关系要注意集合元素的无序性典型例题一例1下列图形中,满足唯一性的是( ). A .过直线外一点作与该直线垂直的直线 B .过直线外一点与该直线平行的平面 C .过平面外一点与平面平行的直线 D .过一点作已知平面的垂线分析:本题考查的是空间线线关系和线面关系,对定义的准确理解是解本题的关键.要注意空间垂直并非一定相关.解:A .过直线外一点作与这条直线垂直的直线,由于并没有强调相交,所以这样的垂线可以作无数条.事实上这无数条直线还在同一个平面内,这个平面为该直线的一个垂面.B .过直线外一点可以作一条而且仅能作一条直线与该直线平行,但可以作无数个平面和该直线平行.C .过此点作平面内任一直线的平行线,这条平行线都平行于平面.所以过平面外一点与平面平行的直线应有无数条.D .过一点作已知平面的垂线是有且仅有一条.假设空间点A 、平面α,过点A 有两条直线AB 、AC 都垂直于α,由于AB 、AC 为相交直线,不妨设AB 、AC 所确定的平面为β,α与β的交线为l ,则必有l AB ⊥,l AC ⊥,又由于AB 、AC 、l 都在平面β内,这样在β内经过A 点就有两条直线和直线l 垂直,与平面几何中经过一点有县仅有一条直线与已知直线垂直相矛盾.故选D .说明:有关“唯一性”结论的问题,常用反证法,或者借助于其它已证明过的唯一性命题来证明.在本书中,过一点作已知平面的垂线有且仅有一条,同时,过一点作已知直线的垂面也是有且仅有一个.它们都是“唯一性”命题,在空间作图题中常常用到.典型例题二例2已知下列命题:(1)若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在这个平面内的射影;(2)平面内与这个平面的一条斜线垂直的直线互相平行;(3)若平面外的两条直线,在这个平面上的射影互相垂直,则这两条直线互相垂直;(4)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在这个平面上的射影互相垂直.上述命题正确的是().A.(1)、(2) B.(2)、(3) C.(3)、(4) D.(2)、(4)分析:本题考查的三垂线定理及其逆定理的简单应用.应用这两个定理时要特别注意“平面内”这一条件,同时要注意各种不同位置的两定理的基本图形及其变式图形.解:(1)已知直线不一定在平面内,所以不能用三垂线逆定理来判断垂直关系;(2)平面内与这个平面的一条斜线垂直的直线必定与斜线在平面内的射影垂直,所以它们之间也平行;(3)根据三垂线定理可证明直线与另一直线的射影垂直,但不能进一步说明直线和直线垂直;(4)根据三垂线定理的逆定理和空间两直线所成角的概念,不难证明此命题的正确性.故选D .说明:(3)中若一直线与另一直线的射影垂直,则有另一直线必与这一直线的射影垂直.如在正方体1111D C B A ABCD -中,F E 、分别为棱1AA 和1BB 上的点,G 为棱BC 上的点,且1BB EF ⊥,EG FC ⊥1,求FG D 1∠.典型例题三例3 如图,在正方体1111D C B A ABCD -中,E 是1BB 的中点,O 是底面正方形ABCD 的中心,求证:⊥OE 平面1ACD .分析:本题考查的是线面垂直的判定方法.根据线面垂直的判定方法,要证明⊥OE 平面1ACD ,只要在平面1ACD 内找两条相交直线与OE 垂直.证明:连结D B 1、D A 1、BD ,在△BD B 1中, ∵O E 、分别是B B 1和DB 的中点, ∴D B EO 1//. ∵⊥11A B 面D D AA 11,∴1DA 为1DB 在面D D AA 11内的射影. 又∵D A AD 11⊥,∴11DB AD ⊥.同理可证,C D D B 11⊥.又∵111D CD AD = ,1AD 、⊂C D 1面1ACD , ∴⊥D B 1平面1ACD . ∵EO D B //1, ∴⊥EO 平面1ACD .另证:连结CE AE 、,O D 1,设正方体1DB 的棱长为a ,易证CE AE =. 又∵OC AO =, ∴AC OE ⊥.在正方体1DB 中易求出:a a a DO DD O D 2622222211=⎪⎪⎭⎫ ⎝⎛+=+=, a a a OB BE OE 232222222=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=,()a a a E B B D E D 232222212111=⎪⎭⎫⎝⎛+=+=.∵21221E D OE O D =+, ∴OE O D ⊥1.∵O AC O D = 1,O D 1、⊂AC 平面1ACD , ∴⊥OE 平面1ACD .说明:要证线面垂直可找线线垂直,这是立体几何证明线面垂直时常用的转化方法.在证明线线垂直时既要注意三垂线定理及其逆定理的应用,也要注意有时是从数量关系方面找垂直,即勾股定理或余弦定理的应用.典型例题四例4 如图,在△ABC 中, 90=∠B ,⊥SA 平面ABC ,点A 在SB 和SC 上的射影分别为N M 、,求证:SC MN ⊥.