晶体的宏观对称性

合集下载

晶体的宏观对称性

晶体的宏观对称性
1.1.5 晶体的宏观对称性 1、几个概念
对称性:若一个物体(或晶体图形)当对其施行某
种规律的动作以后,它仍然能够恢复原状(即其中
点、线、面都与原始的点、线、面完全重合)时,
就把该物体(图形)所具有的这种特性称之为“对 称性”。
目录
上页
下页
退出
目录
上页
下页
退出
对称条件
a〕物体或图形必须包含若干个彼此相同部分或本身可以被 划分若干个彼此相同部分。 b〕相同部分必须借助某种特定动作而发生有规律重复。 对称操作:能使对称物体或图形中各个相同部分作有规律
目录
上页
下页
退出
表1.3 晶体的32种点群
晶系 三斜 单斜
m 2 2/m
正交
2 2 2 2/m 2/m 2/m
四方
4
菱方
3
3
六方
6
立方
2 3 2/m 3
4
2 m m 表1.3 1 晶体的32种点群
1
对 称 要 素
4 4/m
4 2m
6 6/m
6
1
3m 32
3 2/m
2 m
3 m 432
4 m m 4 2 2
对称中心 对称面 点
回转-反演轴 3次 4次 6次
直线
绕直线旋转
360 1 180 2 120 3 90 4 60 6
平面
直线和直线上的定点 绕线旋转+对点反演
对称操作
基转角α 国际符号
对点反演 对面反映
120 i
1
90
4
60
6
m
2
3
3+i
3+m

矿物结晶学基础:晶体的宏观对称与分类

矿物结晶学基础:晶体的宏观对称与分类

矿物结晶学基础:晶体的宏观对称与分类晶体的宏观对称晶体的内部质点在三维空间为周期性的重复排列,因此晶体(原石)都具有一个特性----对称性→构成其外部几何形态的面、棱和角顶有规律地重复。

钻石原石海蓝宝原石尖晶石原石与成品对称是有限的不同的宝石矿物由于其内部质点按不同的规律重复排列(格子构造不同),因而会具有不同的对称性。

有的矿物晶体对称性很高(如钻石和尖晶石等),有的则对称性较低(如托帕石、天河石等)。

只有符合格子构造规律的对称才能在晶体上体现出来,因此晶体的对称是有限的。

对称性很高的石榴石对称性没那么明显的天河石如何分析对称性?为了研究和分析晶体的对称性,往往要进行一系列的操作----使晶体中相同部分重复而进行的操作,称之为对称操作。

