最新中考数学专题练习(含答案) 练习07《分式方程》
初二八年级数学分式方程中考专项练习题(含答案)完整版

分式方程精华练习题(含答案)1.在下列方程中,关于x 的分式方程的个数(a 为常数)有( )①0432212=+-x x ②.4=a x ③.;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-ax a x . A.2个 B.3个 C.4个 D.5个2. 关于x 的分式方程15mx =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数 C .5m <-时,方程的解为负数 D .无法确定3.方程xx x -=++-1315112的根是( ) A.x =1 B.x =-1 C.x =83D.x =24.,04412=+-x x 那么x2的值是( )A.2B.1C.-2D.-15.下列分式方程去分母后所得结果正确的是( )A.11211-++=-x x x 去分母得,1)2)(1(1-+-=+x x x ; B.125552=-+-x x x ,去分母得,525-=+x x ; C.242222-=-+-+-x x x x x x ,去分母得,)2(2)2(2+=+--x x x x ; D.,1132-=+x x 去分母得,23)1(+=-x x ; 6. .赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( )A.21140140-+x x =14 B.21280280++x x =14 C.21140140++x x =14D.211010++x x =1 7.若关于x 的方程0111=----x xx m ,有增根,则m 的值是( ) A.3 B.2 C.1 D.-1 8.若方程,)4)(3(1243+-+=++-x x x x B x A 那么A 、B 的值为( ) A.2,1 B.1,2 C.1,1 D.-1,-19.如果,0,1≠≠=b b a x 那么=+-b a b a ( ) A.1-x 1 B.11+-x x C.x x 1- D.11+-x x10.使分式442-x 与6526322+++-+x x x x 的值相等的x 等于( ) A.-4 B.-3 C.1 D.10 二、填空题(每小题3分,共30分) 11. 满足方程:2211-=-x x 的x 的值是________. 12. 当x =________时,分式x x ++51的值等于21. 13.分式方程0222=--x xx 的增根是 . 14. 一汽车从甲地开往乙地,每小时行驶v 1千米,t 小时可到达,如果每小时多行驶v 2千米,那么可提前到达________小时.15. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为 .16.已知,54=y x 则=-+2222yx y x . 17.=a 时,关于x 的方程53221+-=-+a a x x 的解为零. 18.飞机从A 到B 的速度是,1v ,返回的速度是2v ,往返一次的平均速度是 . 19.当=m 时,关于x 的方程313292-=++-x x x m 有增根. 20. 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路x m ,则根据题意可得方程 .三、解答题(共5大题,共60分) 21. .解下列方程 (1)x x x --=+-34231 (2) 2123442+-=-++-x x x x x (3)21124x x x -=--.22. 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?24.小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室内发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元钱,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多53倍,问她第一次在供销大厦买了几瓶酸奶?答案一、1.B ,2.C 3.C ;4.B ,5.D ,6.C , 7.B ,8.C 9.B ,10.D ;二、11.0;12.3,13.2=x ;14.212v v t v +;15. 3215315-=x x ;16.941-. 17.51=a ;18.21212v v v v +;19.6或12,20.()240024008120%xx-=+;三、21.(1)无解(2)x = -1;(3)方程两边同乘(x-2)(x+2),得x(x+2)-(x 2-4)=1, 化简,得2x=-3,x= 32-经检验,x=32-是原方程的根. 22.6天,24.解;5=x(二)一、选择题(每小题3分,共30分) 1.下列式子是分式的是( )A .2x B .x 2 C .πx D .2y x + 2.下列各式计算正确的是( )A .11--=b a b aB .ab b a b 2=C .()0,≠=a ma na m nD .a m a n m n ++=3.下列各分式中,最简分式是( )A .()()y x y x +-73B .n m n m +-22C .2222ab b a b a +-D .22222yxy x y x +-- 4.化简2293m m m --的结果是( )A.3+m m B.3+-m mC.3-m mD.m m -3 5.若把分式xyyx +中的x 和y 都扩大2倍,那么分式的值( )A .扩大2倍B .不变C .缩小2倍D .缩小4倍6.若分式方程xa xa x +-=+-321有增根,则a 的值是( ) A .1 B .0 C .—1 D .—27.已知432c b a ==,则c ba +的值是( ) A .54 B. 47 C.1 D.458.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .x x -=+306030100 B .306030100-=+x xC .x x +=-306030100D .306030100+=-x x9.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20% ,结果于下午4时到达,求原计划行军的速度。
中考数学模拟题《分式与分式方程》专项测试卷(附答案)

中考数学模拟题《分式与分式方程》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.(2023·湖南·统考中考真题)将关于x 的分式方程3121x x =-去分母可得( ) A .332x x -=B .312x x -=C .31x x -=D .33x x -=2.(2023·湖南郴州·统考中考真题)小王从A 地开车去B 地 两地相距240km .原计划平均速度为x km/h 实际平均速度提高了50% 结果提前1小时到达.由此可建立方程为( ) A .24024010.5x x-= B .24024011.5x x-= C .24024011.5x x-= D . 1.5240x x +=3.(2023·黑龙江绥化·统考中考真题)某运输公司 运送一批货物 甲车每天运送货物总量的14.在甲车运送1天货物后 公司增派乙车运送货物 两车又共同运送货物12天 运完全部货物.求乙车单独运送这批货物需多少天?设乙车单独运送这批货物需x 天 由题意列方程 正确的是( )A .11142x += B .11111424x ⎛⎫++= ⎪⎝⎭C .1111142x ⎛⎫++= ⎪⎝⎭D .11111442x⎛⎫++= ⎪⎝⎭4.(2023·广东深圳·统考中考真题)某运输公司运输一批货物 已知大货车比小货车每辆多运输5吨货物 且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同 设有大货车每辆运输x 吨,则所列方程正确的是( ) A .75505x x=- B .75505x x =- C .75505x x=+ D .75505x x =+ 5.(2023·云南·统考中考真题)阅读 正如一束阳光.