海洋生态系统管理的原则
法律知识:国际海洋环境保护的法律制度

法律知识:国际海洋环境保护的法律制度海洋环境保护是全球性的问题,涉及多个国家和地区的利益和责任。
为了保护海洋生态系统和资源,国际社会制定了一系列法律制度,旨在规范海洋资源开发利用和环境保护行为。
在过去的几十年里,国际社会已经建立了一系列国际公约和法律文件,为海洋环境保护提供了法律基础和实施机制。
本文将介绍国际海洋环境保护的法律制度,包括相关国际公约、法律文件和机制。
一、相关国际公约和法律文件1.联合国海洋法公约联合国海洋法公约是国际海洋法的基本文件,于1982年通过并于1994年生效,是国际海洋法的主要法律基础。
该公约规定了海洋领土、经济专属区、大陆架、高海洋等海洋空间的划界和管理原则,明确了各国对这些海域的权利和义务。
该公约还规定了海洋环境保护的基本原则和规定,包括海洋环境的保护、海洋污染的预防和控制、海洋生物资源的保护等内容。
2.巴黎协定巴黎协定是联合国气候变化框架公约下的一个重要文件,旨在通过降低碳排放和减缓气候变化的速度来保护地球环境。
虽然巴黎协定并非专门针对海洋环境保护的国际公约,但其中的气候变化和海洋保护的相关内容也对海洋环境产生了深远的影响。
巴黎协定要求各国采取行动,减少温室气体排放,尤其是碳排放,以遏制气候变化对海洋环境的影响。
3.伦敦协定伦敦协定是关于预防海洋污染和控制海洋污染的国际公约,于1972年通过并于1975年生效。
伦敦协定规定了严格的海洋污染防治条例,包括海洋危险品的运输、海洋污油的处理、船舶污染的预防等内容。
通过伦敦协定,国际社会建立了针对海洋污染的法律制度,保护了海洋环境的生态系统和资源。
4.海洋生物多样性公约海洋生物多样性公约是关于生物多样性保护的国际公约,旨在保护海洋环境中的生物多样性和资源。
该公约规定了海洋生态系统的保护和管理原则,包括海洋自然遗产的保护、海洋生物资源的可持续利用、海洋保护区的设立等内容。
海洋生物多样性公约为海洋环境保护提供了重要的法律基础和实施机制。
我国海域管理制度

我国海域管理制度一、引言海洋资源是国家利益的重要组成部分,保护和管理海域资源是国家海洋战略的重要内容之一。
我国海域管理制度是指政府依据法律法规对海域资源进行保护、管理和利用的体系和机制。
随着经济社会的发展和海洋资源的日益紧缺,海域管理制度亟需进一步完善和优化,以实现海洋资源的可持续利用和保护。
二、我国海域管理制度的基本原则1. 依法治海:我国海域管理制度的核心原则是依法治海,即海域管理行为必须遵守国家法律法规和相关规定。
同时,要推进海域管理体系和规章制度的完善,保障我国海域资源的可持续利用和保护。
2. 综合治理:我国海域管理制度应当实行综合治理,各级政府部门应当加强协调配合,不同行业的海域利用活动应当协调规划,以实现包括经济、生态、社会等多方面的综合利益。
3. 保护优先:在海域资源利用过程中,保护优先原则应当得到充分体现,海域资源利用活动应当以保护海洋生态环境和维护海洋生态系统功能为前提,合理利用海域资源,实现可持续发展。
4. 限制开发:我国海域管理制度应当对海域资源开发和利用行为加以限制,严格控制海域资源的利用规模和方式,有效防止过度开发损害海洋环境和生态系统。
三、我国海域管理制度的主要内容1. 海域划分我国海域划分是指国家根据自身海洋权益、保护需要和资源利用需求,将海洋空间划分为不同的区域,并对每个区域进行规划、管理和保护。
我国海域划分的原则是以国家划界为基础,依法保护我国海域主权和权益,实行有效管理。
2. 海洋资源开发利用管理我国海域管理制度涉及海洋资源的开发和利用管理,主要包括渔业资源、矿产资源、能源资源和旅游资源等。
在海洋资源开发利用管理中,要充分考虑资源的可持续利用和保护,合理规划和管理资源开发的规模和方式,保障资源的可持续利用。
3. 海洋环境保护管理海域管理还包括海洋环境保护管理,主要涉及海域污染防治、海洋生态保护和海洋生态系统功能的维护等内容。
海洋环境保护管理的核心是防止海域资源开发利用活动对海洋环境造成破坏,实施海域环境监测和评估,推行海域环境保护措施,促进海域环境的改善。
海洋资源管理的基本原则

海洋资源管理的基本原则一、可持续性原则可持续性原则是海洋资源管理的基本原则之一,它要求在开发利用海洋资源时,应当在满足当代人需求的同时,不损害子孙后代满足其需求的能力。
这意味着海洋资源的开发利用应当在生态、经济和社会方面都具备可持续性,确保海洋生态系统的长期健康和稳定。
二、生态系统方法生态系统方法是海洋资源管理的重要原则,它强调将海洋生态系统作为一个整体来考虑,注重生态系统内部各组成部分之间的相互关系和相互作用。
通过维护生态系统的完整性和功能性,可以更好地保护和管理海洋资源,实现生态、经济和社会的协调发展。
三、预防性原则预防性原则要求在可能对海洋生态系统造成不可逆转的损害之前,采取必要的预防措施。
在海洋资源管理中,应当优先考虑预防措施,而不是等到损害发生后再采取补救措施。
预防性原则的核心是避免风险,它要求在决策过程中充分评估各种可能的风险和不确定性,并采取适当的预防措施来降低或消除这些风险。
四、共同参与和利益共享海洋资源管理是一个涉及多个利益相关方的复杂过程,需要各方的共同参与和利益共享。
这包括政府、企业、社会组织和个人等各方的参与,他们应当在平等和相互尊重的基础上,共同制定和执行海洋资源管理政策。
通过加强合作和协调,可以更好地平衡不同利益相关方的需求和利益,实现海洋资源的可持续利用。
五、透明度和可追溯性透明度和可追溯性原则要求在海洋资源管理中,应当确保信息的公开透明,使公众了解管理决策的过程和依据。
同时,应当建立有效的追溯体系,对海洋资源的开发利用进行全程监管和记录,确保责任的可追溯性。
这样可以提高管理过程的公信力和透明度,加强利益相关方对管理决策的信任和支持。
六、经济发展与环境保护的平衡在海洋资源管理中,应当平衡经济发展与环境保护的需求。
经济发展是社会进步的必要条件,但过度开发和污染会给海洋生态系统带来不可逆的损害。
因此,在制定管理策略时,应当充分评估各种方案的经济效益和环境影响,寻求经济发展与环境保护的最佳平衡点。
海洋生态学的基本原理和应用领域

海洋生态学的基本原理和应用领域海洋是地球上最大的生态系统之一,其生物多样性和生态系统功能对人类和其他生物的生存和发展具有重要意义。
海洋生态学是研究海洋生态系统结构、功能、动力学和生态学过程,以及人类活动对其影响的科学。
本文将介绍海洋生态学的基本原理和应用领域。
基本原理海洋是一个开放的生态系统,与陆地生态系统不同,它具有高度动态和复杂性。
海洋生态学的基本原理是生物与环境相互作用的理论,它可以被概括为以下几个方面:1. 生态系统结构和功能海洋生态系统由生物、非生物和生物与非生物之间的相互作用形成。
生态系统结构包括群集的组成、生态系统中的物质循环和能量流动等。
生态系统的功能包括养分循环、有机质分解和能量转化等。
2. 物种多样性物种多样性是指生物群落中不同物种的数量和相对丰度。
物种多样性是生态系统健康的重要指标。
在海洋生态系统中,物种多样性取决于水域的生物和非生物环境因素。
3. 生态学过程生态学过程指生态系统中的生物和非生物因素之间的相互作用。
这些过程包括营养关系、食物网、生物群落的相互作用和竞争等。
应用领域海洋生态学的应用领域可以概括为以下几个方面:1. 海洋保护海洋保护是指保护海洋生态系统的植被和动物,减少人类活动对海洋环境的损害。
海洋保护包括建立海洋保护区、限制捕捞和控制污染等。
2. 渔业和海洋养殖渔业和海洋养殖是海洋生态学应用的一个重要领域。
研究海洋生态系统对渔业的影响,可促进可持续渔业的发展。
海洋养殖则是将人工放流的海洋生物放入水域中,以满足人类对食品的需求。
3. 生物多样性保护保护海洋生物多样性是保护生态系统健康和生态平衡的重要手段。
保护海洋生物多样性可以提高水产品资源的可持续性,促进生态旅游和海洋文化发展。
结语海洋生态学是一门综合性学科,它涉及生态学、环境科学、海洋科学、物理学等多个领域的知识。
它不仅可以促进人类对海洋生态系统的保护和管理,还可以促进人类的经济和文化发展。
未来,海洋生态学将继续成为我们探索海洋和保护海洋的重要工具。
海洋生态保护修复标准体系

海洋生态保护修复标准体系
海洋生态保护修复标准体系主要聚焦于海洋生态系统现状和减灾需求,采用生态减灾理念,通过保护修复海洋生态系统,巩固和增强其防潮御浪、固堤护岸等减灾功能。
这一标准体系包括以下几个方面:
1.生态优先原则:坚持自然恢复为主、人工修复为辅的方针,开展海洋生态系统保护修复,提升海洋生态系统的健康稳定性,在此基础上充分发挥生态系统减灾功能。
2.安全为本原则:在保障沿海防御安全的基础上,推动防御措施从传统硬质海堤向生态防护转变,促进生态措施和工程措施协同发展,提升海域生态系统的完整性。
3.多措并举原则:由海向陆既包括滨海带丰富的生态系统类型,也涵盖了海堤以及陆域的防护林分布。
针对具体工程项目实施区域,因地制宜采取多种建设类型组合的修复方案,构建生态与减灾协同增效的综合防护体系,提高海岸带韧性。
此外,《海洋生态修复技术指南》系列国家标准也是这一标准体系的重要组成部分。
该标准由“1+5”共六部分组成,即总则及珊瑚礁、红树林、海草床、滨海盐沼和海滩生态修复。
其中,《海洋生态修复技术指南第1部分:总则》提供了普遍适用于各类海洋生态修复的基本原则、总体流程、分析诊断、方案制定和方案实施的指导和建议。
《海洋生态修复技术指南第2部分:珊瑚礁生态修复》确立了珊瑚礁生态修复的工作流程和技术内容。
保护海洋生态系统的政策与法律

保护海洋生态系统的政策与法律保护海洋生态系统是现代社会的重要任务之一。
海洋生态系统的破坏会对人类的生活和经济发展造成严重的影响。
为了应对这一问题,各国纷纷制定了相关的政策与法律,以保护海洋生态系统的完整性和可持续发展。
本文将介绍一些国际、国家和地方层面的保护海洋生态系统的政策与法律,以展示全球范围内对保护海洋生态系统的高度重视。
一、国际层面的政策与法律1.巴黎公约巴黎公约是全球范围内旨在保护大西洋沿岸海洋环境的重要国际条约。
该公约于1992年通过,旨在促进各国间的合作与协调,共同解决大西洋沿岸地区海洋环境的问题。
巴黎公约规定了限制污染物的排放和控制海洋沉积物的处理等措施,以保护海洋生态系统的健康。
2.联合国海洋法公约联合国海洋法公约于1982年通过,是国际社会对海洋事务的基本规范。
该公约强调了对海洋自然资源的合理管理和保护,包括海洋生态系统。
公约规定了各国在海洋经济活动中应遵循的原则和标准,并建立了国际海底机构以保护海洋的利益。
二、国家层面的政策与法律1.美国国家海洋政策法美国国家海洋政策法是美国政府保护和管理海洋资源的重要法律框架。
该法案于1980年通过,旨在维护美国海洋生态系统的健康和可持续发展。
该法案规定了对海洋环境的保护和恢复措施,包括海洋污染的防治、海洋生物多样性的保护和海底地理信息的管理等内容。
2.中国海洋环境保护法中国海洋环境保护法是中国政府为了保护和恢复海洋环境而制定的法律。
该法律于1982年通过,并于1999年修订。