进行对称操作所借助的几何要素(点、线、面)称为对称要素,一般包括对称面、对称轴和对称中心等。

对称面----是一个假想的通过晶体中心的平面,它将晶体平分为互为镜像的两个相等部分,以P来表示,最多可有9个。

对称面与非对称面的对比立方体的九个对称面(记作9P)对称轴----一根假想的通过晶体中心的直线。

怎么确定呢?围绕此直线旋转一周,看晶体中相同部分重复出现的次数,我们把次数叫轴次,且只能出现2、3、4、6次,分别表示为L2、L3、L4、L6。

其中轴次高于2次的对称轴(即L3、L4、L6)称为高次轴。

绿柱石具六次对称轴(可见正六边形的横截面)对称中心----一个假想的位于晶体中心的点,相应的对称操作就是对此点的反伸。

如果通过此点作任意直线,则在此直线上距对称中心等距离的两端必定可找到对应点。

对称中心用C来表示。

PS:对称中心C最多只有一个。

当存在对称中心时,晶面常成对分布、两两平行、同形等大......对称要素总结一个晶体中所有对称要素(对称面、对称轴和对称中心)的组合称为该晶体的对称型。

例如,萤石晶体存在三个L4、四个L3、六个L2、九个对称面P、一个对称中心C,那么萤石的对称型就是所有这些对称要素的总和。

23晶体的对称性和分类

23晶体的对称性和分类
晶体的对称性可以从晶体外形的规则性上反映 出来,如sc、bcc、fcc结构的立方晶体,绕晶胞的任 一基矢轴旋转π/2或π/2的整数倍的操作,都能使晶 体的外形保持不变,这就是晶体的对称性.
操作前后晶体保持自身重合的操作,称为对称 操作.
晶体借以进行对称操作的轴、平面或点.称为对 称元素(简称对称素).
6)表示纯转动对称操作(或转动轴);i表示中心反演
(或对称中心);m表示镜面反映(或对称镜面)。
这种表示方法属于国际符号(International
notation)标记法,是海尔曼(Hermann)和毛衮
(Mauguin)制订的,在晶体结构分析中经常使用。
还有一套标记法,是固体物理中惯用的标记, 是熊夫利(Schoenflies)制订的,因此称为熊夫利 符号(Schoenflies notation). 熊夫利符号中Cn 表 示旋转轴;Sn 表示旋转反演轴;Ci 表示中心反 演;Cs 表示镜面反映。
x x
y
y
cos
z
sin
z
y
sin
z
cos
x 1 0 0 x
y0 cos siny z 0 sin cos z
所以,绕x轴旋转的变换矩阵为:
1 0
0
Ax
0
cos
sin
0 sin cos
同理可得绕y轴和绕z轴的变换矩阵
cos 0 sin
Ay
0
1
0
sin 0 cos
cos sin 0
晶体中允许的转动对称轴只能是1、2、3、4和6次轴, 称为晶体的对称性定律
晶体的对称性定律的证明 B
A
如图,A为格点,B为离A最近的 格点之一,则与 平A 行B 的格点

晶体的宏观对称性

晶体的宏观对称性
L2n + P = L2n PC L2 • P = C
5
2017/2/23
推论一:如果在偶次旋转轴上有对称中心,则必有一反映面 与旋转轴垂直相交于对称中心。
对称元素的组合:对称图形中具有两个(以上)对 称元素,通常用加号表示。如四次轴和对称中心的组 合表示为:4 i。
显然,如果对称图形具有两个(以上)对称元素, 它们的连续操作必定为复合对称操作。
镜转轴(象转轴):图形绕一直线旋转一定角度后, 再以垂直于该直线的平面进行反映,相应的对称动 作为旋转和反映的复合操作。
反映面的惯用符号:P;国际符号:m;圣佛里斯符号:Cs
1
反映面的极射赤面投影
2017/2/23
立方体中的反映面
反映操作联系起来的两部分互为对映体。如晶体自身 存在反映面,该晶体不存在对映体。
九个反映面
六个反映面
三个反映面
对称中心的极射赤面投影
对称中心(centre of symmetry/inversion centre):对称物体或 图形中,存在一定点,作通过该点的任意直线,在直线上 距该点等距离两端,可以找到对应点,则该定点即为对称 中心。相应的对称操作为反演。
第二章 晶体的宏观对称性
第一节 对称性基本概念 第二节 晶体的宏观对称元素 第三节 宏观对称元素组合原理 第四节 晶体的三十二点群
2017/2/23
点阵格子
晶胞
(等效)晶向指数
(等效)晶面指数
第一节 对称性基本概念
对称– 物体或图形的相同(equivalent)部分有规律的 重复。
对称动作(操作)– 使物体或图形相同部分重复出现 的动作。
C i(Ci)
1
P
L3i L4i L6i

《晶体的宏观对称性》课件

《晶体的宏观对称性》课件
对称性是晶体学中一个非常重要的概念,它有助于我们理解晶体的结构和性质。
晶体对称性的分类
晶体对称性可以根据其对称操作的不同进行分类,主要包括7种点群和10 种布拉维格子。
点群是指在三维空间中围绕一个点进行对称操作的集合,包括32种不同 的点群。
布拉维格子则是指晶体中原子排列的周期性模式,包括简单格子、复式 格子和面心格子等。
《晶体的宏观对称性》 ppt课件
• 引言 • 晶体的基本概念 • 晶体的宏观对称性 • 晶体对称性的应用 • 晶体的宏观对称性与晶体物理性质的
关系 • 总结与展望
01
引言
课程简介
晶体对称性是晶体学的重要概念 ,它描述了晶体在宏观尺度上的
对称特征。
本课程将介绍晶体对称性的基本 概念、分类和在材料科学中的应
例如,立方晶体具有高度的对称性,因此其光学、电学和热学性质在各个方向 上都是相同的。
对称性破缺与物理性质的变化
对称性破缺的概念
01
当晶体失去原有的对称性时,称为对称性破缺。
对称性破缺对物理性质的影响
02
对称性破缺会导致晶体物理性质的变化,如光学、电学和磁学
性质的各向异性。
对称性破缺的实例分析
03
例如,石墨晶体中的层状结构导致其对称性在垂直于层面的方
在材料科学中的应用
01
晶体对称性与材料性能
材料的物理和化学性质与晶体的对称性密切相关。例如,金属材料的导
电性和导热性、陶瓷材料的硬度等都与其晶体结构对称性有关。
02 03
晶体对称性与材料合成
通过控制材料的晶体对称性,可以合成具有特定性能的新型材料。例如 ,通过改变晶体结构中的原子排列,可以合成具有高强度、高硬度、耐 高温等优异性能的新型陶瓷材料。