孩子们无论在哪儿 都可以感受到阳光的照耀 都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲 乙两同学分别从距离活动地点800米和400米的两地同时出发 参加分享活动.甲同学的速度是乙同学的速度的1.2倍 乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是x 米/分,则下列方程正确的是( ) A .1.24800400x x-= B .1.24800400x x-= C .40080041.2x x-= D .80040041.2x x-= 6.(2023·甘肃武威·统考中考真题)方程211x x =+的解为( ) A .2x =- B .2x =C .4x =-D .4x =7.(2023·上海·统考中考真题)在分式方程2221521x x x x -+=-中 设221x y x -= 可得到关于y 的整式方程为( )A .2550y y ++=B .2550y y -+=C .2510y y ++=D .2510y y -+=8.(2023·天津·统考中考真题)计算21211x x ---的结果等于( ) A .1-B .1x -C .11x + D .211x - 9.(2023·湖北随州·统考中考真题)甲 乙两个工程队共同修一条道路 其中甲工程队需要修9千米 乙工程队需要修12千米.已知乙工程队每个月比甲工程队多修1千米 最终用的时间比甲工程队少半个月.若设甲工程队每个月修x 千米,则可列出方程为( ) A .912112x x -=+ B .129112x x -=+ C .912112x x -=+ D .129112x x -=+ 10.(2023·四川内江·统考中考真题)用计算机处理数据 为了防止数据输入出错 某研究室安排两名程序操作员各输入一遍 比较两人的输入是否一致 本次操作需输入2640个数据 已知甲的输入速度是乙的2倍 结果甲比乙少用2小时输完.这两名操作员每分钟各能输入多少个数据?设乙每分钟能输入x 个数据 根据题意得方程正确的是( ) A .2640264022x x=+ B .2640264022x x=- C .264026402602x x =+⨯ D .264026402602x x=-⨯ 11.(2023·湖北十堰·统考中考真题)为了落实“双减”政策 进一步丰富文体活动 学校准备购进一批篮球和足球 已知每个篮球的价格比每个足球的价格多20元 用1500元购进篮球的数量比用800元购进足球的数量多5个 如果设每个足球的价格为x 元 那么可列方程为( ) A .1500800520x x -=+ B .1500800520x x-=- C .8001500520x x -=+ D .8001500520x x -=- 12.(2023·湖南·统考中考真题)某校组织九年级学生赴韶山开展研学活动 已知学校离韶山50千米 师生乘大巴车前往 某老师因有事情 推迟了10分钟出发 自驾小车以大巴车速度的1.2倍前往 结果同时到达.设大巴车的平均速度为x 千米/时,则可列方程为( ) A .505011.26x x =+ B .505010 1.2x x+= C .5050101.2x x=+ D .501506 1.2x x+= 13.(2023·四川·统考中考真题)近年来 我市大力发展交通 建成多条快速通道 小张开车从家到单位有两条路线可选择 路线a 为全程10千米的普通道路 路线b 包含快速通道 全程7千米 走路线b 比路线a 平均速度提高40% 时间节省10分钟 求走路线a 和路线b 的平均速度分别是多少?设走路线a 的平均速度为x 千米/小时 依题意 可列方程为( )A .()10710140%60x x -=+B .()10710140%x x -=+ C .()71010140%60x x -=+D .()71010140%x x-=+ 14.(2023·广东·统考中考真题)计算32a a+的结果为( )A .1aB .26a C .5aD .6a15.(2023·辽宁大连·统考中考真题)将方程13311xx x+=--去分母 两边同乘()1x -后的式子为( ) A .()1331x x +=-B .()1313x x +-=-C .133x x -+=-D .()1313x x +-=16.(2023·湖南张家界·统考中考真题)《四元玉鉴》是一部成就辉煌的数学名著 是宋元数学集大成者 也是我国古代水平最高的一部数学著作.该著作记载了“买椽多少”问题:“六贯二百一十钱 倩人去买几株椽.每株脚钱三文足 无钱准与一株椽”.大意是:现请人代买一批椽 这批椽的总售价为6210文.如果每株椽的运费是3文 那么少拿一株椽后 剩下的椽的运费恰好等于一株椽的价钱 试问6210文能买多少株椽?设6210元购买椽的数量为x 株,则符合题意的方程是( ). A .621031x x =- B .()316210x -= C .()621031x x-=D .()6210311x x -=- 17.(2023·黑龙江·统考中考真题)已知关于x 的分式方程122m xx x+=--的解是非负数,则m 的取值范围是( ) A .2m ≤B .2m ≥C .2m ≤且2m ≠-D .2m <且2m ≠-18.(2023·河南·统考中考真题)化简11a a a-+的结果是( ) A .0B .1C .aD .2a -19.(2023·内蒙古赤峰·统考中考真题)化简422x x +-+的结果是( ) A .1 B .224x x -C .2x x +D .22x x +20.(2023·湖北武汉·统考中考真题)已知210x x --= 计算2221121-⎛⎫-÷ ⎪+++⎝⎭x x x x x x 的值是( ) A .1 B .1- C .2 D .2-21.(2023·山东聊城·统考中考真题)若关于x 的分式方程111x m x x+=--的解为非负数,则m 的取值范围是( )A .1m 且1m ≠-B .1m ≥-且1m ≠C .1m <且1m ≠-D .1m >-且1m ≠二 填空题22.(2023·浙江台州·统考中考真题)3月12日植树节期间 某校环保小卫士组织植树活动.第一组植树12棵 第二组比第一组多6人 植树36棵 结果两组平均每人植树的棵数相等,则第一组有________人. 23.(2023·浙江绍兴·统考中考真题)方程3911x x x =++的解是________. 24.(2023·上海·统考中考真题)化简:2211x x x---的结果为________. 25.(2023·湖南·统考中考真题)已知5x =,则代数式2324416x x ---的值为________. 26.(2023·江苏苏州·统考中考真题)分式方程123x x +=的解为x =________________. 27.(2023·湖南永州·统考中考真题)若关于x 的分式方程1144mx x-=--(m 为常数)有增根,则增根是_______. 28.(2023·黑龙江绥化·统考中考真题)化简:2222142442x x x x x x x x x+--⎛⎫-÷= ⎪--+-⎝⎭_______. 29.(2017·江西·南昌市育新学校校联考一模)分式方程2102x x -=-的解是_____. 30.(2023·内蒙古赤峰·统考中考真题)方程216124x x x ++=+-的解为___________.三 解答题31.(2023·湖北黄冈·统考中考真题)化简:21211x xx x +---.32.(2023·辽宁大连·统考中考真题)计算:21123926a a a a -⎛⎫+÷ ⎪+-+⎝⎭.33.(2023·广东深圳·统考中考真题)先化简 再求值:22111121x x x x -⎛⎫+÷ ⎪--+⎝⎭其中3x =.34.(2022·江苏南京·模拟预测)解方程:2533322x x x x --=---.35.(2023·四川眉山·统考中考真题)先化简:214111x x x -⎛⎫-÷⎪--⎝⎭再从2,1,1,2--选择中一个合适的数作为x 的值代入求值.36.