分析:本题考查的仍是线面垂直的判定和性质定理,以及线线垂直和线面垂直相互转化思想.欲证MN SC ⊥,可证⊥SC 面AMN ,为此须证AN SC ⊥,进而可转化为证明⊥AN 平面SBC ,而已知SB AN ⊥,所以只要证BC AN ⊥即可.由于图中线线垂直、线面垂直关系较多,所以本题也可以利用三垂线定理和逆定理来证线线垂直.证明:∵⊥SA 面ABC ,⊂BC 平面ABC ,∴BC SA ⊥.∵ 90=∠B ,即BC AB ⊥,A SA BA = ,∴⊥BC 平面SAB .∵⊂AN 平面SAB .∴AN BC ⊥.又∵SB AN ⊥,B BC SB = ,∴⊥AN 平面SBC .∵⊂SC 平面SBC ,∴SC AN ⊥,又∵SC AM ⊥,A AN AM = ,∴⊥SC 平面AMN .∵⊂MN 平面AMN .∴MN SC ⊥.另证:由上面可证⊥AN 平面SBC .∴MN 为AM 在平面SBC 内的射影.∵SC AM ⊥,∴SC MN ⊥.说明:在上面的证题过程中我们可以看出,证明线线垂直常转化为证明线面垂直,而证明线面垂直又转化为证明线线垂直.立体几何中的证明常常是在这种相互转化的过程中实现的.本题若改为下题,想想如何证:已知⊥SA ⊙O 所在平面,AB 为⊙O 的直径,C 为⊙O 上任意一点(C 与B A 、不重合).过点A 作SB 的垂面交SB 、SC 于点N M 、,求证:SC AN ⊥.典型例题五例5 如图,AB 为平面α的斜线,B 为斜足,AH 垂直平面α于H 点,BC 为平面α内的直线,θ=∠ABH ,α=∠HBC ,β=∠ABC ,求证:θαβcos cos cos ⋅=.分析:本题考查的是线面角的定义和计算.要证明三个角余弦值之间关系,可考虑构造直角三角形,在直角三角形中求出三个角的余弦值,再代入验证证明,其中构造直角三角形则需要用三垂线定理或逆定理.证明:过H 点作HD 垂直BC 于D 点,连AD .∵α⊥AH ,∴AD 在平面α内射影为HD .∵HD BC ⊥,α⊂BC ,∴AD BC ⊥.在Rt △ABH 中有:BA BH =θcos ① 在Rt △BHD 中有:BHBD =αcos ② 在Rt △ABD 中有:BA BD =βcos ③ 由①、②、③可得:αθβcos cos cos ⋅=.说明:由此题结论易知:斜线与平面所成的角,是这条斜线和这个平面内的直线所成的一切角中最小的角.若平面的斜线与平面所成角为θ,则斜线与平面内其它直线所成角β的范围为⎥⎦⎤⎢⎣⎡2πθ,.典型例题六例6 如图,已知正方形ABCD 边长为4,⊥CG 平面ABCD ,2=CG ,F E 、分别是AD AB 、中点,求点B 到平面GEF 的距离.分析:此题是1991年高考题,考查了直线与直线、直线与平面等位置关系以及逻辑推理和空间想像能力.本题是求平面外一点到平面的距离,可用转移法将该点到平面的距离转化为求另一点到该平面的距离.为此要寻找过点B 与平面GEF 平行的直线,因为与平面平行的直线上所有点到平面的距离相等.证明:连结AC BD 、,EF 和BD 分别交AC 于O H 、,连GH ,作GH OK ⊥于K .∵ABCD 为正方形,F E 、分别为AD AB 、的中点,∴BD EF //,H 为AO 中点.∵EF BD //,⊄BD 平面GFE ,∴//BD 平面GFE .∴BD 与平面GFE 的距离就是O 点到平面EFG 的距离.∵AC BD ⊥,∴AC EF ⊥.∵⊥GC 面ABCD ,∴EF GC ⊥.∵C AC GC = ,∴⊥EF 平面GCH .∵⊂OK 平面GCH ,∴OK EF ⊥.又∵GH OK ⊥,H EF GH = ,∴⊥OK 平面GEF .即OK 长就是点B 到平面GEF 的距离.∵正方形边长为4,2=CG , ∴24=AC ,2=HO ,23=HC .在Rt △HCG 中,2222=+=CG HC HG .在Rt △GCH 中,11112=⋅=HG GC HO OK . 说明:求点到平面的距离常用三种方法:一是直接法.由该点向平面引垂线,直接计算垂线段的长.用此法的关键在于准确找到垂足位置.如本题可用下列证法:延长CB交FE的延长线于M,连结GM,作MEBP⊥于P,作BH⊥于H,可得⊥BN//交MG于N,连结PN,再作PNCGBH平面GFE,BH长即为B点到平面EFG的距离.二是转移法.将该点到平面的距离转化为直线到平面的距离.三是体积法.已知棱锥的体积和底面的面积.求顶点到底面的距离,可逆用体积公式.典型例题七例7如图所示,直角ABCSA==.SB∆所在平面外一点S,且SC(1)求证:点S与斜边AC中点D的连线SD⊥面ABC;(2)若直角边BCBA=,求证:BD⊥面SAC.分析:由等腰三角形底边上的中线得到线线垂直,从而得到线面垂直.证明:(1)在等腰SACSD⊥.∆中,D为AC中点,∴AC取AB中点E,连DE、SE.∵BCBC⊥,∴ABED//,ABDE⊥.又ABAB⊥.SE⊥,∴AB⊥面SED,∴SD∴SD⊥面ABC(AB、AC是面ABC内两相交直线).