高中化学竞赛【晶体的对称性】

高中化学竞赛【晶体的对称性】
同理, 可以求出晶 面2的晶面指标是: (001); 晶面3的晶面指 标是: (201)。可以看出 1个晶面指标代表一组 平行的晶面。
晶面3
c
晶面2
晶面1
b a
晶面指标示例
例题: 1. 某一立方晶系晶体,晶胞的顶点位置全为
A占据,棱心为B占据, 体心为C占据。①写
出此晶体的化学组成; ②写出A、B、C的
(4)十四种空间点阵形式 立方晶系有立方简单点阵P (立方P ) 、立方
体心点阵I (立方I ) 、立方面心点阵F (立方F );四 方晶系只有四方简单点阵P (四方P ) 、四方体心 点阵I (四方I ); 正交晶系有正交P 、正交I 、正交 F 、正交C (或侧心A和B); 单斜晶系有单斜P 、 单斜C ; 三方、六方、三斜都只有素格子。可见, 晶体只有14种空间点阵型式。见下图。
晶体的对称性
1.晶体的宏观对称性 晶体的宏观对称性就是晶体外型的对称性。
也就是有限物体的对称性。
方铅矿
金绿宝石
(1)晶体的宏观对称元素: 由于习惯原因, 晶体宏观对称元素与分
子对称性中的对称元素名称、符号都不完全 相同。
对称元素 旋转轴n 反映面或镜面m 对称中心i
反轴 n
对应对称操作 旋转L(α) 反映M 倒反I 旋转倒反L(α) I
3.晶面和晶面指标 晶面:晶体中平面点阵所在的平面。 晶面指标: 晶面在三个晶轴上的倒易
截数的互质整数之比。记为: (h*k*l*) 晶面与晶面的交线称为晶棱, 晶棱与
直线点阵对应。
例如, 右图中晶面 1在3个晶轴上的截数 分别:1/2,∞,∞, 因此倒 易截数:2,0,0, 划成互质 整数比后成为: 1:0:0, 因此晶面1的晶面指标 是: (100)。

晶体的宏观对称性

晶体的宏观对称性

晶体的宏观对称性一宏观对称性晶体的点阵结构使晶体的对称性跟分子的对称性有一定的差别。

晶体的宏观对称性仍然具有分子对称性的4种类型,但受到点阵的制约:旋转轴和反轴的轴次只能为1、2、3、4、6等几种。

因此,宏观对称元素只有:n=1,2,3,4,6;i,m,二宏观对称元素组合和32个点群对于宏观对称元素而言,进行组合是必须严格遵从两个条件的限制:第一,晶体的多面体外形是一种有限图形,因而各对称元素组合必须通过一个公共点,否则将会产生出无限多个对称元素来,这是与有限外形相互矛盾的;第二,晶体具有周期性的点阵结构,任何对称元素组合的结果,都不允许产生与点阵结构不相容的对称元素(如5、7、…等),可产生32个点群。

三晶系根据晶体的对称性,按有无某种特征对称元素为标准,将晶体分成7个晶系:立方晶系:在立方晶胞4个方向对角线上均有三重旋转轴(a=b=c, α=β=γ=90)六方晶系:有1个六重对称轴(a=b, α=β=90;, γ=120;)四方晶系:有1个四重对称轴(a=b, α=β=γ=90;)三方晶系:有1个三重对称轴(a=b, α=β=90;, γ=120;)正交晶系:有3个互相垂直的二重对称轴或2个互相垂直的对称面(α=β=γ=90;)单斜晶系:有1个二重对称轴或对称面(α=γ=90;)三斜晶系:没有特征对称元素十四种空间点阵由于这些型式是由布拉维(A.Bravais)在1885年推引得出的,故也称为"布拉维空间格子"。