中国海洋环境保护法规定了对海洋环境的管理和保护措施,包括控制海洋污染、保护海洋生态系统和合理开发利用海洋资源等。
三、地方层面的政策与法律1.澳大利亚伊甸海洋公园管理计划澳大利亚伊甸海洋公园是世界上最大的海洋保护区之一,拥有独特的海洋生态系统。
为了保护该海洋生态系统,澳大利亚政府制定了伊甸海洋公园管理计划。
该计划规定了对该海洋公园的保护和管理措施,包括限制捕鱼和潜水等活动,以保护该地区的珊瑚礁和海洋生物。
海洋生态系统的可持续发展策略

海洋生态系统的可持续发展策略随着全球人口的不断增长和经济的发展,海洋生态系统正面临着严峻的挑战。
过度捕捞、水污染、海洋酸化等问题威胁着海洋生态的健康,而这也直接影响着人类的生存和发展。
为了实现海洋生态系统的可持续发展,我们需要采取一系列的策略。
一、加强海洋资源管理首先,我们需要加强对海洋资源的管理。
这包括建立海洋保护区、限制渔业开发、禁止捕捞母鱼和幼鱼等措施。
同时,加强对海洋污染的监管,严惩违法者,确保海洋环境的纯净和生态系统的平衡。
二、推动可持续渔业发展为了保护海洋生物多样性和渔业资源,我们需要推动可持续渔业发展。
这意味着采取更加环保和可持续的捕捞方法,减少捕捞数量,同时加强对渔业的管理和监测。
此外,鼓励发展海洋养殖业,减少对自然渔业资源的依赖。
三、推进海洋科学研究与创新海洋科学研究对于实现海洋生态系统的可持续发展至关重要。
我们需要加大对海洋生态系统的研究力度,深入了解海洋生物的生态特性和环境需求,为保护和恢复海洋生态系统提供科学依据。
同时,促进科技创新,发展可持续的海洋利用技术,如海洋能源开发和海洋垃圾处理技术。
四、加强国际合作与治理实现海洋生态系统的可持续发展需要全球各国的共同努力。
国际合作与治理机制的建立是关键。
国际社会应加强对海洋生态系统的保护合作,共同制定保护海洋环境的标准和政策,分享科学研究成果和技术经验。
同时,加强海洋环境监测和信息交流,建立全球海洋生态系统监测网络。
五、提高公众意识和参与度公众的意识和参与对于海洋生态系统的可持续发展至关重要。
我们需要加强对公众的教育,提高他们对海洋的认识和理解,培养保护海洋环境的意识。
同时,积极鼓励公众参与海洋保护行动,如参与海滩清洁活动、减少使用塑料制品等,共同保护海洋生态系统的健康。
总结起来,实现海洋生态系统的可持续发展需要采取多种策略。
加强海洋资源管理、推动可持续渔业发展、推进海洋科学研究与创新、加强国际合作与治理以及提高公众意识和参与度都是重要的方向。
联合国海洋法公约附件七

联合国海洋法公约附件七海底资源开发与保护第一章介绍近年来,随着科技的不断发展和资源的日益枯竭,海底资源的重要性愈发被人们所认识和重视。
为了确保各国在海底资源的开发与保护中能够遵守相应的规范和原则,联合国海洋法公约通过了附件七,该附件明确了海底资源开发与保护的原则和方法。
第二章海底资源开发A. 定义和范围根据联合国海洋法公约附件七的规定,海底资源包括但不限于矿产资源、能源资源和生物资源等。
海底资源开发是指为了获得和利用海底资源而进行的一系列活动。
B. 原则和准则1. 公平和平等原则海底资源的开发应遵循公平和平等原则,不因国家的大小、经济实力等因素而产生差别对待。
各国在海底资源开发中应互相合作,共同分享资源利益。
2. 可持续发展原则海底资源的开发应符合可持续发展的原则,即在开发的过程中注重环境保护和资源的持续利用。
各国应制定合理的开发计划,采取适当的技术和措施,减少对海洋生态系统的影响。
3. 区域合作原则海底资源的开发应通过区域合作的方式进行。
各国应在区域范围内共同制定开发规划,并就资源开发的方式和利益分享达成协议。
同时,各国还应加强信息共享和技术转让,促进共同发展。
第三章海底资源保护A. 生态系统保护根据联合国海洋法公约附件七的规定,各国在海底资源开发中应采取适当的措施保护海洋生态系统。
这包括但不限于限制污染物的排放、保护珊瑚礁和海底生物多样性等。
B. 国际合作和监管海底资源的保护需要各国之间的国际合作和监管。
各国应加强监测和评估,共享监测数据,并制定相关的国际标准和规范,以确保海底资源的可持续利用。
第四章纠纷解决A. 协商和和平解决联合国海洋法公约鼓励各国在海底资源开发和保护方面通过协商和和平方式解决纠纷。
各国应尊重国际法和公约规定,通过友好磋商、谈判等方式解决分歧。
B. 管理争端机制为了解决海底资源开发和保护中的争端,联合国海洋法公约设立了相应的管控机制。
各国可以依据公约规定向国际海洋法庭申请仲裁或诉讼,从而得到公正的裁决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Principles for managing marine ecosystemsprone to tipping pointsKimberly A.Selkoe,1,2,17Thorsten Blenckner,3Margaret R.Caldwell,4Larry B.Crowder,4Ashley L.Erickson,4Timothy E.Essington,5James A.Estes,6Rod M.Fujita,7Benjamin S.Halpern,1,8,9Mary E.Hunsicker,1Carrie V .Kappel,1Ryan P .Kelly,10John N.Kittinger,11Phillip S.Levin,12John M.Lynham,13Megan E.Mach,4Rebecca G.Martone,4Lindley A.Mease,4Anne K.Salomon,14Jameal F.Samhouri,12Courtney Scarborough,1Adrian C.Stier,1Crow White,15and Joy Zedler 161National Center for Ecological Analysis and Synthesis,735State Street,Suite 300,Santa Barbara,California 93101USA2Hawaii Institute of Marine Biology,University of Hawaii,Kaneohe,Hawaii 96744USA 3Stockholm Resilience Centre,Stockholm University,Kra ¨ftriket 2B,10691Stockholm,Sweden 4Center for Ocean Solutions,Stanford Woods Institute for the Environment,Stanford University,473Via Ortega Room 193,Stanford,California 94305USA5School of Aquatic and Fishery Sciences,University of Washington,Seattle,Washington 98195USA6Department of Ecology and Evolutionary Biology,100Shaffer Road,University of California,Santa Cruz,California 95060USA7Environmental Defense Fund,123Mission Street,28th Floor,San Francisco,California 94105USA8Bren School of Environmental Science and Management,University of California,Santa Barbara,California 93106USA9Imperial College London,Silwood Park Campus,Buckhurst Road,Ascot SL57PY United Kingdom10School of Marine and Environmental Affairs,University of Washington,3707Brooklyn Avenue NE,Seattle,Washington 98105-6715USA11Conservation International,Betty and Gordon Moore Center for Science and Oceans,7192Kalaniana ‘ole Highway,Suite G230,Honolulu,Hawaii 96825USA12Conservation Biology Division,Northwest Fisheries Science Center,National Marine Fisheries Service,National Oceanic and Atmospheric Administration,2725Montlake Boulevard East,Seattle,Washington 98112USA13Department of Economics,University of Hawaii at Manoa,Honolulu,Hawaii 96822USA14School of Resource and Environmental Management,Simon Fraser University,Burnaby,British Columbia V5A 1S6Canada 15Department of Biological Sciences,California Polytechnic State University,San Luis Obispo,California 93407USA16Botany Department,University of Wisconsin,Madison,Wisconsin 53706USAAbstract.As climatic changes and human uses intensify,resource managers and other decision makers are taking actions to either avoid or respond to ecosystem tipping points,or dramatic shifts in structure and function that are often costly and hard to reverse.Evidence indicates that explicitly addressing tipping points leads to improved management outcomes.Drawing on theory and examples from marine systems,we distill a set of seven principles to guide effective management