大学物理刚体部分知识点总结
刚体知识点总结

刚体知识点总结刚体是物理学中一个重要的概念,它是指在力的作用下形状和大小不会发生明显变化的物体。
在本文中,我们将从基本概念、刚体运动以及刚体的应用等几个方面来总结刚体的相关知识点。
1.刚体的基本概念刚体是指在外力作用下,保持形状和大小不变的物体。
它具有以下特点:–刚体的分子结构比较紧密,分子之间的相互作用力较大;–刚体的形状和大小不会随外力作用而发生变化;–刚体具有固定的质心,质心是刚体内各个质点的平均位置。
2.刚体的运动刚体可以进行平动和转动两种运动。
–平动指的是刚体的每一个质点都沿着相同的方向进行平行移动,它的质心也会做相应的平行运动。
–转动指的是刚体围绕某一轴线进行旋转,它的每一个质点都围绕轴线做圆周运动。
3.刚体的平衡刚体的平衡可以分为静平衡和动平衡两种情况。
–静平衡指的是刚体处于平衡状态,不受外力作用导致的平动和转动。
–动平衡指的是刚体处于平衡状态,但可能存在外力作用导致的平动或转动,但整体来说仍然保持平衡。
4.刚体的应用刚体的概念和原理被广泛应用于物理学和工程学中的各个领域。
–在物理学中,刚体的概念是研究物体运动和力学原理的基础,例如在力学中用刚体模型研究物体的平衡和运动规律。
–在工程学中,刚体的原理被应用于结构力学和材料力学等领域,用于分析和设计各种结构和机械系统的受力和变形情况。
总结:刚体是物理学中一个重要的概念,它指的是在外力作用下形状和大小不会发生明显变化的物体。
刚体可以进行平动和转动两种运动,并且可以处于静平衡和动平衡的状态。
刚体的概念和原理在物理学和工程学中有广泛的应用,用于研究物体的运动和力学原理,以及分析和设计各种结构和机械系统的受力和变形情况。
文章长度:182字。
物理刚体知识点总结

物理刚体知识点总结一、刚体的概念和性质刚体是指物体的形状和大小在外力作用下不发生变化的物体。
刚体的性质包括:刚体的各部分之间的相对位置关系在运动时不发生变化;刚体的各点在一个时间内不发生相对位移;刚体是不可压缩的;刚体的形状和大小在外力作用下不发生变化。
在学习刚体的物理知识时,需要掌握刚体的这些概念和性质。
二、刚体的平动和转动运动刚体的运动包括平动和转动两种。
平动是指刚体的各点在任一时刻都有同样的速度和同样的加速度,而转动是指刚体的各点在任一时刻都有不同的速度和不同的加速度。
在学习刚体的物理知识时,需要了解平动和转动的特点,以及刚体在这两种运动中的表现和规律。
三、刚体的运动方程和刚体的运动规律刚体的运动方程描述了刚体在平动和转动中的运动规律。
对于平动,刚体的平动方程是牛顿第二定律的推广和应用,即F=ma;对于转动,刚体的转动方程涉及力矩和角加速度的关系,即τ=Iα。
刚体的运动规律包括牛顿定律、动量定理和角动量定理。
在学习刚体的物理知识时,需要掌握刚体的运动方程和运动规律,并能够应用它们解决实际问题。
四、刚体的静力学刚体的静力学研究了刚体在平衡状态下的性质和规律。
刚体在平衡状态下,外力矩的和为零,即Στ=0;刚体的平衡方程是ΣF=0。
刚体的静力学还包括平衡条件和平衡的稳定性条件。
在学习刚体的物理知识时,需要了解刚体的静力学和平衡状态的相关概念和定律,并能够应用这些知识解决实际问题。
五、刚体的运动学刚体的运动学研究了刚体的位移、速度和加速度等运动参数的关系。
刚体的平动和转动运动都涉及位置、速度和加速度的关系。
刚体的平动运动参数包括位移、速度和加速度;刚体的转动运动参数包括角位移、角速度和角加速度。
在学习刚体的物理知识时,需要了解刚体的运动学,并能够应用它们描述和分析刚体的运动。
六、刚体的动力学刚体的动力学研究了刚体的运动与外力之间的关系。
刚体在运动中受到的外力包括平动受力和转动受力。
平动受力包括牛顿定律描述的作用在质点上的力,而转动受力则是力矩的概念。
大学物理(刚体部分)

i
O
fi
法向无用,切向运动,牛二律
ri mi
F i i i