⑴简单三斜(ap)⑵简单单斜(mP)⑶C心单斜(mC,mA,mI⑷简单正交(oP)⑸C心正交(oC,oA,oB)⑹体心正交(oI)⑺面心正交(oF)⑽简单四方(tP)⑾体心四方(tI)⑻简单六方(hP)⑼R心六方(hR)⑿简单立方(cP)⒀体心立方(cI)⒁面心立方(cF)。

第三章 晶体的宏观对称性

第三章 晶体的宏观对称性

第三章晶体的宏观对称性第一节对称性基本概念第二节晶体的宏观对称元素第三节宏观对称元素组合原理第四节晶体的三十二点群第一节对称性基本概念z对称–物体或图形的相同部分有规律的重复。

z对称动作(操作)–使物体或图形相同部分重复出现的动作。

z对称元素(要素)--对称动作所借助的几何元素(点、线、面)。

z晶体外形的对称为宏观对称性,晶体内部结构原子或离子排列的对称性为微观对称性。

前者是有限大小宏观物体具有的对称性,后者是无限晶体结构具有的对称性。

两者本质上是统一的。

宏观对称性是微观对称性的外在表现。

晶体的对称必须满足晶体对称性定律。

晶体对称性对称自身:国际符号为1,习惯记号为L1。

当它处于任意坐标中的坐标原点时,它的坐标是1(000),所导出的一般位置等效点系为:x,y,z→x,y,z (1(000))反映面(reflection plane ):对称物体或图形中,存在一平面,作垂直于该平面的任意直线,在直线上距该平面等距离两端上必定可以找到对应的点。

这一平面即为反映面。

相应的对称操作为反映。

反映面的惯用符号:P ;国际符号:m ;圣佛里斯符号:Cs反映面的极射赤面投影对称中心(inversion center):对称物体或图形中,存在一定点,作通过该点的任意直线,在直线上距该点等距离两端,可以找到对应点,则该定点即为对称中心。

相应的对称操作为反演。

对称中心的惯用符号:C;国际符号:1;圣佛里斯符号:C对称中心的极射赤面投影返回旋转轴(rotation axe):物体或图形中存在一直线,当图形围绕它旋转一定角度后,可使图形相同部分复原,此直线即为旋转轴。

相应的对称操作为旋转。

在旋转过程中,能使图形相同部分复原的最小旋转角称为该对称轴的基转角(α)。

任何图形在旋转一周(360o)必然自相重复,因此有:360/ α= n n正整数n表示图形围绕旋转轴旋转一周过程中,图形相同部分重复的次数,因此n定义为旋转轴的轴次。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


2 n
表1 描述晶体宏观对称性与分子对称性时常用 对称元素及与其相应的对称操作对照表
除了对称元素和对称操作的符号和名称的不完全相同外,晶 体的宏观对称性与有限分子的对称性最本质的区别是:晶体的点 阵结构使晶体的宏观对称性受到了限制,这种限制主要表现在两 方面: 在晶体的空间点阵结构中,任何对称轴(包括旋转轴、反轴 以及以后介绍的螺旋轴)都必与一组直线点阵平行,与一组 平面点阵垂直(除一重轴外);任何对称面(包括镜面及微观对 称元素中的滑移面)都必与一组平面点阵平行,而与一组直 线点阵垂直。 晶体中的对称轴(包括旋转轴,反轴和螺旋轴)的轴次n并不是 可以有任意多重,n仅为1,2,3,4,6,即在晶体结构中,任何 对称轴或轴性对称元素的轴次只有一重、二重、三重、四 重和六重这五种,不可能有五重和七重及更高的其它轴次, 这一原理称为“晶体的对称性定律”。 所以,综合前面的讨论,由于点阵结构的限制,晶体中实际 存在的独立的宏观对称元素总共只有八种,见表2:

群 对称元素
称元素

序 熊夫里 国际记号 号 斯记号 1 2 3 4 5
abc
90
abc

90
abc
cs c2 h
D2
D 2v
c1 ci c2
1
m
1 2 m 2
2
i
m 2, m, i
32 2, 2

正 两个互相垂 直的m或三 交 个互相垂的
组合程序: 组合时先进行对称轴与对称轴的组合,再在此基础上进行 对称轴与对称面的组合,最后为对称轴、对称面与对称中心 的组合。 按照以上程序及限制进行组合,我们可以得到的对称元 素系共32种,即32个点群:
表3 7个晶系的划分和32晶体学点群
对称 晶 性的 高低 系 三 斜 单
2 或m
特征对 晶胞类型
6