in ecosystems with tipping points,derived from the best available science.These principles are based on observations that tipping points (1)are possible everywhere,(2)are associated with intense and/or multifaceted human use,(3)may be preceded by changes in early-warning indicators,(4)may redistribute benefits among stakeholders,(5)affect the relative costs of action and inaction,(6)suggest biologically informed management targets,and (7)often require an adaptive response to monitoring.We suggest that early action to preserve system resilience is likely more practical,affordable,and effective than late action to halt or reverse a tipping point.We articulate a conceptual approach to management focused on linking management targets to thresholds,tracking early-warning signals of ecosystem instability,and stepping up investment in monitoring and mitigation as the likelihood of dramatic ecosystem change increases.This approach can simplify and economize management by allowing decision makers to capitalize on the increasing value of precise information about threshold relationships when a system is closer to tipping or by ensuring that restoration effort is sufficient to tip a system into the desired regime.Key words:critical transition;ecosystem-based management;marine spatial planning;nonlinear relationships;restoration ecology;stakeholder engagement .Citation:Selkoe,K.A.,et al.2015.Principles for managing marine ecosystems prone to tipping points.Ecosystem Health and Sustainability 1(5):17./10.1890/EHS14-0024.1IntroductionEcosystems sometimes undergo large,sudden,and surprising changes in response to stressors.Theory and Manuscript received 14December 2014;revised 3March 2015;accepted 4March 2015;final version received 22April 2015;published 15July 2015.17E-mail:selkoe@empirical evidence suggest that many complex systems have system boundaries(also called thresholds or tipping points;see Table1)beyond which the system will rapidly reorganize into an alternative regime (Lewontin1969,Holling1973,Sutherland1974,May 1977,Scheffer et al.2001,Scheffer and Carpenter2003, Folke et al.2004,Petraitis et al.2009).Tipping points can be quantified as zones of rapid change in a nonlinear relationship between ecosystem condition and intensity of a driver(Fig.1,Table2).For those who have witnessed collapsing fish stocks,cascading effects of eutrophication or overfishing,or climate-driven shifts in food webs,such tipping points may be intuitively understood.Nevertheless,rapid ecological shifts may surprise us,particularly when we have assumed linear, additive,and gradual ecological responses to impacts of human uses or natural drivers.Unanticipated ecological changes can be socially,culturally,and economically costly(Doak et al.2008,Scheffer et al.2009,Travis et al. 2014).For instance,in many aquatic systems,gradual increases in nutrient loading may have limited impacts on aquatic and marine ecosystems until a threshold nutrient level is reached,creating harmful algal blooms and oxygen-depleted zones that threaten water quality, human health,and animal life(e.g.,Rabalais et al.2010, Johannessen and Miles2011,Michalak et al.2013). However,for decades,water quality managers assumed constant,linear relationships between sewage discharge and impacts on local waterbodies,such as Lake Washington in Seattle,Washington,USA,and Tampa Bay,Florida,USA(Edmondson and Lehman1981, Greening and Janicki2006).Many such waterbodies have since tipped rapidly from clear-water,productive ecosystems to algal-dominated environments that pose health risks,compromise recreation,and threaten aquatic life.Given increasing evidence and understand-ing of complex system behavior and ecosystem tipping points,scientists,managers,stakeholders,and policy-makers may benefit from new or renewed consideration of how plans and strategies can account for possible tipping points,whether the context is ecosystem-based management,environmental restoration,single-sector management(e.g.,fisheries),or comprehensive spatial planning.Our focus here is on managing marine systems prone to tipping points,but the issues and solutions we discuss are relevant to any setting in which ecosystems are likely to exhibit tipping points.A recent synthesis of managed ecosystems showed that,in a variety of settings,manage-ment strategies that include monitoring ecosystem state and identifying measurable tipping points tend to be more effective in achieving stated conservation and manage-ment goals than strategies that do not consider possible tipping points(Kelly et al.2014b).As a precursor to tackling implementation,this study lays out the motiva-tions and principles for acknowledging and addressing the