(2023·内蒙古通辽·统考中考真题)以下是某同学化简分式22a b ab b a a a ⎛⎫--÷- ⎪⎝⎭的部分运算过程: 解:原式22a b a b ab b a a a a---=÷-+…………第一步 212a b a b a a a a ab b --=⋅-⋅-…………第二步 222a b a ba ab b --==-…………第三步 ……(1)上面的运算过程中第___________步开始出现了错误 (2)请你写出完整的解答过程.37.(2023·湖南怀化·统考中考真题)先化简234111a a a -⎛⎫+÷⎪--⎝⎭ 再从1- 0 1 2中选择一个适当的数作为a 的值代入求值.38.(2023·甘肃武威·统考中考真题)化简:22222244a b a b a b a b a b a ab b+---÷+--+.39.(2023·山东烟台·统考中考真题)先化简 再求值:2695222a a a a a -+⎛⎫÷++ ⎪--⎝⎭ 其中a 是使不等式112a -≤成立的正整数.40.(2023·江苏苏州·统考中考真题)先化简 再求值:221422211a a a a a a --⋅---+- 其中12a =.41.(2023·湖南永州·统考中考真题)先化简 再求值:211121x x x x ⎛⎫-÷ ⎪+++⎝⎭其中2x =.42.(2023·湖北随州·统考中考真题)先化简 再求值:24242x x ÷-- 其中1x =.43.(2023·湖南·统考中考真题)先化简 再求值:211114x x x +⎛⎫+⋅ ⎪+-⎝⎭其中3x =.44.(2023·山西·统考中考真题)解方程:131122x x +=--.45.(2023·湖北宜昌·统考中考真题)先化简 再求值:222442342a a a a a a-+-÷+-+ 其中33=a .46.(2023·湖南郴州·统考中考真题)先化简 再求值:22311213x x x x x x x+-⋅+-++ 其中13x =47.(2023·广西·统考中考真题)解分式方程:211x x=-.48.(2023·四川·统考中考真题)先化简 再求值:222222322x y x x y y x x y xy ⎛⎫++÷ ⎪---⎝⎭ 其中31x = 3y =49.(2023·山东·统考中考真题)先化简 再求值:223x x xx y x y x y ⎛⎫+÷ ⎪-+-⎝⎭ 其中x y 满足230x y +-=.50.(2023·广东·统考中考真题)某学校开展了社会实践活动 活动地点距离学校12km 甲 乙两同学骑自行车同时从学校出发 甲的速度是乙的1.2倍 结果甲比乙早到10min 求乙同学骑自行车的速度.51.(2023·湖南张家界·统考中考真题)先化简22341121x x x x x -⎛⎫--÷ ⎪+++⎝⎭ 然后从1- 1 2这三个数中选一个合适的数代入求值.52.(2023·四川遂宁·统考中考真题)先化简 再求值:2221111x x x x -+⎛⎫⋅+ ⎪-⎝⎭ 其中112x -⎛⎫= ⎪⎝⎭.53.(2023·江西·统考中考真题)化简21x x x -⎛⎫+⋅ ⎪.下面是甲 乙两同学的部分运算过程:解:原式()()()()()()21111111x x x x x x x x x x ⎡⎤-+-=+⋅⎢⎥+-+-⎣⎦ ……解:原式221111x x x x x x x x--=⋅+⋅+- ……(1)甲同学解法的依据是________ 乙同学解法的依据是________ (填序号) ①等式的基本性质 ①分式的基本性质 ①乘法分配律 ①乘法交换律. (2)请选择一种解法 写出完整的解答过程.54.(2023·湖南常德·统考中考真题)先化简 再求值:231242x x x x ++⎛⎫÷- ⎪-+⎝⎭其中5x =.55.(2023·山东枣庄·统考中考真题)先化简 再求值:222211a a a a a ⎛⎫-÷ ⎪--⎝⎭其中a 的值从不等式组15a -<<56.(2023·山东滨州·统考中考真题)先化简 再求值:22421244a a a a a a a a -+-⎛⎫÷- ⎪--+⎝⎭其中a 满足1216cos6004a a -⎛⎫-⋅+ ⎪⎭︒=⎝.57.(2023·湖南·统考中考真题)先化简 再求值:222119x x x x +⎛⎫+⋅⎪+-⎝⎭ 其中6x =.58.(2023·山东聊城·统考中考真题)先化简 再求值:222224422a a a a a a a a+⎛⎫+÷ ⎪-+--⎝⎭ 其中22a .59.(2023·湖北荆州·统考中考真题)先化简 再求值:222222x y x xy y x y x y x y x y ⎛⎫--+--÷ ⎪+-+⎝⎭其中112x -⎛⎫= ⎪⎝⎭ 0(2023)y =-.60.(2023·福建·统考中考真题)先化简 再求值:22111x x x x x +-⎛⎫-÷ ⎪-⎝⎭其中21x =.61.(2023·黑龙江·统考中考真题)先化简 再求值:2222111m m m m m -+⎛⎫-÷⎪+-⎝⎭其中tan601m =︒-.62.(2023·山东·统考中考真题)为加快公共领域充电基础设施建设 某停车场计划购买A B 两种型号的充电桩.已知A 型充电桩比B 型充电桩的单价少0.3万元 且用15万元购买A 型充电桩与用20万元购买B 型充电桩的数量相等.(1)A B 两种型号充电桩的单价各是多少?(2)该停车场计划共购买25个A B 型充电桩 购买总费用不超过26万元 且B 型充电桩的购买数量不少于A 型充电桩购买数量的12.问:共有哪几种购买方案?哪种方案所需购买总费用最少?参考答案一 单选题1.(2023·湖南·统考中考真题)将关于x 的分式方程3121x x =-去分母可得( ) A .332x x -= B .312x x -= C .31x x -= D .33x x -=【答案】A【分析】方程两边都乘以()21x x - 从而可得答案. 【详解】解:①3121x x =- 去分母得:()312x x -= 整理得:332x x -= 故选:A .【点睛】本题考查的是分式方程的解法 熟练的把分式方程化为整式方程是解本题的关键.2.(2023·湖南郴州·统考中考真题)小王从A 地开车去B 地 两地相距240km .原计划平均速度为x km/h 实际平均速度提高了50% 结果提前1小时到达.由此可建立方程为( ) A .24024010.5x x-= B .24024011.5x x-= C .24024011.5x x-= D . 1.5240x x +=【答案】B【分析】设原计划平均速度为x km/h 根据实际平均速度提高了50% 结果提前1小时到达 列出分式方程即可.【详解】解:设原计划平均速度为x km/h 由题意 得: ()2402401150%x x -=+ 即:24024011.5x x-= 故选:B.【点睛】本题考查根据实际问题列方程.找准等量关系 正确得列出方程 是解题的关键.3.(2023·黑龙江绥化·统考中考真题)某运输公司 运送一批货物 甲车每天运送货物总量的14.在甲车运送1天货物后 公司增派乙车运送货物 两车又共同运送货物12天 运完全部货物.求乙车单独运送这批货物需多少天?设乙车单独运送这批货物需x 天 由题意列方程 正确的是( )A .11142x += B .11111424x ⎛⎫++= ⎪⎝⎭C .1111142x ⎛⎫++= ⎪⎝⎭D .11111442x⎛⎫++= ⎪⎝⎭【答案】B【分析】设乙车单独运送这批货物需x 天 由题意列出分式方程即可求解. 【详解】解:设乙车单独运送这批货物需x 天 由题意列方程11111424x ⎛⎫++= ⎪⎝⎭ 故选:B .【点睛】本题考查了列分式方程 根据题意找到等量关系列出方程是解题的关键.4.(2023·广东深圳·统考中考真题)某运输公司运输一批货物 已知大货车比小货车每辆多运输5吨货物 且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同 设有大货车每辆运输x 吨,则所列方程正确的是( ) A .75505x x=- B .75505x x =- C .75505x x=+ D .75505x x =+【答案】B【分析】根据“大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同”即可列出方程. 【详解】解:设有大货车每辆运输x 吨,则小货车每辆运输()5x -吨 则75505x x =-. 