2
90
abc
7 8 9
222 mm 2
m
D 2h

四 方
4
10
90 11
12
c4 s4
222 32, 3 m, i mmm 4 4
4 4 4 4 , m, i m 422 4 , 4 2
c4 h
D4
续表:
对称 晶 性的 高低 系 四 方 特征对 晶胞类型 称元素 序 号 13 14 15 点 熊夫里 斯记号 群 国际记号 对称元素
L(60 )
L(90 ) I
4
表2 晶体中的宏观对称元素
注: 因为1 : L(0 ) I I;2 : L(180 ) I M ; 3 : 3 3 i ; 6 3 m ,所以 均未单独列入表中,而 4 4 i ,所以只有 4 是独立存在的, 不能用其它对称元素组合的方式代替,故单独列入。
说明:
1 : L(0 ) I I
2 : L(180 ) I M
i;
m;
3:
E
L(120 ) I ;
3
L(120 ) I ; L(120 ) I L(240 ) I ;
5
L(120 )I L(240 ); L(120 ) I L(120 );
对称元素
对称中心
反映面(镜面) 一重旋转轴
国际符号
对称操作
倒反
反映 旋转
等同元素或组合成分
1
i
m
1
I M
L(0 ) L(180 ) L(120 ) L(90 )
3 i 3
2
二重旋转轴
三重旋转轴 四重旋转轴 六重旋转轴 四重反轴
2 3 4 6
旋转
旋转 旋转 旋转 旋转倒反
3 m 6
120 90
六方晶胞
abc
90 120
c3v
D 3d
3m
2 3m
续表:
对称 性的 高低 晶 系 特征对 晶胞类型 称元素 序 号 点 群 对称元素 熊夫里 国际记号 斯记号
21
22
abc

六 方
23

c6h
D6
c3h c6v
D 3h D 6h
c6
6
6
6(3, m)
6
90 120

24 25 26 27 28
ˆn c ˆn ˆh s
在晶体中反轴 n 对应的操作是先绕(轴)线旋转α度,然后 再通过线上(中心)点进行倒反(或先倒反再旋转),即能产生等 价图形。这种连续性操作的符号为 “ L( ) I ”, 其中“ ”为 倒反 ” 为旋转. L( ), “ n 与Sn都属于复合对称操作,且都由旋转与另一 由此可知, 相连的操作组合而成。
晶体的宏观对称元素
晶体的对称性 与有限分子的对称性一样也是点对称,具有 点群的性质,如都有对称轴、对称面、对称中心等对称元素。 但是,由于习惯的原因,讨论晶体对称性时所用的对称元 素和对称操作的符号和名称与讨论分子对称性时不完全相同, 具体对比见表1: 从表中我们发现 晶体学中我们常用反轴而不用象转轴。 在分子点群中有象转轴 sn , 其对称操作是旋转反映,即:
4
abc
c4 v
D 2d D 4h
4 mm
4,4m
90
菱面体晶胞
4 2m 4,22,2m 422 mmm 4,42,5m, i
abc
中 三 方
16
17 18 19 20

c3 c3i
D3
3
3
3
3 2
3, i
3,32 3,3m 3,32,3m, i
3
I
分子对称性
对称元素及符号 对称操作及符号
晶体宏观对称性
对称元素及符号 对称操作及符号
对称轴
对称面
cn

旋转
反映
ˆn c
旋转轴
n 旋转
L( )
实 操 作
ˆ
ˆ i
反映面或镜面 m 反映
M
I

对称中心 i
象转轴
反演
旋轴反映
对称中心
反轴
i 倒反


sn
ˆn s
n 旋转倒反 L( ) I
以上 为基转角.

2


4

3 3 i
同理
6 3 m
但是
4 4i
这说明在反轴中,只有4 是独立的。
晶体宏观对称元素的组合
晶体的独立的宏观对称元素只有八种,但在某一晶体中 可以只存在一个独立的宏观对称元素,也可能有由一种或几 种对称元素按照组合程序及其规律进行合理组合的形式存在。
两பைடு நூலகம்限制:
对于宏观对称元素而言,这些元素组合时必受以下两条的限制: (1)晶体多面体外形是有限图形,故对称元素组合时必通过质心, 即通过一个公共点。 (2)任何对称元素组合的结果不允许产生与点阵结构不相容的对 称元素,如5、7、…。
相关文档
最新文档