potential for tipping points in marine ecosystems.Although many of these ideas have been articulated individually elsewhere,we synthesize them in a cohesive, accessible format,supported by theory(Table2)and applied specifically to marine natural resource manage-ment.Our focus on marine tipping points complements recent efforts to list key challenges of applying resilience theory to social-ecological systems(Walker and Salt2012) and principles for enhancing resilience of ecosystem services(Biggs et al.2012).Our approach is inspired by similar efforts to translate broad scientific insights and management ideals into specific planning guidelines by articulating principles of ecosystem-based management and marine spatial planning(Leslie and McLeod2007, Foley et al.2010).Seven Principles for Managing Ecosystem Tipping PointsIn a series of five workshops held in2013and2014with subsets of the coauthors and a dozen other scientists, marine managers,stewards,and policymakers(see Acknowledgements),we sought to generate and then prioritize a short list of principles for managing marine ecosystems prone to tipping points.We began by articulating fundamental traits of ecological and social-ecological tipping points,derived from ecological resilience theory,that participants felt were most relevant to management(Table2).We describe these traits using examples from marine systems.Next,we discuss the significance of these traits for management of social-ecological systems in marine and coastal settings.Management principles were generated through group discussion and drawn from existing literature on application of theory to management practice(Table3).1.Tipping points are commonThe ecological literature provides numerous examples of nonlinear relationships between predictor and response variables,including responses exhibited at individual, population,species,and ecosystem levels.Examples of fundamental,ubiquitous,nonlinear responses include density dependence,such as the logistic curve of population growth,the Allee effect(i.e.,accelerating likelihood of local extinction as population density falls below a minimum threshold;Stephens et al.1999,Dulvy et al.2003),and the relationship of per capita consump-tion rate to food availability(Holling1959,Arditi and Ginzburg1989,Abrams and Ginzburg2000).Dose-response curves are also pervasive in physiology,and some can cascade to ecosystem-level responses(e.g., Salazar and Salazar1991,Fairchild et al.1992,Meador et al.2002,Karnosky et al.2005,Lockwood et al.2005).A recent synthesis of empirical studies in pelagic marine systems provides further support for the ubiquity of threshold responses(M.E.Hunsicker et al.,unpublishedmanuscript).Across736quantified stressor–response relationships involving a variety of climate,fishing, and food-web stressor types,over half were nonlinear. When nonlinearities occur,they are often strongly nonlinear,and thus may have detectable thresholds that can be quantified and incorporated into management decision-making(M. E.Hunsicker et al.,unpublished manuscript).Tipping points are perhaps less often documented and/ or recognized at the ecosystem level than the species level.They occur as a consequence of changes in feedback processes that impart stability and resilience to the ecosystem’s configuration.Ecosystems tend to resist major change until a‘‘breaking point’’is reached(Table 2).Commonly observed marine ecosystem tipping points include the sudden development of anoxic conditions in estuaries,transition of coral-dominated reefs to macro-algal-dominated reefs,and rapid loss of kelp cover after urchin population explosions(Samhouri et al.2010, McClanahan et al.2011,Rocha et al.2015).A forthcoming synthesis of marine ecosystem shifts at95locations worldwide found that examples spanned a wide diver-Table1.Foundational concepts behind the theory of tipping points.Term DefinitionCross-scale interactions Processes at one spatial or temporal scale interact with processes at another scale,resulting in anecosystem tipping point.These interactions change pattern–process relationships across scales suchthat fine-scale processes can influence a broad spatial extent or a long time period,or broadscaledrivers can interact with fine-scale processes to create surprising or unpredictable system dynamics(Peters et al.2007).Early-warning indicator A system metric that can be monitored through time and is known to show predictable changes inadvance of an event(i.e.,tipping point)to provide warning of the event or clues suggesting increasein its probability of occurring.Ecosystem state A multidimensional description of an ecosystem,which may include metrics of composition,structure, functions,governing