故选:B.【点睛】本题考查分式方程的应用 理解题意准确找到等量关系是解题的关键.5.(2023·云南·统考中考真题)阅读 正如一束阳光.孩子们无论在哪儿 都可以感受到阳光的照耀 都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲 乙两同学分别从距离活动地点800米和400米的两地同时出发 参加分享活动.甲同学的速度是乙同学的速度的1.2倍 乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是x 米/分,则下列方程正确的是( ) A .1.24800400x x-= B .1.24800400x x-= C .40080041.2x x-= D .80040041.2x x-= 【答案】D【分析】设乙同学的速度是x 米/分 根据乙同学比甲同学提前4分钟到达活动地点 列出方程即可. 【详解】解①设乙同学的速度是x 米/分 可得: 80040041.2x x-= 故选: D .【点睛】本题考查分式方程的应用 分析题意 找到合适的等量关系是解决问题的关键. 6.(2023·甘肃武威·统考中考真题)方程211x x =+的解为( ) A .2x =- B .2x = C .4x =- D .4x =【答案】A【分析】把分式方程转化为整式方程求解 然后解出的解要进行检验 看是否为增根. 【详解】去分母得()21x x += 解方程得2x =-检验:2x =-是原方程的解 故选:A .【点睛】本题考查了解分式方程的一般步骤 解题关键是熟记解分式方程的基本思想是“转化思想” 即把分式方程转化为整式方程求解 注意分式方程需要验根.7.(2023·上海·统考中考真题)在分式方程2221521x x x x -+=-中 设221x y x -= 可得到关于y 的整式方程为( )A .2550y y ++=B .2550y y -+=C .2510y y ++=D .2510y y -+=【答案】D 【分析】设221x y x -=,则原方程可变形为15y y += 再化为整式方程即可得出答案. 【详解】解:设221x y x-=,则原方程可变形为15y y += 即2510y y -+= 故选:D.【点睛】本题考查了利用换元法解方程 正确变形是关键 注意最后要化为整式方程. 8.(2023·天津·统考中考真题)计算21211x x ---的结果等于( ) A .1- B .1x - C .11x + D .211x - 【答案】C【分析】根据异分母分式加减法法则进行计算即可. 【详解】解:()()()()21212111111x x x x x x x +-=----+-+ ()()1211x x x +-=-+ ()()111x x x -=-+11x =+ 故选:C .【点睛】本题考查了异分母分式加减法法则 解答关键是按照相关法则进行计算.9.(2023·湖北随州·统考中考真题)甲 乙两个工程队共同修一条道路 其中甲工程队需要修9千米 乙工程队需要修12千米.已知乙工程队每个月比甲工程队多修1千米 最终用的时间比甲工程队少半个月.若设甲工程队每个月修x 千米,则可列出方程为( ) A .912112x x -=+ B .129112x x -=+ C .912112x x -=+ D .129112x x -=+ 【答案】A【分析】设甲工程队每个月修x 千米,则乙工程队每个月修()1x +千米 根据“最终用的时间比甲工程队少半个月”列出分式方程即可.【详解】解:设甲工程队每个月修x 千米,则乙工程队每个月修()1x +千米 依题意得912112x x -=+ 故选:A .【点睛】此题主要考查了由实际问题抽象出分式方程 关键是分析题意 找准关键语句 列出相等关系. 10.(2023·四川内江·统考中考真题)用计算机处理数据 为了防止数据输入出错 某研究室安排两名程序操作员各输入一遍 比较两人的输入是否一致 本次操作需输入2640个数据 已知甲的输入速度是乙的2倍 结果甲比乙少用2小时输完.这两名操作员每分钟各能输入多少个数据?设乙每分钟能输入x 个数据 根据题意得方程正确的是( ) A .2640264022x x=+ B .2640264022x x=- C .264026402602x x =+⨯ D .264026402602x x=-⨯ 【答案】D【分析】设乙每分钟能输入x 个数据,则甲每分钟能输入2x 个数据 根据“甲比乙少用2小时输完”列出分式方程即可.【详解】解:设乙每分钟能输入x 个数据,则甲每分钟能输入2x 个数据 由题意得264026402602x x=-⨯ 故选:D .【点睛】本题考查了由实际问题抽象出分式方程 找准等量关系 正确列出分式方程是解题的关键. 11.(2023·湖北十堰·统考中考真题)为了落实“双减”政策 进一步丰富文体活动 学校准备购进一批篮球和足球 已知每个篮球的价格比每个足球的价格多20元 用1500元购进篮球的数量比用800元购进足球的数量多5个 如果设每个足球的价格为x 元 那么可列方程为( ) A .1500800520x x -=+ B .1500800520x x-=- C .8001500520x x -=+ D .8001500520x x -=- 【答案】A【分析】设每个足球的价格为x 元,则篮球的价格为()+20x 元 根据“用1500元购进篮球的数量比用800元购进足球的数量多5个”列方程即可.【详解】解:设每个足球的价格为x 元,则篮球的价格为()+20x 元 由题意可得:1500800520x x-=+故选:A .【点睛】本题考查分式方程的应用 正确理解题意是关键.12.(2023·湖南·统考中考真题)某校组织九年级学生赴韶山开展研学活动 已知学校离韶山50千米 师生乘大巴车前往 某老师因有事情 推迟了10分钟出发 自驾小车以大巴车速度的1.2倍前往 结果同时到达.设大巴车的平均速度为x 千米/时,则可列方程为( ) A .505011.26x x =+ B .505010 1.2x x+= C .5050101.2x x=+ D .501506 1.2x x+= 【答案】A【分析】设大巴车的平均速度为x 千米/时,则老师自驾小车的平均速度为1.2x 千米/时 根据时间的等量关系列出方程即可.【详解】解:设大巴车的平均速度为x 千米/时,则老师自驾小车的平均速度为1.2x 千米/时 根据题意列方程为:505011.26x x =+ 故答案为:A .【点睛】本题考查了分式方程的应用 找到等量关系是解题的关键.13.(2023·四川·统考中考真题)近年来 我市大力发展交通 建成多条快速通道 小张开车从家到单位有两条路线可选择 路线a 为全程10千米的普通道路 路线b 包含快速通道 全程7千米 走路线b 比路线a 平均速度提高40% 时间节省10分钟 求走路线a 和路线b 的平均速度分别是多少?设走路线a 的平均速度为x 千米/小时 依题意 可列方程为( ) A .()10710140%60x x -=+ B .()10710140%x x -=+ C .()71010140%60x x -=+D .()71010140%x x-=+ 【答案】A【分析】若设路线a 时的平均速度为x 千米/小时,则走路线b 时的平均速度为()140%x +千米/小时 根据路线b 的全程比路线a 少用10分钟可列出方程.【详解】解:由题意可得走路线b 时的平均速度为()140%x +千米/小时 ①()10710140%60x x -=+ 故选:A .【点睛】本题考查了由实际问题抽象出分式方程 找到关键描述语 找到合适的等量关系是解决问题的关键.14.(2023·广东·统考中考真题)计算32a a+的结果为( )A .1aB .26a C .5aD .6a【答案】C【分析】根据分式的加法运算可进行求解. 【详解】解:原式5a= 故选:C .【点睛】本题主要考查分式的运算 熟练掌握分式的运算是解题的关键. 15.(2023·辽宁大连·统考中考真题)将方程13311xx x+=--去分母 两边同乘()1x -后的式子为( ) A .()1331x x +=- B .()1313x x +-=- C .133x x -+=- D .()1313x x +-=【答案】B【分析】根据解分式方程的去分母的方法即可得. 