Fi sin i fi sin i mi ait mi ri i ait ri i 为Δmi的切向加速度 O
Fi sin i ri fi sin i ri mi ri2 i
1
§1 刚体定轴转动及其描述
一、刚体 物体受力作用时,组成它的各质量元之间的 相对位置保持不变.有大小,形状不变. 二、平动和转动 (刚体运动的基本形式) 平动:刚体内任意两点连线的空间指向始终 保持不变,各点的运动情况完全相同. 转动:刚体内各质点在运动中都绕同一直线 作圆周运动.该直线称转轴. 转轴固定不动---定轴转动. 更复杂的运动,刚体平动和转动合成的运动. 例:车轮,螺帽等. 2
mgL 1 2 mgL 3g I 0 2 2 I L
22
定轴转动中的功能原理和机械能守恒: 1 系统 1 1 E mv2 mgh kx 2 I 2 mghc 机械能: 2 2 2 功能原理: W外+W非保内=△E 机械能守恒:W外+W非保内=0→△E=0
W Md I
1
2
d d I 2 d 1 dt
W
1 2 1 2 I 2 I 1 2 2
转动动能定理:合外力矩对刚体作的功等于 刚体转动动能的增量. 动能定理解题:1.任意位置力矩;2.元功; 3.总功;4.转动动能增量.
21
例1:利用动能定理重作前例题6. 解:当杆转到任意角位置θ处, O 对O轴的重力矩 L M mg cos mg 2 则在整个过程中重力矩作功为 /2 L mgL W dW Md mg cos d 0 2 2 由转动动能定理得
大学物理第三章刚体力学

薄板的正交轴定理:
Jz Jx J y
o x
y
X,Y 轴在薄板面上,Z轴与薄板垂直。
例3、质量m,长为l 的四根均匀细棒, O 组成一正方形框架,绕过其一顶点O 并与框架垂直的轴转动,求转动惯量。 解:由平行轴定理,先求出一根棒 对框架质心C的转动惯量:
C
m, l
1 l 2 1 2 2 J ml m( ) ml 12 2 3
M F2 d F2 r sin
若F位于转动平面内,则上式简化为
M Fd Fr sin
力矩是矢量,在定轴转动中, 力矩的方向沿着转轴,其指向 可按右手螺旋法则确定:右手 四指由矢径r的方向经小于的 角度转向力F方向时,大拇指的 指向就是力矩的方向。根据矢 量的矢积定义,力矩可表示为:
例9 行星运动的开普勒第二运动定律:行星对太阳 的位矢在相等的时间内扫过相等的面积。 解:行星在太阳引力(有心 力)作用下沿椭圆轨道运动, 因而行星在运行过程中,它 对太阳的角动量守恒不变。
L rmvsin 常量
因而掠面速度:
dS dt
r dr sin 2dt
1 rv sin 常量 2
Fi fi Δmi ai
切向的分量式为
Fi sin i f i sin i mi ri
Fi sin i f i sin i mi ri
两边同乘ri,得
Fi ri sin i fi ri sin i mi ri2
上式左边第一项为外力Fi对转轴的力矩,而第二项是 内力fi 对转轴的力矩。对刚体的所有质点都可写出类 似上式的方程,求和得
质点的角动量一质量为m的质点以速度v运动相对于坐标原点o的位置矢量为r定义质点对坐标原点o的角动量为sinrmv282质点的角动量定理质点所受的合外力对某一参考点的力矩等于质点对该点的角动量对时间的变化率角动量定理
大学物理_第二章_刚体

2rdr
m
R2
2
rdr
(2) 求 d J
利用上题结果 dJ = r2 dm
r 0
(3) 求 J
dr
J
r 2dm
m
Rr2
0
m
R2
2
rdr
1 mR 2 2
J 1 mR 2
2
例3:求均匀细杆对中心轴及边缘轴的转动惯量
对质心轴 (1) dm dx m dx
l
mO
在半径为r、宽度为dr的面积元dS上的质元
0
具有相同的线速度v。则dS上阻力的大小为:
dF f dS f 2 r dr
考虑盘的上下表面,故阻力矩大小为
dM 2 r dF
总阻力矩
R
M dM 0 (2r f 2 r)dr
m
R
0 (2r kv 2 r)dr