processes,and other emergent properties that distinguish the state from otherpossible states of interest.External driver A force of change that can affect the ecosystem but is unaffected by the ecosystem(as measured over the most relevant temporal scale).Drivers can be natural or anthropogenic processes,events,oractivities that cause a change in an ecosystem process,component,function,property,or service.Forexample,sedimentation(e.g.,from erosion caused by coastal development)is a driver of coralmortality.A stressor is a category of driver.Feedback An ecological process within an ecosystem that either reinforces or degrades resilience of a regime(Briske et al.2006).Positive feedbacks are destabilizing(they amplify the amount of change thesystem will experience in response to a small perturbation),whereas negative feedbacks are stabilizing(they dampen effects of perturbations),counteracting change(Suding and Hobbs2009,Nystrom et al.2012).Hysteresis A pattern observed when the pathway of recovery of an ecosystem differs from its pathway ofdegradation(Suding and Hobbs2009);path dependence.In other words,a different threshold mustbe crossed for recovery,often with time lags to recovery even when stressors are abated(Montefalcone et al.2011).Factors such as random chance operating on which species colonize firstand then exclude or facilitate coexistence of other species(priority effects)or the specific sequence ofhabitat alteration events in a successional process can cause path dependence.Nonlinear Nonlinear relationships have one or more curves or points of rapid change and are often used tographically represent tipping points in driver–response relationships of ecosystems.Regime shift The rapid reorganization of a system from one relatively unchanging state over time to another(Carpenter and Folke2006);synonym of tipping point.Distinct and relatively unchanging regimes arecharacterized by a set of governing processes,species compositions,and relationships among speciesand external drivers.Initial conditions can also shape an observed regime.Resilience The capacity of an ecosystem to tolerate disturbance without crossing a threshold into a different regime (Folke et al.2004,Suding and Hobbs2009).Speed of recovery following perturbation is a commonempirical metric of resilience.Resilience imparts regime stability without precluding change,flexibility,and/or adaptation.Stressor A type of driver that is specifically linked directly or indirectly to human use(s)and/or actions that cause undesired change in an ecosystem.Threshold A relatively rapid change from one ecological condition to another.When a system is close to anecological threshold,a large ecological response results from a relatively small change in a driver(Bennett and Radford2003,Huggett2005,Groffman et al.2006,Suding and Hobbs2009).Ecologicalthresholds exist at all levels of organization,including single populations and species,speciesinteractions,ecosystem functions/processes,and whole ecosystems.Trigger An internal system behavior that initiates a regime shift,e.g.,disease outbreak or mass coral bleaching.The behavior can be due to an external shock,e.g.,cyclone,or culmination of a positive feedback loop(Suding and Hobbs2009).Note:The concept of ecosystem tipping points largely derives from theoretical ecology,with important contributions from subdisciplines focused on ecosystems,restoration and resilience,climatology,systems biology,neurobiology,mathematics,and engineering.Fig.1.Types of regime shifts.Phase shifts can be smooth or nonlinear,whereas alternative stable states show discontinuous change with some level of hysteresis.Modified from Dudgeon et al.(2010).Table2.A brief primer on the theory behind ecosystem tipping point.Theory ExplanationEcosystems show alternative stable states,a.k.a.dynamic regimes.Ecosystems may have alternative states with different structure and function,(a.k.a.regimes),under otherwise similar environmental conditions.Initial conditions(e.g.,which species is colonized)and external conditions(e.g.,the degree of resource extraction,pollution,habitat alteration,and inherent productivity)contribute to a regime’s configuration.Stable states are not truly static:regular fluctuations and stochastic change occurs around an average state.Changes to feedbacks cause tipping points.A small number of feedback mechanisms maintain an ecosystem in a given state.When mounting stress disrupts one or more feedback mechanisms,the system can cross a tipping point and rapidly reorganize into another regime with new stabilizing feedback mechanisms.Thus,restoration may require triggering a new tipping point by disrupting feedback