【详解】解:13311xx x+=-- 两边同乘()1x -去分母 得()1313x x +-=- 故选:B .【点睛】本题考查了解分式方程 熟练掌握去分母的方法是解题关键.16.(2023·湖南张家界·统考中考真题)《四元玉鉴》是一部成就辉煌的数学名著 是宋元数学集大成者 也是我国古代水平最高的一部数学著作.该著作记载了“买椽多少”问题:“六贯二百一十钱 倩人去买几株椽.每株脚钱三文足 无钱准与一株椽”.大意是:现请人代买一批椽 这批椽的总售价为6210文.如果每株椽的运费是3文 那么少拿一株椽后 剩下的椽的运费恰好等于一株椽的价钱 试问6210文能买多少株椽?设6210元购买椽的数量为x 株,则符合题意的方程是( ). A .621031x x =- B .()316210x -= C .()621031x x-= D .()6210311x x -=- 【答案】C【分析】设6210元购买椽的数量为x 株 根据单价=总价÷数量 求出一株椽的价钱为6210x再根据少拿一株椽后剩下的椽的运费恰好等于一株椽的价钱 即可列出分式方程 得到答案.【详解】解:设6210元购买椽的数量为x 株,则一株椽的价钱为6210x由题意得:()621031x x-= 故选:C .【点睛】本题考查了从实际问题中抽象出分式方程 正确理解题意找出等量关系是解题关键. 17.(2023·黑龙江·统考中考真题)已知关于x 的分式方程122m xx x+=--的解是非负数,则m 的取值范围是( ) A .2m ≤ B .2m ≥ C .2m ≤且2m ≠- D .2m <且2m ≠-【答案】C【分析】解分式方程求出22mx -= 然后根据解是非负数以及解不是增根得出关于m 的不等式组 求解即可.【详解】解:分式方程去分母得:2m x x +-=- 解得:22mx -=①分式方程122m xx x+=--的解是非负数 ①202m-≥ 且222m x -=≠ ①2m ≤且2m ≠- 故选:C .【点睛】本题考查了解分式方程 解一元一次不等式组 正确得出关于m 的不等式组是解题的关键. 18.(2023·河南·统考中考真题)化简11a a a-+的结果是( ) A .0 B .1 C .a D .2a -【答案】B【分析】根据同母的分式加法法则进行计算即可. 【详解】解:11111a a aa a a a--++=== 故选:B .【点睛】本题考查同分母的分式加法 熟练掌握运算法则是解决问题的关键. 19.(2023·内蒙古赤峰·统考中考真题)化简422x x +-+的结果是( )A .1B .224x x -C .2x x +D .22x x +【答案】D【分析】根据分式的加减混合运算法则即可求出答案. 【详解】解:422x x +-+ ()()4222x x x ++-=+22x x =+. 故选:D.【点睛】本题考查了分式的化简 解题的关键在于熟练掌握分式加减混合运算法则.20.(2023·湖北武汉·统考中考真题)已知210x x --= 计算2221121-⎛⎫-÷ ⎪+++⎝⎭x x x x x x 的值是( ) A .1 B .1- C .2 D .2-【答案】A【分析】根据分式的加减运算以及乘除运算法则进行化简 然后把21x x =+代入原式即可求出答案.【详解】解:2221121-⎛⎫-÷⎪+++⎝⎭x x x x x x =()()()()2121111x x x x x x x x x ⎡⎤-+-÷⎢⎥+++⎢⎥⎣⎦ =()()()21111x x x x x x +-⋅+- =21x x + ①210x x --= ①21x x =+ ①原式=21x x +=1 故选:A.【点睛】本题考查分式的混合运算及求值.解题的关键是熟练运用分式的加减运算以及乘除运算法则. 21.(2023·山东聊城·统考中考真题)若关于x 的分式方程111x mx x+=--的解为非负数,则m 的取值范围是( )A .1m 且1m ≠-B .1m ≥-且1m ≠C .1m <且1m ≠-D .1m >-且1m ≠【答案】A【分析】把分式方程的解求出来 排除掉增根 根据方程的解是非负数列出不等式 最后求出m 的范围. 【详解】解:方程两边都乘以()1x - 得:1x x m +-=- 解得:12mx -=①10x -≠ 即:112m-≠ ①1m ≠-又①分式方程的解为非负数 ①102m-≥ ①1m①m 的取值范围是1m 且1m ≠- 故选:A .【点睛】本题考查了分式方程的解 根据条件列出不等式是解题的关键 分式方程一定要检验.二 填空题22.(2023·浙江台州·统考中考真题)3月12日植树节期间 某校环保小卫士组织植树活动.第一组植树12棵 第二组比第一组多6人 植树36棵 结果两组平均每人植树的棵数相等,则第一组有________人. 【答案】3【分析】审题确定等量关系:第一组平均每人植树棵数=第二组平均每人植树棵数 列方程求解 注意检验.【详解】设第一组有x 人,则第二组有(6)x +人 根据题意 得 12366xx去分母 得12(6)36x x解得 3x =经检验 3x =是原方程的根. 故答案为:3.【点睛】本题考查分式方程的应用 审题明确等量关系是解题的关键 注意分式方程的验根. 23.(2023·浙江绍兴·统考中考真题)方程3911x x x =++的解是________.【答案】3x =【分析】先去分母 左右两边同时乘以()1x + 再根据解一元一次方程的方法和步骤进行解答 最后进行检验即可.【详解】解:去分母 得:39x = 化系数为1 得:3x =. 检验:当3x =时 10x +≠ ①3x =是原分式方程的解. 故答案为:3x =.【点睛】本题主要考查了解分式方程 解题的关键是掌握解分式方程的方法和步骤 正确找出最简公分母 注意解分式方程要进行检验. 24.(2023·上海·统考中考真题)化简:2211xx x---的结果为________. 【答案】2【分析】根据同分母分式的减法计算法则解答即可. 【详解】解:2211x x x ---()2122211x x x x--===--故答案为:2.【点睛】本题考查了同分母分式减法计算 熟练掌握运算法则是解题关键. 25.(2023·湖南·统考中考真题)已知5x =,则代数式2324416x x ---的值为________. 【答案】13【分析】先通分 再根据同分母分式的减法运算法则计算 然后代入数值即可. 【详解】解:原式=()()()()()34244444x x x x x +--+-+()()31244x x x -=-+34x =+ 5x =333145493∴===++x 故答案为:13.【点睛】本题主要考查了分式通分计算的能力 解决本题的关键突破口是通分整理. 26.(2023·江苏苏州·统考中考真题)分式方程123x x +=的解为x =________________. 【答案】3-【分析】方程两边同时乘以3x 化为整式方程 解方程验根即可求解. 【详解】解:方程两边同时乘以3x ()312x x += 解得:3x =-经检验 3x =-是原方程的解 故答案为:3-.【点睛】本题考查了解分式方程 熟练掌握解分式方程的步骤是解题的关键. 27.(2023·湖南永州·统考中考真题)若关于x 的分式方程1144m x x-=--(m 为常数)有增根,则增根是_______. 【答案】4x =【分析】根据使分式的分母为零的未知数的值 是方程的增根 计算即可. 【详解】①关于x 的分式方程1144mx x-=--(m 为常数)有增根 ①40x -= 解得4x = 故答案为:4x =.【点睛】本题考查了分式方程的解法 增根的理解 熟练掌握分式方程的解法是解题的关键.28.(2023·黑龙江绥化·统考中考真题)化简:2222142442x x x x x x x x x +--⎛⎫-÷= ⎪--+-⎝⎭_______. 【答案】12x - 【分析】先根据分式的加减计算括号内的 同时将除法转化为乘法 再根据分式的性质化简即可求解. 【详解】解:2222142442x x x x x x x x x+--⎛⎫-÷ ⎪--+-⎝⎭ ()()()()()2221242x x x x x x x x x +----=⨯-- ()()2222442x x x x x x x x ---+=⨯-- 12x =-故答案为:12x -. 