与力的作用点的位置和方向都有关。即,只有力矩才
能改变刚体的转动。当M=0时,刚体匀速转动或静止
r
f11 f
f⊥
m
M
r
f
M r f11 f rf11 r f
对转动没影响 M r f r f
大小f:应 M 理 r解f s为 in在方转向动:平沿面r 内f
2
1 3
mL2
又如求均匀圆盘对于通过其边缘一点 O 的平行
轴的转动惯量:
JO JC md2
Jo
1 2
mR2
mR2
3 mR2 2
大学物理刚体归纳总结

大学物理刚体归纳总结在大学物理学习中,刚体是一个重要的概念,广泛应用于力学、动力学和静力学等领域。
本文将对刚体的定义、特点以及相关定理进行归纳总结,旨在帮助读者更好地理解和掌握刚体的基本知识。
一、刚体的定义和特点刚体是指可以看作一个整体、无论受到什么力都能保持形状不变的物体。
在实际应用中,我们常常将刚体简化为点、线或面,以便进行研究和计算。
刚体具有以下特点:1. 形状不变性:无论刚体受到外力的作用,其形状都不会发生改变。
2. 外力作用点的变化不引起内部构件间相对位置的改变:即刚体内各个质点之间的相对位置保持不变。
3. 刚体内各个质点之间的相对位置保持不变:即刚体内构件间的距离和角度不会发生变化。
二、刚体的运动学性质1. 刚体的平动:刚体作平动时,刚体上每个点的速度都相同,且方向相同。
2. 刚体的转动:刚体作转动时,刚体上的各点绕着同一条轴旋转。
这个轴称为刚体的转轴,刚体绕转轴的转动速度相同。
刚体平衡的条件是力矩的和等于零。
力矩是由力对刚体产生的转动效果,其大小与力的大小、作用点到转轴的距离和力的夹角相关。
四、刚体静力学定理与公式1. 雅可比定理:在刚体有多个力作用时,可以将这些力简化为只有一个力等效,该力的大小、方向和作用点都与原有多个力相同,这个力称为合力。
2. 力的合成定理:当刚体上有多个力作用时,可以将这些力合成为一个结果力,该力等效于原有多个力的合力。
3. 力矩的平衡条件:对于处于平衡状态的刚体,刚体上力矩的和必须等于零。
4. 平衡条件的应用:根据刚体平衡条件,可以解决各种与刚体平衡有关的问题,如悬挂物体的平衡、天平的平衡等。
五、刚体动力学定理与公式1. Euler定理:刚体绕固定轴的转动,转动惯量与角加速度和转矩之间存在关系,即转动惯量等于转矩与角加速度的比值。
2. 动量定理:外力矩与刚体的角动量之间存在关系,外力矩等于刚体的角动量关于时间的变化率。
3. 动能定理:刚体的动能与角速度和转动惯量之间存在关系,动能等于转动惯量与角速度平方的乘积的一半。
大学刚体知识点总结

大学刚体知识点总结一、刚体的概念和基本性质1. 刚体的基本概念刚体是指在运动或受力作用时,其内部各个部分之间的相对位置保持不变的物体。
刚体的定义包括两个方面:一是刚体的形状和大小在所讨论的现象中不发生改变;二是刚体内各点的相对位置在所讨论的现象中也不发生改变。
这意味着刚体是刚性的,并且不会发生形变。
2. 刚体的基本性质(1)刚性:刚体的所有部分在相互作用下保持相对位置不变,不发生相对位移或形变,这就是刚体的基本性质之一。
(2)刚体的自由度:刚体的自由度是指刚体可以自由运动的最少独立坐标数。
刚体的自由度可以通过不同类型的运动来描述,包括平动、转动和复合运动。
(3)刚体的质心:刚体的质心是指一个质点,它等效于整个刚体对于外力的作用。
在某些情况下,刚体可以看作是一个质点,其运动和受力可以通过质心来描述。
二、刚体的平动1. 刚体的平动运动在刚体的平动运动中,刚体上的各个点都以相同的速度和方向移动。
平动运动可以通过刚体的速度和加速度来描述,它是刚体运动的一种常见形式。
2. 刚体的平动运动描述(1)刚体的平动速度:刚体上的各个点的速度大小和方向相同,这就是刚体的平动速度。
刚体的平动速度可以通过质点运动方程或者质心运动方程来描述。
(2)刚体的平动加速度:刚体上的各个点的加速度大小和方向相同,这就是刚体的平动加速度。