(2)∵BCBA=,∴ACBD⊥.又∵SD⊥面ABC,∴BDSD⊥.∵D AC SD = ,∴BD ⊥面SAC .说明:证明线面垂直的关键在于寻找直线与平面内的两条相交直线垂直.寻找途径可由等腰三角形底边上的中线与底边垂直,可由勾股定理进行计算,可由线面垂直得线线垂直等.典型例题八例8 如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.已知:b a //,α⊥a .求证:α⊥b .分析:由线面垂直的判定定理知,只需在α内找到两条相交直线与b 垂直即可.证明:如图所示,在平面α内作两条相交直线m 、n .∵α⊥a ,∴m a ⊥,n a ⊥.又∵a b //,从而有m b ⊥,n b ⊥.由作图知m 、n 为α内两条相交直线.∴α⊥b .说明:本题的结论可以作为判定线面垂直的依据,即当要证的直线与平面的垂直关系不明确或不易证出时,可以考虑证明与已知直线平行的直线与平面垂直.典型例题九例9 如图所示,已知平面α 平面β=EF ,A 为α、β外一点,α⊥AB 于B ,β⊥AC 于C ,α⊥CD 于D .证明:EF BD ⊥.分析:先证A 、B 、C 、D 四点共面,再证明EF ⊥平面ABCD ,从而得到EF BD ⊥.证明:∵α⊥AB ,α⊥CD ,∴CD AB //.∴A 、B 、C 、D 四点共面.∵α⊥AB ,β⊥AC ,EF =βα ,∴EF AB ⊥,EF AC ⊥.又A AC AB = ,∴EF ⊥平面ABCD .∴BD EF ⊥.说明:与线面平行和线线平行交替使用一样,线面垂直和线线垂直也常互为条件和结论.即要证线面垂直,先找线线垂直;要证线线垂直,先找线面垂直.本题证明“A 、B 、C 、D 四点共面”非常重要,仅由EF ⊥平面ABC ,就断定BD EF ⊥,则证明是无效的.典型例题十例10 平面α内有一半圆,直径AB ,过A 作SA ⊥平面α,在半圆上任取一点M ,连SM 、SB ,且N 、H 分别是A 在SM 、SB 上的射影.(1)求证:SB NH ⊥;(2)这个图形中有多少个线面垂直关系?(3)这个图形中有多少个直角三角形?(4)这个图形中有多少对相互垂直的直线?分析:注意利用直线与直线、直线与平面垂直的有关知识进行判断.(1)证明:连AM 、BM .如上图所示,∵AB 为已知圆的直径,∴BM AM ⊥.∵SA ⊥平面α,α⊂BM ,∴MB SA ⊥.∵A SA AM = ,∴BM ⊥平面SAM .∵AN ⊂平面SAM ,∴AN BM ⊥.∵SM AN ⊥于N ,M SM BM = ,∴AN ⊥平面SMB .∵SB AH ⊥于H ,且NH 是AH 在平面SMB 的射影,∴SB NH ⊥. 解(2):由(1)知,SA ⊥平面AMB ,BM ⊥平面SAM ,AN ⊥平面SMB . ∵AH SB ⊥且HN SB ⊥,∴SB ⊥平面ANH ,∴图中共有4个线面垂直关系.(3)∵SA ⊥平面AMB ,∴SAB ∆、SAM ∆均为直角三角形.∵BM ⊥平面SAM ,∴BAM ∆、BMS ∆均为直角三角形.∵AN ⊥平面SMB ,∴ANS ∆、ANM ∆、ANH ∆均为直角三角形. ∵SB ⊥平面ANH ,∴SHA ∆、BHA ∆、SHN ∆、BHN ∆均为直角三角形. 综上,图中共有11个直角三角形.(4)由SA ⊥平面AMB 知,AM SA ⊥,AB SA ⊥,BM SA ⊥.由BM ⊥平面SAM 知,AM BM ⊥,SM BM ⊥,AN BM ⊥. 由AN ⊥平面SMB 知,SM AN ⊥,SB AN ⊥,NH AN ⊥.由SB ⊥平面ANH 知,AH SB ⊥,HN SB ⊥.综上,图中共有11对互相垂直的直线.说明:为了保证(2)(3)(4)答案不出错,首先应找准(2)的答案,由“线⊥面”可得到“线⊥面内线”,当“线⊥面内线”且相交时,可得到直角三角形;当“线⊥面内线”且不相交时,可得到异面且垂直的一对直线.典型例题十一例11 如图所示,︒=∠90BAC .在平面α内,PA 是α的斜线,︒=∠=∠60PAC PAB .求PA 与平面α所成的角.分析:求PA 与平面α所成角,关键是确定PA 在平面α上射影AO 的位置.由PAC PAB ∠=∠,可考虑通过构造直角三角形,通过全等三角形来确定AO 位置,构造直角三角形则需用三垂线定理.解:如图所示,过P 作α⊥PO 于O .连结AO ,则AO 为AP 在面α上的射影,PAO ∠为PA 与平面α所成的角. 作AC OM ⊥,由三重线定理可得AC PM ⊥.作AB ON ⊥,同理可得AB PN ⊥.由PAC PAB ∠=∠,︒=∠=∠90PNA PMA ,PA PA =,可得PMA ∆≌PNA ∆,∴PN PM =.∵OM 、ON 分别为PM 、PN 在α内射影,∴ON OM =.所以点O 在BAC ∠的平分线上.设a PA =,又︒=∠60PAM ,∴a AM 21=,︒=∠45OAM , ∴a AM AO 222==. 在POA ∆中,22cos ==∠PA AO PAO , ∴︒=∠45PAO ,即PA 与α所成角为︒45.