mechanisms.Resilience mediates sensitivity to tipping points.Resilience depends on factors like species diversity,functional redundancy(multiple species playing similar ecological roles),and complementarity among species(slight differences in how species carry out those roles;Chapin et al.1997,Peterson et al.1998,Luck et al.2003,Laliberte et al.2010,Karp et al.2011,Thibaut et al.2012,Mori et al.2013).Because of diversity and redundancy in feedback processes,a combination of drivers is often needed to erode resilience to the point of breaking key stabilizing feedbacks(Scheffer and Carpenter2003).Characteristic changes in diversity and stability precede regime shifts.Loss of resilience as a system approaches a tipping point may occur in distinct stages(Briske et al.2006, McClanahan et al.2011),resulting in a series of changes in ecosystem function that precede a system-level shift.Grassland and coral reef studies have identified consistent metrics that may indicate these stages.For instance,a dip in reef species richness occurs early on,whereas estimates of coral cover show a sudden drop just prior to a shift to algal dominance(McClanahan et al.2011,Karr et al.2015).The trigger of a tipping point may be a small-scale event.Cross-scale interactions are key to regime shifts.When stabilizing feedbacks have been altered and the system suffers a large loss of resilience,any further incremental change or shock to the system may be the final straw that produces a large response:a tipping point due to the collapse of stabilizing feedbacks.The spatial extent of a regime shift is often larger than the trigger event due to cascading effects.For example,a single lightning strike can ignite a fire that spreads nonlinearly across a vast range as the dominant processes controlling the fire move from the scale of individual trees to within patch variation in fuel load to among-patch connectivity(Peters et al.2007).The accelerating spread of an invasive species,which gets a foothold in a new region by exploiting a local disturbance event,may show similar dynamics.Connectivity encourages nonlinear/threshold responses.Mechanisms of connectivity,such as larval dispersal,ocean currents,and migratory species,can facilitate the ripple effect of a localized regime shift by linking distant communities.However,connectivity can buffer impacts of stress when unimpacted areas serve as source populations.Thus,connectivity can enhance cross-scale interactions,which increases the likelihood of threshold responses and regime shifts(Nystrom et al.2012).Socioeconomic tipping points may accompany ecological tipping points.When shifts give rise to new sets of dominant species and functions,associated ecosystem services often change in nature and extent(Graham et al.2013).In some cases,these feedbacks lead to hysteresis, such that recreating the previous external conditions fails to produce the former regime or the system is very slow to return to its former state.Restoring an ecosystem that has crossed a tipping point and exhibits hysteresis may not be achieved by simply reversing or abating the causal drivers,and restoration thus will likely be more costly and unpredictable.sity of ecosystem types and geographic locations(C. Kappel,unpublished manuscript).Oceanographic connec-tivity may strengthen the nonlinearity of marine popu-lation-and ecosystem-level responses.Connectivity may facilitate spread of a regime shift across areas;conversely, connectivity can also impart stability and resilience when it allows replenishment from distant refuges(Allison et al.1998,Olds et al.2012).Importantly,even when ecological responses to stressors are relatively linear, such changes may trigger nonlinear responses in linked social-ecological systems,creating an ecosystem tipping point,such as when fishery productivity falls below a cost-effective level for fleet operation(Poe et al.2014). Management principle:in the absence of evidenceto the contrary,assume potential for nonlinear relationships and tipping pointsClearly stating assumptions about linear vs.nonlinear ecosystem responses(such as within environmental impact assessments or fishery management plans),and examining consequences of assumptions,will help guide expectations and assessment strategies.Modify-ing assumptions,monitoring plans,and management actions to presume tipping points exist may reduce risk of adverse social,economic,and ecological outcomes and surprises associated with transitions to alternative ecosystem states,despite the apparent up-front cost of these modifications.Engaging experts to quantify relationships between ecosystem response variables and drivers of concern can reduce the need for assumptions.Even