刚体的平动加速度可以通过质点加速度方程或者质心加速度方程来描述。
(3)刚体的平动运动学问题:刚体的平动运动学问题包括刚体的位移、速度、加速度等相关内容,它们可以通过运动学方法来解决。
三、刚体的转动1. 刚体的转动运动在刚体的转动运动中,刚体围绕固定轴旋转。
转动运动是刚体运动的另一种常见形式,它可以通过角度和角速度来描述。
2. 刚体的转动运动描述(1)刚体的角度和角速度:刚体围绕固定轴旋转时,可以通过角度和角速度来描述。
角度是指刚体围绕轴线旋转的角度,角速度是指刚体围绕轴线旋转的角度变化率。
(2)刚体的转动惯量:刚体围绕轴线旋转时,需要通过转动惯量来描述其转动惯性。
大学物理 刚体力学.

图3-14
解:隔离物体m,设线中的张力为T,物体m 的加速度为a,由牛顿第二定律可得
mg T ma
以待测刚体和转动架为整体,设待测刚体的转 动惯量为J,由绕定轴转动的转动定律可得
TR J J 0
由细线不可伸长以及m自静止下落,有
1 2 h at 2
上述各式联立求解得
2 得 Fr sin ( m r i i ) i i i
令 J mi ri2
转动惯量
用M表示合外力矩, 则有: M=J 矢量式:
M J
转动定律
M=J
刚体定轴转动的角加速度与它所受的合外力矩成正比 ,与刚 体的转动惯量成反比 。 说明: 1. M J 与 F=ma 地位相当,m反映质点的平动惯 性,J反映刚体的转动惯性。 2. 力矩是使刚体转动状态发生改变而产生角加速度的原因。 3. 力矩是矢量,方向沿转轴,对定轴转动只有两个方向, 所 以用正负号表示方向。
解 (1)t0 = 0 s时,0 t = 30 s 时, 0. 飞轮做匀减速运动
2 πn 2 π 150 = =5π rad s 1 60 60
0 0 5 π π rad s 2 t 30 6
飞轮 30 s 内转过的角度 2 2 0 0 (5 π)2 75 π rad 2 2 ( π 6)
PP
x
参考 方向
x x
转动平面 转轴
(2)角速度
d dt
角速度方向用右手螺旋法则确定。
定轴转动的角速度仅有沿转轴的两个方向。
用正负号表示方向
d
(3) 角加速度
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、刚体的简单运动知识点总结
1、刚体运动的最简单形式为平行移动与绕定轴转动。
2、刚体平行移动。
·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。
·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能就是直线,也可能就是曲线。
·刚体作平移时,在同一瞬时刚体内各点的速度与加速度大小、方向都相同。
3、刚体绕定轴转动。
•刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。
•刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。
•角速度ω表示刚体转动快慢程度与转向,就是代数量, 。
角速度也可以用矢量表示, 。
•角加速度表示角速度对时间的变化率,就是代数量, ,当α与ω同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。
角加速度也可以用矢量表示, 。
•绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系:。
速度、加速度的代数值为。
•传动比。
二. 转动定律转动惯量
转动定律
力矩相同,若转动惯量不同,产生的角加速度不同
与牛顿定律比较:
转动惯量
刚体绕给定轴的转动惯量J 等于刚体中每个质元的质量与该质元到转轴距离的平方的乘积之总与。
定义式质量不连续分布
质量连续分布
物理意义
转动惯量就是描述刚体在转动中的惯性大小的物理量。
它与刚体的形状、质量分布以及转轴的位置有关。