说明:(1)本题在得出PA 在面α上的射影为BAC ∠的平分线后,可由公式βαθcos cos cos ⋅=来计算PA 与平面α所成的角,此时︒==∠60θPAC ,α=∠PAO ,︒==∠45βCAO .(2)由PA 与平面α上射影为BAC ∠平分线还可推出下面结论:四面体ABC P -中,若PAC PAB ∠=∠,PBC PBA ∠=∠,则点A 在面ABC 上的射影为ABC ∆的内心.典型例题十二例12 如图所示,在平面β内有ABC ∆,在平面β外有点S ,斜线AC SA ⊥,BC SB ⊥,且斜线SA 、SB 分别与平面β所成的角相等,设点S 与平面β的距离为cm 4,BC AC ⊥,且cm AB 6=.求点S 与直线AB 的距离.分析:由点S 向平面β引垂线,考查垂足D 的位置,连DB 、DA ,推得AC DA ⊥,BC DB ⊥,又︒=∠90ACB ,故A 、B 、C 、D 为矩形的四个顶点.解:作SD ⊥平面β,垂足为D ,连DA 、DB .∵AC SA ⊥,BC DB ⊥,∴由三垂线定理的逆定理,有:AC DA ⊥,BC DB ⊥,又BC AC ⊥,∴ACBD 为矩形.又∵SB SA =,∴DB DA =,∴ACBD 为正方形,∴AB 、CD 互相垂直平分.设O 为AB 、CD 的交点,连结SO ,根据三垂线定理,有AB SO ⊥,则SO 为S 到AB 的距离.在SOD Rt ∆中,cm SD 4=,cm AB DO 321==, ∴cm SO 5=.因此,点S 到AB 的距离为cm 5.说明:由本例可得到点到直线距离的作法:(1)若点、直线在确定平面内,可直接由点向直线引垂线,这点和垂足的距离即为所求.(2)若点在直线所在平面外,可由三垂线定理确定:由这点向平面引垂线得垂足,由垂足引直线的垂线得斜足,则这点与斜足的距离为点到直线的距离.(3)处理距离问题的基本步骤是:作、证、算,即作出符合要求的辅助线,然后证明所作距离符合定义,再通过解直角三角形进行计算. 典型例题十三例13 如图,ABCD 是正方形,SA 垂直于平面ABCD ,过A 且垂直于SC 的平面交SB 、SC 、SD 分别于点E 、F 、G ,求证:SB AE ⊥,SD AG ⊥.分析:本题考查线面垂直的判定与性质定理,以及线线垂直和线面垂直相互转化的思想.由于图形的对称性,所以两个结论只需证一个即可.欲证SB AE ⊥,可证⊥AE 平面SBC ,为此须证BC AE ⊥、SC AE ⊥,进而转化证明⊥BC 平面SAB 、⊥SC 平面AEFG .证明:∵SA ⊥平面ABCD ,⊂BC 平面ABCD ,∴BC SA ⊥.又∵ABCD 为正方形,∴AB BC ⊥.∴⊥BC 平面ASB .∵⊂AE 平面ASB ,∴AE BC ⊥.又∵⊥SC 平面AEFG ,∴AE SC ⊥.∴⊥AE 平面SBC .又∵⊂SB 平面SBC ,∴SB AE ⊥,同理可证SD AG ⊥.说明:(1)证明线线垂直,常用的方法有:同一平面内线线垂直、线面垂直的性质定理,三垂线定理与它的逆定理,以及与两条平行线中一条垂直就与另一条垂直.(2)本题的证明过程中反复交替使用“线线垂直”与“线面垂直”的相互联系,充分体现了数学化思想的优越性.典型例题十四例14 如图,求证:如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面内的射影在这个角的平分线上.已知:BAC ∠在平面α内,点α∉P ,AB PE ⊥,AC PF ⊥,α⊥PO ,垂足分别是E 、F 、O ,PF PE =.求证:CAO BAO ∠=∠.证明:∵α⊥PO ,∴OE 为PE 在α内的射影.∵PE AB ⊥,α平面⊂AB ,∴OE AB ⊥.同理可证:OF AC ⊥.又∵α⊥PO ,PF PE =,OF OE =,∴CAO BAO ∠=∠.说明:本题是一个较为典型的题目,与此题类似的有下面命题:从一个角的顶点引这个角所在平面的斜射线,使斜射线和这个角两边的夹角相等,则斜射线在平面内的射影,是这个角的平分线所在的直线.由此结论和上一个例题很容易求解下面这道题:已知︒∠90ACB,S为平面ACB外一点,=∠60SCA,求SC与平面ACB所成角.SCB=︒=∠典型例题十五例15判断题:正确的在括号内打“√”号,不正确的打“×”号.(1)一条直线和一个平面平行,它就和这个平面内的任何直线平行.()(2)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.()(3)垂直于三角形两边的直线必垂直于第三边.()(4)过点A垂直于直线a的所有直线都在过点A垂直于α的平面内.()(5)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.()解:(1)直线与平面平行,则直线与平面内的直线的位置关系不外乎有两种①平行②异面,因此应打“×”号(2)该命题的关键是这无数条直线具有怎样的位置关系.