preliminary estimates of tipping points serve to document their presence and motivate increased monitoring and refinement of threshold estimates.2.Intense human use,often involving multiple drivers,may cause a tipping point by radically altering ecological structure and function Because complex systems absorb disturbance and resist change,great pressure is sometimes needed to cross a tipping point;in other cases,for systems that are already close to a tipping point or have lower resilience,smaller pressures suffice.There are several examples of systems that have crossed tipping points when local-scale anthropogenic stresses precede a period of large-scale climatic change,whether the climate change is anthro-pogenic or natural.In both the Baltic and Black Seas, overharvest of top predators and eutrophication from pollution produced significant alteration of trophic dynamics after a sudden change in climatic conditions (e.g.,a switch from a predator guild dominated by fishes to jellyfish in the Black Sea[Daskalov2002,Oguz and Gilbert2007],and a switch from piscivore to planktivore domination in the Baltic Sea[Casini et al.2009]).Effects of human exploitation can be exacerbated in ecosystems subject to large natural climatic oscillations(e.g.,the Pacific decadal oscillation and Atlantic multidecadal oscillation;AMO),perhaps because loss of resilience from human impacts hampers the ability of key species and whole food webs to weather swings in temperature and productivity(Hsieh et al.2008,Planque et al.2010). The ecological effects of climate cycles become more complex and unpredictable when intense fishing or anthropogenic climatic stressors co-occur,making tip-ping points more likely(e.g.,ocean acidification plus ocean warming;Griffith et al.2011,Lindegren et al. 2013,Ohman et al.2013).In coastal systems,land-and ocean-based stressors can interact to cause marine tipping points.In many coral reef ecosystems,land-use changes have caused increased nearshore nutrient and sediment concentra-tions and,at the same time,overfishing of herbivorous fishes reduced grazer diversity(e.g.,Caribbean[Hughes 1994],Seychelles[Graham et al.2006]).In Discovery Bay, Jamaica,and elsewhere in the Caribbean,overfishing enabled the spiny sea urchin population to explode, which first maintained low algal cover in the absence of fish herbivory,but then succumbed to a disease epidemic.Ongoing nutrient enrichment combined with reduced grazer densities to produce algal overgrowth.A hurricane in1989then caused a significant die-off of theTable3.Summary of principles for managing ecosystems prone to tipping points.Social-ecological observation Management principle1.Tipping points are common. 1.In the absence of evidence to the contrary,assumenonlinearity.2.Intense human use may cause a tipping point by radically altering ecological structure and function.2.Address stressor intensity and interactive,cross-scale effects of human uses to avoid tipping points.3.Early-warning indicators of tipping points enable proactive responses.3.Work toward identifying and monitoring leading indicators of tipping points.4.Crossing a tipping point may redistribute ecosystem benefits.4.Work to make transparent the effects of tipping points on benefits,burdens,and preferences.5.Tipping points change the balance between costs of actionand inaction.5.Tipping points warrant increased precaution.6.Thresholds can guide target-setting for management. 6.Tie management targets to ecosystem thresholds.7.Tiered management can reduce monitoring costs while managing risk.7.Increase monitoring and intervention as risk of a tipping point increases.remaining coral.Historically,the system had recovered from hurricanes,but due to the loss of ecosystem resilience,this shock to the system shifted coral reefs to an algal-dominated regime with altered species interac-tions and feedbacks.Ocean acidification and tempera-ture stress from climate change are expected to further reduce the resilience of reefs worldwide(Hoegh-Guld-berg et al.2007).Tipping points have also been tied to single,intense stressors,most often intense harvest of a key predator (Estes et al.1998,2011,Myers et al.2007,Baum and Worm2009,Ferretti et al.2010).Otter removal is the singular cause of rocky reef shifts from kelp forest to urchin barrens in the northeast Pacific(Estes and Palmisano1974,Estes and Duggins1995,Dean et al. 2000).Fishing is likely to be the singular cause of coral reef regime shifts in Fiji(Rasher et al.2013)and the shift from cod-to lobster-dominated food webs in the Gulf of Maine(Steneck and Wahle2013).These shifts occurred when a central node or compartment of the food web was removed,a potentially common