【点睛】本题考查了分式的混合运算 熟练掌握分式的运算法则是解题的关键.29.(2017·江西·南昌市育新学校校联考一模)分式方程2102x x -=-的解是_____. 【答案】4x =【分析】根据解分式方程的步骤计算即可. 【详解】去分母得:()220x x --= 解得:4x =经检验4x =是方程的解 故答案为:4x =.【点睛】本题考查解分式方程 正确计算是解题的关键 注意要检验. 30.(2023·内蒙古赤峰·统考中考真题)方程216124x x x ++=+-的解为___________. 【答案】4x =【分析】依据题意将分式方程化为整式方程 再按照因式分解即可求出x 的值. 【详解】解:216124x x x ++=+- 方程两边同时乘以()()22x x +-得 ()()2622x x x x -++=+- 2244x x ∴+=-2280x x ∴--=()()420x x ∴-+=4x ∴=或2x =-.经检验2x =-时 240x -= 故舍去. ∴原方程的解为:4x =.故答案为:4x =.【点睛】本题考查的是解分式方程 解题的关键在于注意分式方程必须检验根的情况.三 解答题31.(2023·湖北黄冈·统考中考真题)化简:21211x xx x +---.【答案】1x -【分析】先计算同分母分式的减法 再利用完全平方公式约分化简. 【详解】解:21211x xx x +--- 2211x x x -+=- ()211x x -=-1x =-【点睛】本题考查分式的约分化简 解题的关键是掌握分式的运算法则. 32.(2023·辽宁大连·统考中考真题)计算:21123926a a a a -⎛⎫+÷⎪+-+⎝⎭. 【答案】23a - 【分析】先计算括号内的加法 再计算除法即可. 【详解】解:21123926a a a a -⎛⎫+÷⎪+-+⎝⎭ ()()()()()312333323a a a a a a a ⎡⎤--=+÷⎢⎥+-+-+⎢⎥⎣⎦ ()()()223323a a a a a --=÷+-+()()()232332a a a a a +-=⋅+--23a =- 【点睛】此题考查了分式的混合运算 熟练掌握分式的运算法则和顺序是解题的关键.33.(2023·广东深圳·统考中考真题)先化简 再求值:22111121x x x x -⎛⎫+÷ ⎪--+⎝⎭ 其中3x =. 【答案】1xx + 34 【分析】先根据分式混合运算的法则把原式进行化简 再把x 的值代入进行计算即可.【详解】22111121x x x x -⎛⎫+÷ ⎪--+⎝⎭ ()()()21111x x x x x +-=÷-- 111x x x x -=⨯-+。
中考数学《分式方程》专题训练(附带答案)

中考数学《分式方程》专题训练(附带答案)一、单选题1.和平中学为了排污,需铺设一段全长为7200米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天的工作效率比原计划提高20%,结果提前4天完成任务,设原计划每天铺设x米,下面所列方程正确的是()A.7200x−7200(1+20%)x=4B.7200(1−20%)x−7200x=4C.7200(1+20%)x−7200x=4D.7200(1+20%)x=7200x2.若实数a使关于x的不等式组{3x+1≥2(x−3)x−a3<2至少有3个整数解,且使关于y的分式方程4yy−3+y−a3−y=1有正整数解,则符合条件的所有整数a的和为()A.-7B.-12C.-21D.-233.为了改善生态环境,某社区计划在荒坡上种植600棵树,由于学生志愿者的加入,每日比原计划多种20%,结果提前1天完成任务.设原计划每天种树x棵,可列方程()A.600(1+20%)x−600x=1B.600x−600(1−20%)x=1C.600(1−20%)x−600x=1D.600x−600(1+20%)x=14.某市铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天铺设的管道长比计划增加10%,结果提前6天完工,求实际每天铺设管道长度及实际施工天数,小明列出方程:660x−660x(1+10%)=6,题中x表示的量为()A.实际每天铺设管道长度B.实际施工天数C.计划施工天数D.计划每天铺设管道的长度5.方程1x−1−32x+3=0的解的情况为()A.x=2B.x=3C.x=6D.x=86.电动车每小时比自行车多行驶了25千米,自行车行驶30千米比电动车行驶40千米多用了1小时,求两车的平均速度各为多少?设自行车的平均速度为x千米/小时,应列方程为()A.﹣1= B.﹣1=C.+1= D.+1=7.已知x为实数,且3x2+3x−(x2+3x)=3,那么x2+3x的值为( )A.1B.-3或1C.3D.-1或38.若关于x的分式方程2xx−1−3=m1−x的解为正数,则m的取值范围是().A.m<-2且m≠−3B.m<2且m≠−3 C.m>-3且m≠−2D.m>-3且m≠29.分式方程xx−1−1=m(x−1)(x+1)有增根,则m的值为()A.0和2B.1C.1和-2D.210.对于两个不相等的实数a、b,我们规定符号Min{a,b}表示a、b中的较小的值,如Min{2,4}=2,按照这个规定,方程Min{1x−2,3x−2}=x−1x−2−2的解为()A.0B.0或2C.无解D.不确定11.解关于x的方程x−3x−1=mx−1产生增根,则常数m的值等于()A.-2B.-1C.1D.212.若正整数m使关于x的分式方程m(x+2)(x−1)=xx+2−x−2x−1的解为正数,则符合条件的m的个数是()A.2B.3C.4D.5二、填空题13.分式方程1a+3=29−a2的解是.14.分式方程x x−1+1=31−x的解是.15.若关于x的方程xx−2=a2−x﹣1无解,则a=.16.分式方程xx−2−1x2−4=1的解是.17.某物流仓储公司用A,B两种型号的机器人搬运物品,已知A型机器人比B型机器人每小时多搬运20kg,A型机器人搬运1000kg所用时间与B型机器人搬运800kg所用时间相等,设B型机器人每小时搬运x kg物品,列出关于x的方程为.18.若关于x的分式方程1x−2=m2−x+1有增根,则m=.三、综合题19.解下列方程:(1)2x+2=3x−2;(2)2x=3﹣x 2.20.解方程: (1)1x=2x+3 ; (2)x 2﹣7x+10=0.21.解下列方程:(1)2x=3x+1(2)3−x x−4 ﹣ 14−x=1.22.某手机店购买了一批A 、B 型手机屏幕,其中A 型的单价比B 型的单价多20元,已知该店用3600元购买A 型屏幕的数量与用3000元购买B 型屏幕的数量相等. (1)求该店购买的A 、B 型屏幕的单价各是多少元?(2)若两种屏幕共购买了200块,且购买的总费用为23000元,求购买A 型屏幕多少块.23.某公司在农业示范基地采购A ,B 两种农产品,已知A 种农产品每千克的进价比B 种多2元,且用24000元购买A 种农产品的数量(按重量计)与用18000元购买B 种农产品的数量(按重量计)相同。
中考数学《分式方程》专项练习题及答案