①若为平行,则该命题应打“×”号;若为相交,则该命题应打“√”,正是因为这两种情况可能同时具备,因此,不说明面内无这数条线的位置关系,则该命题应打“×”号.(3)垂直于三角形两边的直线必垂直于三角形所在的平面,由线面垂直定义的逆用,则该直线必垂直于三角形的第三边,∴该命题应打“√”.(4)前面介绍了两个命题,①过一点有且只有一个平面与已知直线垂直,②过一点有且只有一条直线与已知平面垂直,根据第一个命题知:过点A垂直于直线a 的平面惟一,因此,过点A 且与直线a 垂直的直线都在过点A 且与直线a 垂直的平面内,∴该命题应打“√”号.(5)三条共点直线两两垂直,设为a ,b ,c 且a ,b ,c 共点于O ,∵b a ⊥,c a ⊥,0=c b ,且b ,c 确定一平面,设为α,则α⊥a , 同理可知b 垂直于由a ,c 确定的平面,c 垂直于由了确定的平面,∴该命题应打“√”号.说明:本题是利用直线和平面垂直的定义及判定定理等知识来解答的问题.解答此类问题必须作到:概念清楚、问题理解透彻、相关知识能灵活运用.典型例题十六例16 如图,已知空间四边形ABCD 的边AC BC =,BD AD =,引CD BE ⊥,E 为垂足,作BE AH ⊥于H ,求证:BCD AH 平面⊥.分析:若证BCD AH 平面⊥,只须利用直线和平面垂直的判定定理,证AH 垂直平面BCD 中两条相交直线即可.证明:取AB 中点F ,连CF 、DF ,∵BC AC =,∴AB CF ⊥.又∵BD AD =,∴AB DF ⊥,∴CDF AB 平面⊥,又CDF CD 平面⊂,∴AB CD ⊥又BE CD ⊥,∴ABE CD 平面⊥,AH CD ⊥,又BE AH ⊥,∴BCD AH 平面⊥.典型例题十七例17 如果平面α与α外一条直线a 都垂直b ,那么α//a .已知:直线α⊄a ,b a 直线⊥,α⊥b .求证:α//a .分析:若证线面平行,只须设法在平面α内找到一条直线'a ,使得'//a a ,由线面平行判定定理得证.证明:(1)如图,若a 与b 相交,则由a 、b 确定平面β,设'a =αβ .αααβαα////,,'''''a a a a a a b a a b a b a b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎭⎪⎬⎫⊂⊥⊥⇒⎭⎬⎫⊂⊥又∵. (2)如图,若a 与b 不相交,则在a 上任取一点A ,过A 作b b //',a 、'b 确定平面β,设'a =αβ .αααβααα////,,////'''''''''''a a a aa a ab a b a b b b a b a b b b b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎪⎭⎪⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥⊥⇒⎪⎭⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥又又∵又∵.典型例题十八例18 如图,已知在ABC ∆中,︒=∠60BAC ,线段ABC AD 平面⊥,DBC AH 平面⊥,H 为垂足.求证:H 不可能是DBC ∆的垂心.分析:根据本题所证结论,可采用反证法予以证明.证明:如图所示,假设H 是DBC ∆的垂心,则DC BH ⊥.∵DBC AH 平面⊥,∴AH DC ⊥,∴ABH DC 平面⊥,∴DC AB ⊥.又∵ABC DA 平面⊥,∴DA AB ⊥,∴DAC AB 平面⊥,∴AC AB ⊥,这与已知︒=∠60BAC 矛盾,∴假设不成立,故H 不可能是DBC ∆的垂心.说明:本题只要满足︒≠∠90BAC ,此题的结论总成立.不妨给予证明.典型例题十九例19 在空间,下列哪些命题是正确的( ).①平行于同一条直线的两条直线互相平行②垂直于同一条直线的两条直线互相平行③平行于同一个平面的两条直线互相平行④垂直于不一个平面的两条直线互相平行A .仅②不正确B .仅①、④正确C .仅①正确D .四个命题都正确分析:①该命题就是平行公理,即课本中的公理4,因此该命题是正确的;②如图,直线a ⊥平面α,α⊂b ,α⊂c ,且A c b = ,则b a ⊥,c a ⊥,即平面α内两条直交直线b ,c 都垂直于同一条直线a ,但b ,c 的位置关系并不是平行.另外,b ,c 的位置关系也可以是异面,如果把直线b 平移到平面α外,此时与a 的位置关系仍是垂直,但此时,b ,c 的位置关系是异面.③如图,在正方体1111D C B A ABCD -中,易知ABCD B A 平面//11,ABCD D A 平面//11,但11111A D A B A = ,因此该命题是错误的.④该命题是线面垂直的性质定理,因此是正确的.综上可知①、④正确.∴应选B .典型例题二十例20 设a ,b 为异面直线,AB 为它们的公垂线(1)若a ,b 都平行于平面α,则α⊥AB ;(2)若a ,b 分别垂直于平面α、β,且c =βα ,则c AB //.