cause of system-wide regime shifts and trophic cascades(Scheffer et al. 2001,Daskalov2002,Frank et al.2005,2011,Estes et al. 2011,O’Gorman et al.2011;C.Kappel et al.,unpublished manuscript).Management principle:address stressor intensityand interactive,cross-scale effects of human useto avoid tipping pointsUnderstanding and tracking cross-scale interactions in both human and natural dimensions of a managed system is critical.Questions to consider include:How might global or regional drivers have the potential to override local management actions?And how might large-scale tipping points cascade up from local events, such as disease outbreaks,storm damage,and changes in fleet behavior?Tying management reference points to metrics of both human and natural dimensions may assist in reducing interactive effects(Large et al.2013). For instance,during a warm AMO phase with higher total biomass available for landings,fisheries managers might consider less conservative harvest quotas for the northeastern United States shelf;in a cool AMO phase, more conservative harvest quotas may be more appro-priate.In systems dominated by a keystone species that preserves a desired ecosystem state,managers could prioritize monitoring cumulative impacts to that species. In situations with many types of human uses and threats(e.g.,most coastal zones),explicit decision rules can be adopted to address combinations of human uses. Caps on total allowable human use or total allowable harm(sensu Canadian species at risk;Ve´lez-Espino and Koops2009)can provide a vehicle for this strategy.Such an approach requires cooperation and coordination across management sectors,which often operate on different time and geographic scales,adding to the potential for cross-scale social-ecological interactions.In some cases,substantive jurisdictional incompatibilities make such coordination extremely difficult to achieve.3.Changes in early-warning indicatorsmay precede ecosystem tipping points Although it is difficult to predict the exact amount of stress that will trigger a tipping point,warning signs that precede the tipping point can be instrumental in avoiding collapse.Theory predicts that diversity and functional redundancy at multiple levels(e.g.,within species,across species,and across trophic groups)affect a system’s resilience to change(Table2).As components of the ecosystem are compromised or lost,the system may lose resilience and become more prone to crossing a tipping point with the next shock or stressor(Briske et al.2006,Brandl and Bellwood2014).For example,a case study of Bristol Bay,Alaska,USA,sockeye salmon revealed how population-level diversity can maintain resilience of a heavily exploited species(Schindler et al. 2010).Diversity in genetic traits controlling behavior and environmental tolerance of individual spawning stocks creates a portfolio effect within and across watersheds:variation in timing of salmon returning from sea enhances the ability of the whole population to absorb environmental stresses,stabilizing ecosystem processes,ecosystem services,and the human econo-mies that depend on them(Schindler et al.2010).New large-scale studies show that the particular sequence of change in measures of resilience and/or ecosystem state can be consistent at regional scales, suggesting these changes can be monitored to reveal early-warning indicators of a tipping point.System-specific metrics are beginning to emerge from syntheses of empirical data.For example,in South Pacific reef fishes,phylogenetic and functional diversity were found to be more sensitive indicators of human impacts than species richness(D’Agata et al.2014).In separate studies of Indian Ocean and Caribbean coral reefs(McClanahan et al.2011,Karr et al.2015),increased spatial variance in macroalgal cover was identified as a leading indicator of decline in coral dominance while coral cover itself was a lagging indicator;the results held at local and regional scales.Both studies suggested a rule of thumb that preserving50%of unfished biomass in the coral reef state should reduce the risk of a sudden change in state to macroalgal dominance while likely preserving high yields(Fig.2;Hilborn2010,Karr et al.2015).When high-quality time series chronicling historical ecosystem tipping points exist,they can be mined to identify species or system traits that changed in advance of the ecosystem shift and might serve as early-warning indicators of a future tipping point.Promising early-warning indicators include variance and autocorrelation of biomass,densities,and catch,and rate of recovery from perturbation,i.e.,critical slowing down(Carpenter and Brock2006,Scheffer2009,Scheffer et al.2009,Dakos。