中考数学《分式方程》专项练习题及答案一、单选题1.某工程队要对一条长3千米的人行道进行改造,为尽量减少施工对交通造成的影响,施工时,每天比原计划多改造10米,结果所用时间比原计划少十分之一,求实际每天改造多少米?设实际每天改造x米,则可列方程为()A.3000x=3000x−10(1−110)B.3000x=3000x+10×10C.3000x=3000x−10×110D.3000x×(1−110)=3000x+102.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则下列方程正确的是()A.120x+6=180x B.120x=180x−6C.120x=180x+6D.120x−6=180x3.某工程队在西城路改造一条长3000米的人行道,为尽量减少施工对交通造成的影响,施工时“×××”,设实际每天改造人行道x米,则可得方程3000x−10=3000x+15,根据已有信息,题中用“×××”表示的缺失的条件应补充为()A.每天比原计划少铺设10米,结果延迟15天完成B.每天比原计划多铺设10米,结果延迟15天完成C.每天比原计划少铺设10米,结果提前15天完成D.每天比原计划多铺设10米,结果提前15天完成4.分式方程2x−3=3x的解是()A.x=﹣9B.x=9C.x=3D.x=955.解分式方程2x−1+ x+21−x=3时,去分母后变形正确的为()A.2+(x+2)=3(x-1)B.2-x+2=3(x-1)C.2-(x+2)=3D.2-(x+2)=3(x-1)6.工地调来76人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样分配劳动力才能使挖出的土能及时运走?解决此问题,可设派x人挖土,其它的人运土,以下方程正确的是()A.76−xx=13B.x76−x=13C.76-x=3x D.x+3x=767.某工厂现在平均每天比原计划多生产50台机器,现在生产800台机器所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.800x+50=600x B.800x−50=600xC.800x=600x+50D.800x=600x−508.关于x的分式方程mx+1=−1的解是负数,则m的取值范围是()A.m>﹣1B.m>﹣1且m≠0C.m≥﹣1D.m≥﹣1且m≠09.A,B两地相距340千米,甲、乙两车分别从A,B两地同时出发,相向而行,匀速行驶.在距离A,B两地的中点10千米处两车相遇,设甲车速度为V1千米/时,乙车的速度为V2千米/时,则V1:V2等于()A.8:7B.8:9C.8:7或7:8D.8:9或9:810.在应对新冠肺炎疫情过程中,5G为山西疫情防控,复工复产,停课不停学提供了便利条件.已知5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输1000兆数据,5G网络比4G网络快9秒.若设4G网络的峰值速率为每秒传输x兆数据.则根据题意所列方程正确的是()A.1000x﹣100010x=9B.100010x﹣1000x=9C.1000x﹣10000x=9D.10000x﹣1000x=911.关于x的方程2x+ax−1=1的解是正数,则a的取值范围是()A.a>-1B.a>-1且a≠0C.a<-1D.a<-1且a≠-212.某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天的工作效率比原计划提高20%,结果提前2天完成任务.设原计划每天铺设x米,下面所列方程正确的是()A.720x﹣720(1+20%)x=2B.720(1−20%)x﹣720x=2C.720(1+20%)x﹣720x=2D.720x+2=720(1+20%)x二、填空题13.方程1x−2=1−x2−x−3的解为.14.若分式方程mx−2+22−x=3无解,则m的值是.15.一艘轮船在静水中的最大航速为30km/ℎ,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行60km所用时间相同,则江水的流速为km/ℎ.16.若关于x的方程axx−2=6x−2+1无解,则a=.17.若分式方程1x−3−1=axx−3的无解,则a=.18.分式方程2x=1x−1的解是.三、综合题19.之前我们学习了一元一次方程的解法,下面是一道解一元一次方程的题:解方程2−3x3﹣x−52=1老师说:这是一道含有分母的一元一次方程,我们可以根据等式的性质,可以把方程的两边同乘以6,这样就可以去掉分母了.于是,小明按照老师说的方法进行了解答,小明同学的解题过程如下:解:方程两边同时乘以6,得2−3x3×6﹣x−52×6=1…………①去分母,得:2(2﹣3x)﹣3(x﹣5)=1………②去括号,得:4﹣6x﹣3x+15=1……………③移项,得:﹣6x﹣3x=1﹣4﹣15…………④合并同类项,得﹣9x=﹣18……………⑤系数化1,得:x=2………………⑥(1)上述小明的解题过程从第步开始出现错误,错误的原因是.(2)请帮小明改正错误,写出完整的解题过程.20.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2015年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)实际每年绿化面积为多少万平方米?(2)为加大创建力度,市政府决定从2018年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?21.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?22.(1)解方程.2x+1+51−x=−10x2−1.(2)先化简分式(a2−4a2−4a+4−1a−2)÷a+1a2−2a,然后在0,1,2中选一个你认为合适的a值,代入求值.23.为了支援青海省玉树地区人民抗震救灾,四川省某休闲用品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划用10天完成.(1)按此计划,该公司平均每天应生产帐篷顶;(2)生产2天后,公司又从其他部门抽调了50名工人参加帐篷生产,同时通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该公司原计划安排多少名工人生产帐篷?24.5月份某厂甲乙两个车间生产同一型号的汽车零件1800个,已知甲车间比乙车间人均多做4个,甲车间的人数比乙车间的人数少10%(1)甲乙两个车间各有多少人?(2)该月甲乙两个车间人均生产多少个零件?参考答案1.【答案】A2.【答案】C3.【答案】D4.【答案】B5.【答案】D6.【答案】B7.【答案】A8.【答案】B9.【答案】D10.【答案】A11.【答案】D12.【答案】A13.【答案】无解14.【答案】215.【答案】1016.【答案】317.【答案】−1或1318.【答案】x=219.【答案】(1)①;利用等式的性质漏乘(2)解:正确的解题过程为:方程两边同时乘以6,得:2−3x3×6﹣x−52×6=6去分母,得:2(2﹣3x)﹣3(x﹣5)=6去括号,得:4﹣6x﹣3x+15=6移项,得:﹣6x﹣3x=6﹣4﹣15合并同类项,得:﹣9x=﹣13系数化1,得:x=13 9.20.【答案】(1)解:设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米,根据题意,得360 x−360 1.6x=4解得:x=33.75经检验x=33.75是原分式方程的解则1.6x=1.6×33.75=54(万平方米).答:实际每年绿化面积为54万平方米(2)解:设平均每年绿化面积增加a万平方米,根据题意得54×2+2(54+a)≥360解得:a≥72.答:则至少每年平均增加72万平方米21.【答案】(1)解: 设降价后每枝玫瑰的售价是x元,依题意有30x=30x+1×1.5.解得x=2.经检验,x=2是原方程的解,且符合题意.答:降价后每枝玫瑰的售价是2元.(2)解: 设购进玫瑰y枝,依题意有2(500-y)+1.5y≤900.解得y≥200.答:至少购进玫瑰200枝22.【答案】(1)解:方程的两边都乘以(x+1)(x﹣1)得∴2x-2-5x-5=-10解得x=1检验,当x =1时,(x+1)(x ﹣1)=0 ∴x =1是原方程的增根. ∴原分式方程无解(2)解:原式= [(a−2)(a+2)(a−2)2−1a−2]⋅a(a−2)a+1 = a+1a−2⋅a(a−2)a+1=a当a =0,2分式无意义 故当a =1时,原式=123.【答案】(1)2000(2)解:设该公司原计划安排x 名工人生产帐篷依题意得,(10-2-2)×2000x ×1.25×(x+50)=20000-2×2000即16000x=15000(x+50) 1000x=750000 解得x=750经检验x=750是方程的解答:该公司原计划安排750名工人生产帐篷.24.【答案】(1)解:设乙车间有x 人,则甲车间有x-10%x 人,由题意得 1800x−10%x - 1800x=4解得:x=50经检验x=50是原方程的解 x-10%x=45.答:甲车间有45人,乙车间有50人. (2)解:1800÷50=36(个) 1800÷45=40(个).答:该月甲车间人均生产40个零件,该月乙车间人均生产36个零件.。