分析:依据直线和平面垂直的判定定理证明α⊥AB ;证明线与线的平行,由于此时垂直的关系较多,因此可以考虑利用线面垂直的性质证明c AB //.图1 图2 证明:(1)如图1,在α内任取一点P ,设直线a 与点P 确定的平面与平面α的交线为'a ,设直线b 与点P 确定的平面与平面α的交线为'b∵α//a ,α//b ,∴'//a a ,'//b b又∵a AB ⊥,b AB ⊥,∴'a AB ⊥,'b AB ⊥,∴α⊥AB .(2)如图2,过B 作α⊥'BB ,则a BB //',则'BB AB ⊥又∵b AB ⊥,∴AB 垂直于由b 和'BB 确定的平面.∵β⊥b ,∴c b ⊥,α⊥'BB ,∴c BB ⊥'.∴c 也垂直于由'BB 和b 确定的平面.故AB c //.说明:由第(2)问的证明可以看出:利用线面垂直的性质证明线与线的平行,其关键是构造出平面,使所证线皆与该平面垂直.如题中,通过作出辅助线'BB ,构造出平面,即由相交直线b 与'BB 确定的平面.然后借助于题目中的其他垂直关系证得.典型例题二十一例21 如图,在正方体1111D C B A ABCD -中,EF 为异面直线D A 1与AC 的公垂线,求证:1//BD EF .分析:证明1//BD EF ,构造与EF 、1BD 都垂直的平面是关键.由于EF 是AC 和D A 1的公垂线,这一条件对构造线面垂直十分有用. 证明:连结11C A ,由于11//C A AC ,AC EF ⊥, ∴11C A EF ⊥.又D A EF 1⊥,1111A C A D A = , ∴D C A EF 11平面⊥. ① ∵11111D C B A BB 平面⊥,111111D C B A C A 平面⊂, ∴111C A BB ⊥.∵四边形1111D C B A 为正方形, ∴1111D B C A ⊥,1111B BB D B = , ∴D D BB C A 1111平面⊥,而D D BB BD 111平面⊂,∴111BD C A ⊥. 同理11BD DC ⊥,1111C C A DC = , ∴D C A BD 111平面⊥. ② 由①、②可知:1//BD EF .典型例题二十二例22 如图,已知P 为ABC ∆外一点,PA 、PB 、PC 两两垂直,a PC PB PA ===,求P 点到平面ABC 的距离.分析:欲求点到平面的距离,可先过点作平面的垂线,进一步求出垂线段的长.解:过P 作ABC PO 平面⊥于O 点,连AO 、BO 、CO , ∴AO PO ⊥,BO PO ⊥,CO PO ⊥ ∵a PC PB PA ===, ∴PAO ∆≌PBO ∆≌PCO ∆, ∴OC OB OA ==, ∴O 为ABC ∆的外心. ∵PA 、PB 、PC 两两垂直,∴a CA BC AB 2===,ABC ∆为正三角形, ∴a AB AO 3633==,∴a AO PA PO 3322=-=. 因此点P 到平面ABC 的距离a 33. 说明:(1)求点到平面距离的基本程序是:首先找到或作出要求的距离;然后使所求距离在某一个三角形中;最后在三角形中根据三角形的边角关系求出距离.(2)求距离问题转化到解三角形有关问题后,在三角形中求距离常常用到勾股定理、正弦定理、余弦定理及有关三角函数知识.(3)点到平面距离是立体几何中一个重要内容,高考命题中出现较多,应充分注意,除了上面提到方法之外,还有其他一些方法,比如以后学习的等积法,希望同学们在学习过程不断总结.典型例题二十三例23 如图,已知在长方体1111D C B A ABCD -中,棱51=AA ,12=AB ,求直线11C B 和平面11BCD A 的距离.分析:求线面距离,其基本方法是在线上选一点,作出点面距,距离然后根据求点面距的有关方法求解.解:如图,∵BC C B //11,且1111BCD A C B 平面⊄,11BCD A BC 平面⊂, ∴1111//BCD A C B 平面.从而点1B 到平面11BCD A 的距离即为所求. 过点1B 作B A E B 11⊥于E ,∵11ABB A BC 平面⊥,且B B AA E B 111平面⊂, ∴E B BC 1⊥. 又B B A BC =1 , ∴111BCD A E B 平面⊥. 即线段E B 1的长即为所求,。
高中数学好题经典题总结400题(251—300)含答案
好题速递251题设,m k 为正整数,方程220mxkx 在区间0,1内有两个不同的根,则mk 的最小值是.解:2220mxkxkmxx于是问题转化为直线yk 与打勾函数2ymxx的图象的两个交点的横坐标均在区间0,1内,于是222mkm注意到2m 为整数,于是在区间22,2m m 上存在整数k 的充要条件为2221mm 解得322m 故m 的最小值为6,而k 的最小值为7,则m k 的最小值为13好题速递252题已知21xy,求22xxy的最小值是.解法一:令22xxym ,则222myxm因此22212myym,整理得22y my m m故用判别式2240mm m,解得45m解法二:设cos x r ,sin yr ,条件转化为2cossin1r r ,即12cossinr所求代数式转化为cos1cos 2cossinr r的最小值由此可有斜率角度求值域:2cos sin 2cos2sin2sin 252cos 1cos 1cos 14,(视为单位圆上的点与1,2连线斜率),则22cos 142cossin5xxy也可由三角函数角度求值域:22cos 14sin21cos12112cossin5mm m mm m评注:这里因为遇到22xy 的结构,故三角换元设cos x r ,sinyr 。