计算转动惯量的三个要素:
(1)总质量; (2)质量分布; (3)转轴的位置 (1) J 与刚体的总质量有关 几种典型的匀质刚体的转动惯量
平行轴定理与转动惯量的可加性 1) 平行轴定理
设刚体相对于通过质心轴线的转动惯量为Ic,相对于与之平行的另一轴的转动惯量为I,则可以证明I 与Ic 之间有下列关系 2c I I md =+ 2)转动惯量的可加性
对同一转轴而言,物体各部分转动惯量之与 等于整个物体的转动惯量。
三 角动量 角动量守恒定律
2
c I I md
=+
1.质点的角动量(Angular Momentum)——描述转动特征的物理量 1)概念
一质量为m 的质点,以速度v
运动,相对于坐标原点O 的位置矢量为r
,定义质点对坐标原点O 的角动量为该质点的位置矢量与动量的矢量积,即
v m r P r L
⨯=⨯= 角动量就是矢量,大小为 L=rmv sin α
式中α为质点动量与质点位置矢量的夹角。
角动量的方向可以用右手螺旋法则来确定。
角动量的单位: kg 、m 2、s -1
2.质点的角动量定理(Theorem of Angular Momentum) (1)质点的转动定律
问题:讨论质点在力矩的作用下,其角动量如何变化。
设质点的质量为m,在合力F
的作用下,运动方程为
()t
v m t v m a m F d d d d
=
== 用位置矢量r
叉乘上式,得
()t
v m r F r d d
⨯=⨯
考虑到
()()v m t r v m t r v m r t
⨯+⨯=⨯d d d d d d 与 0d d =⨯=⨯v v v t
r
得 ()v m r t
F r
⨯=⨯d d
由力矩 F r M
⨯=
与角动量的定义式()v m r t
L
⨯=d d
得 t
L
M d d =
表述:作用于质点的合力对参考点O 的力矩,等于质点对该点O 的角动量随时间的变化率,有些书将其称为质点的转动定律(或角动量定理的微分形式)。
这与牛顿第二定律t P F /
=在形式上就是相似的,其中M 对应着F ,L 对应着P 。
(2)冲量矩与质点的角动量定理
把上式改写为 L t M
=
dt M
为力矩与作用时间的乘积,叫作冲量矩。
对上式积分得
122
1
L L t M t t
-=⎰
式中1L 与2L 分别为质点在时刻t 1与t 2的角动量,⎰2
1
t t t M
为质点在时间间隔t 2- t 1内所
受的冲量矩。
质点的角动量定理:对同一参考点,质点所受的冲量矩等于质点角动量的增量。
成立条件:惯性系
3.质点的角动量守恒定律(Law of Conservation of Angular Momentum) 若质点所受的合外力矩为零,即M=0,则
=恒矢量=v m r L
⨯ 这就就是角动量守恒定律:当质点所受的对参考点的合外力矩为零时,质点对该参考点的角动量为一恒矢量。
说明:
(1)质点的角动量守恒定律的条件就是M =0,这可能有两种情况:
● 合力为零;
● 合力不为零,但合外力矩为零。
四.力矩做功与刚体绕定轴转动的动能定理
力矩的功
设:;转盘上的微小质量元Δm 在力F 作用下以R 为半径绕O 轴转动,在dt 时间内转过角度d θ, 对应位移d r,路程ds,此时F 所做的元功为
则总功为 1 刚体绕定轴转动的转动动能
t
F d r
t t d d d d A F r F s F r θ
=⋅==d d A M θ=2
1
d A M θθθ
=⎰222
2k 111222
i i i i i i E m v m r I ωω
===∑∑
2 动能定理
合外力矩对绕定轴转动的刚体所作的功等于刚体转动动能的增量。
刚体作为一个特殊的质点系,此质点系的动能定理为
21
e k k A E E =-2
1
2 2 2 111d θωω22
θM I I =
-⎰ θ
刚体定轴转动的动能定理
由于刚体的大小、形状不变,其上任何两质点间没有相对位移。
即: i 0
A =。