解法三:数形结合当0x时,点P 为21xy 上的一点,则22x xyPOPH如图,就是典型的“饮马问题”,点O 关于直线21xy的对称点42,55Q 到y 轴的距离为45当0x 时,点P 为21x y上的一点,则22x xyPO PH而21POOHOB PH PH于是1PO PH好题速递253题如图,直线m 与平面,垂足是O ,正四面体ABCD 的棱长为4,点C 在平面上运动,点B 在直线m 上运动,则点O 到直线AD 的距离的取值范围是.解:题意中是点O 是定点,正四面体ABCD 运动,但始终保持OBOC 不变不妨反过来换位思考,将正四面体ABCD 固定下来,让点O 在以BC 为直径的球面上运动,如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【有关高中数学教学的】高中数学经典大题150道
学习活动对学生来说本身就具有重要的意义,但是由于个体间的差异和教学时间紧迫等客观因素决定了在数学课堂上教师不可能兼顾到每一个学生的实际情况.
第一篇:民族地区的高中数学教学
1.
当前高中数学教学的问题和分析
①不注重知识的循序渐进:从初中到高中的知识跨越是一个循序渐进的过程,一定要做到让学生吸收。
而现在的教师为了让学生掌握的更多,没节制的拓宽知识面,不断地补充一些公式或者特殊的解题方法,这些在高中生的高三复习阶段屡见不鲜,导致学生的负担过重不能更好的发挥。
②因材施教没有落到实处:一些高中教师教学过程中分层教学把握不到位,教法单一。
只讲”范式”,不讲”变式”,只要求记结论、套题型,多数学生浅尝辄止,不求甚解。
学生学习毫无兴致,导致两级分化严重。
2.
教学新思路探索
2.1注重生源状况研究,实施因材施教依据少数民族地区生源质量较差的实际情况,
教师需要对其因材施教。
结合班级里学生能力参差不齐的实际,传统的一些僵化教法根本无法适应当前新课程改革的要求,无法推进后进生的转化。
教师需要根据生源状况,将其分为差、中、好三个档次,对后进生在知识方面进行详细的了解,设计问题的过程中可以梯度小一点,采取”小步子、慢速度”的原则。
2.2掌握新课改新课程的基本理念在新课改下,高中数学旨在构建学生发展和学习的良好基础,激励学生学习的积极主动性;促进学生的全面发展,注重学生数学思维的形成,把信息技术和课程化作一体,建立适应学生个性发展的学习体系。
这一切都要求教师提高自身的综合素质,在教学中探索更好的教学方法,实现从知识的传授到学生能力的培养的跨越。
2.3注重知识传授的循序渐进以及改进方法新课改高中数学教学的关键就是循序渐进,只有完成这个环节,才能顺利的开展教学。
有的老师眼中只有成绩,一味赶进度,形成”填鸭式”的教学模式。
但事实上这样会适得其反,数学学科肩负着学生运算能力、逻辑思维能力和空间想象能力的培养。
它的特点就是很抽象,对能力的要求很高。
所以如果不遵从循序渐进的原则,那么必然会形成很多学生的掉队,不仅会影响学生的兴趣,更重要的是还会影响其成绩。
所以高中数学教学方法一定要活,因材施教,要具有针对性。
教师要真正成为学生的引导和合作者。
考虑学生的自身状况以及学习需要,辅以多媒体教学,培养学生的积极性和兴趣,做到学生不仅能够掌握现有概念和技能,还能独立思考学习,要充分鼓励学生自主探索。
2.4落到实处的具体教学方法首先,教师在教学中要重视心境和情境的创设。
心境的设置就是指提供给学生良好的心理环境。
教学过程中一定要注意讲授深度的的控制,设置不同层次的素材,保证大部分同学能够吸收。
因此教师一定要熟悉初中教材的内容,在教学中要重视初中知识的利用,过渡衔接要好.高中数学教师要注重数学情境的创设,比如在讲授重要的定理时,可以再现数学家发现的过程,既可以提高同学的兴趣,又能达到真正的认识理解。
其次,构建有效课堂,使绝大多数学生能在规定时间内掌握规定的教学内容,实现高效率、高质量的课堂。
有效课堂对学生的要求是:尽可能多地参与,尽可能多地掌握教学内容;对教师的要求是:洞悉教材、洞悉学生、洞悉课堂内外,兼顾优生、兼顾差生、面向全体,集体参与、共同参与、覆盖面大,多样化的教学情境、奖励和评价。
有效课堂还强调教师在备课上要做到:备教材、备心境、备学生、备导入、备方法、备设问、备层次、备训练、备语言、备板书、备课件、备小结等,在教学中努力优化教学过程,达到效果最佳化。
以上教学思路的落实是对教师教学能力的一个长期磨练,非一日之功也。
3.
总结
新课改下高中数学的教学也在发生重要改变,教师一定要根据新教材的特点转变观念,重新审视自己的角色变化,注重理论对数学教学思维的引导作用,把抽象的数学学习转变成有趣的数学活动,培养学生的数学思维和创新观念。
使课堂教学从有效课堂的构建起步,逐步实现向高效课堂的过渡。
这样才能让数学教学的改革取得关键的突破。
这些都关系到我国的教育改革能否顺利实施,关系到国家的未来,教师教学实践任重而道远。
作者:杨尚辉单位:贵州省贞丰中学
第二篇:高中数学模块化
一、从课堂教学的教学目标来分析高中数学模块化复习
所有的课堂教学活动都是有教学目标的,不可否认的是任何教学活动的最终目的都是为了让学生能够听得懂新的教学内容,学会新的知识,从更高层次上来说,甚至是追求学生的数学认识、数学思维、数学能力以及数学情感四者能够和谐的发展.
而采用数学模块化复习方式可以提高数学学习的效率,有针对性地进行数学模块训练,强化数学思维能力,使解题印象更加深刻,从而达到加深理解记忆的目的.
高中数学的模块化复习并非是对某一节课而进行的数学活动,而是从整体认知出发,衡量教学目标落实情况的重要标准,更是补充完成课堂教学目标的重要举措.
二、从数学课堂教学活动中师生的主体地位来分析高中数学模块化复习
高中新课程标准倡导以学生为学习的主体,主张引导学生作为学习的主体参与到课堂教学中来,弱化教师的主导地位.
要“以学生的发展为本”,从学生全面发展的需要出发.
但是学生之间的差异是普遍存在的,容不得忽视的,这就决定了“一刀切”“全盘端”的教学模式是不合理的.
在数学模块化复习活动中,师生双方扮演着不同的角色,学生在教师的活动中是客体,教师把学生当作客体来认识他们的知识掌握运用水平、指出他们阶段性掌握知识的盲点,甚至“补充”他们的不足;使学生的知识能力见长,身心获得发展.
而学生是整个教学活动的主体,在整个复习活动中可以根据自己的知识欠缺情况调整安排复习时间,迅速的查漏补缺,完善自身完整的知识系统.
数学教师是教学过程的认识者、组织者,他们对数学模块化复习过程中所涉及的各种知识进行归类整理,然后对学生的掌握情况进行认识,重新评估检测以后引导学生根据自己的掌握情况建立个性化的复习方案.
这是一个科学探索的过程,因此,在数学模块化复习过程中,数学教师不只是为学生的学习在付出努力,它同时也是教师自己的生命价值和自我发展的体现.
三、从时间上来分析高中数学模块化复习的意义
“活到老,学到老”.
学习是没有尽头,没有终结的,我们所能做的就是在一段时间内尽最大可能地去学习.
从这一点来说,高中数学进行模块化复习是很有必要的.
高中的数学知识模块之间的联系不大,一方面这样的知识结构有利于学生的持续学习,即便是前一部分的知识掌握情况不尽如人意,但是并不影响后一个模块的学习掌握;另一方面,学习的新知识跟前面的联系不够紧密,很容易“前学后忘”,影响整个知识体系的掌握情况.
进行数学模块化复习,可以有效地避免这种情况,况且温故而知新,有的知识在学的时候可能鉴于没理解或者来不及消化的情形当时掌握情况并不理想,经过一段时间的消化理解以后,再回过头来看,说不定会有新的想法,新的理解,有利于学生进一步理解.
四、高中数学模块化复习对学生本身的意义
学习活动对学生来说本身就具有重要的意义,但是由于个体间的差异和教学时间紧迫等客观因素决定了在数学课堂上教师不可能兼顾到每一个学生的实际情况.
这在很大程度上影响了学生的整体进步,使一些数学基础较差或者理解能力差的学生
落后于其他同学,在一定的时间内如果不能及时地让这部分落于整体水平后面的学生理解掌握,并赶上教学进度,就会影响他们对知识的接收,造成知识脱节,学生会感到学习吃力,进而造成他们的学习积极性受挫.
从这个方面来说教师高中数学进行模块化复习,可以及时地给落后的学生一个缓冲的时间,让他们理解消化,重拾学习数学的信心.
综上所述,数学学习的方法有千万种,但是回顾反思是教学活动中必不可少的一个环节.
高中数学进行模块化复习为学生的学习掌握情况树立了一个标杆,跨过去才能为一个阶段的学习画上圆满的句号.
进行高中数学模块化复习,才能不断地完善学生的知识体系,并最终为学生的数学学习活动谱写完美的篇章.
作者:朱丽单位:江苏大丰市南阳中学
感谢您的阅读!。