中考数学复习《分式方程》专项提升训练(附答案)

中考数学复习《分式方程》专项提升训练(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列关于x 的方程,是分式方程的是( )A.3+x 2-3=2+x 5B.2x -17=x 2C.x π+1=2-x 3D.12+x =1-2x2.分式方程2x -2+3x 2-x=1的解为( ) A.x =1 B.x =2 C.x =13D.x =0 3.若x =3是分式方程a -2x -1x -2=0的解,则a 的值是( ) A.5 B.-5 C.3 D.-34.分式方程x +1x +1x -2=1的解是( ) A.x =1 B.x =-1 C.x =3 D.x =-35.分式方程x x -1-1=3(x -1)(x +2)的解为( ) A.x =1 B.x =2 C.x =-1D.无解6.解分式方程1x -5﹣2=35-x,去分母得( ) A.1﹣2(x ﹣5)=﹣3 B.1﹣2(x ﹣5)=3C.1﹣2x ﹣10=﹣3D.1﹣2x +10=37.如果分式方程113122=x++-x a+无解,那么a 的值为( )A.2B.﹣2C.2或﹣2D.﹣2或48.解分式方程2x +1+3x -1=6x 2-1分以下几步,其中错误的一步是( ) A.方程两边分式的最简公分母是(x -1)(x +1)B.方程两边都乘以(x -1)(x +1),得整式方程2(x -1)+3(x +1)=6C.解这个整式方程,得x=1D.原方程的解为x=19.某生态示范园计划种植一批梨树,原计划总产量30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( )A.30x ﹣361.5x =10B.30x ﹣301.5x=10 C.361.5x ﹣30x =10 D.30x +361.5x=10 10.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务. 设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A.60x -60(1+25%)x =30 B.60(1+25%)x -60x=30 C.60×(1+25%)x -60x =30 D.60x -60×(1+25%)x=30 二、填空题11.下列方程:①x -12=16;②x ﹣2x =3;③x (x -1)x =1;④4-x π=π3;⑤3x +x -25=10;⑥1x +2y=7,其中是整式方程的有 ,是分式方程的有 . 12.若关于x 的方程211=--ax a x 的解是x=2,则a= . 13.方程2x +13-x =32的解是 . 14.关于x 的方程2x +a x -1=1的解满足x >0,则a 的取值范围是________. 15.A ,B 两市相距200千米,甲车从A 市到B 市,乙车从B 市到A 市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x 千米/小时,则根据题意,可列方程____________________.16.对于实数a ,b ,定义一种新运算⊗为:a ⊗b =1a -b 2,这里等式右边是实数运算.例如:1⊗3=11-32=﹣18,则方程x ⊗(﹣2)=2x -4﹣1的解是__________. 三、解答题17.解分式方程:xx-1﹣2x=1;18.解分式方程:2x-3=3x;19.解分式方程:1-xx-2=x2x-4﹣1;20.解分式方程:xx-1-1=3(x-1)(x+2)21.对于分式方程x-3x-2+1=32-x,小明的解法如下:解:方程两边同乘(x﹣2) 得x﹣3+1=﹣3①解得x=﹣1②检验:当x=﹣1时,x﹣2≠0③所以x=﹣1是原分式方程的解.小明的解法有错误吗?若有错误,错在第几步?请你帮他写出正确的解题过程.22.当x为何值时,分式的值比分式的值小2?23.某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.24.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.25.某中学在商场购买甲、乙两种不同的足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元(1)求购买一个甲种足球,一个乙种足球各需多少元?(2)这所学校决定再次购买甲、乙两种足球共50个,预算金额不超过3000元.去到商场时恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果该学校此次需购买20个乙种足球,请问该学校购买这批足球所用金额是否会超过预算?答案1.D2.A3.A4.A5.D6.A7.D8.D9.A10.C11.答案为:①④⑤,②③⑥.12.答案为:54 .13.答案为:x=1.14.答案为:a<-1 且a≠-2.15.答案为:200x﹣200x+15=12.16.答案为:x=517.解:去分母得x2﹣2x+2=x2﹣x解得x=2检验:当x=2时,x(x﹣1)≠0故x=2是原方程的解;18.解:(1)方程两边乘x(x﹣3),得2x=3(x﹣3).解得x=9.检验:当x=9时,x(x﹣3)≠0.所以,原方程的解为x=9;19.解:去分母,得2(1﹣x)=x﹣(2x﹣4),解得x=﹣2 检验:当x=﹣2时,2(x﹣2)≠0故x=﹣2是原方程的根;20.解:方程两边同乘(x-1) (x+2)得x(x+2)-(x-1) (x+2)=3化简,得 x+2=3解得x=1检验:x=1时(x-1) (x+2)=0,x=1不是分式方程的解所以原分式方程无解.21.解:有错误,错在第①步,正确解法为:方程两边同乘(x﹣2)得x﹣3+x﹣2=﹣3解得x=1经检验x=1是分式方程的解所以原分式方程的解是x=1.22.解:由题意,得﹣=2,解得,x=4经检验,当x=4时,x﹣3=1≠0,即x=4是原方程的解.故当x=4时,分式的值比分式的值小2.23.解:设原计划每天铺设管道x米.由题意,得.解得x=60.经检验,x=60是原方程的解.且符合题意.答:原计划每天铺设管道60米.24.解:(1)普通列车的行驶路程为:400×1.3=520(千米);(2)设普通列车的平均速度为x千米/时,则高铁的平均速度为2.5千米/时则题意得:=﹣3,解得:x=120经检验x=120是原方程的解则高铁的平均速度是120×2.5=300(千米/时)答:普通列车的平均速度是120千米/时,高铁的平均速度是300千米/时.25.解:(1)设购买一个甲种足球需要x元=×2,解得,x=50经检验,x=50是原分式方程的解∴x+20=70即购买一个甲种足球需50元,一个乙种足球需70元;(2)设这所学校再次购买了y个乙种足球70(1﹣10%)y+50(1+10%)(50﹣y)≤3000解得,y≤31.25∴最多可购买31个足球所以该学校购买这批足球所用金额不会超过预算.。
中考数学总复习《分式方程及其应用》专题训练(附带答案)

中考数学总复习《分式方程及其应用》专题训练(附带答案) 学校:___________班级:___________姓名:___________考号:___________知识梳理分式方程的应用列分式方程解应用题的一般步骤,与列整式方程解应用题的步骤一样,都是按照审、设、列、解、验、答六步进行.(1)在利用分式方程解实际问题时,必须进行“双检验”,既要检验去分母化成整式方程的解是否为分式方程的解,又要检验分式方程的解是否符合实际意义.(2)分式方程应用题常见类型有行程问题、工作问题、销售问题等,其中行程问题中又出现逆水、顺水航行这一类型.同步练习一、选择题1.为响应“绿色出行”的号召,小李上班由自驾车改为乘坐公交车.已知小李家距上班地点20km,他乘公交车平均每小时行驶的路程比他自驾车平均每小时行驶的路程少12km.他从家出发到上班地点,乘公交车所用的时间是自驾车所用时间的43,小李乘公交车上班平均每小时行驶()A.30km B.36km C.40km D.46km2.某服装店用4.5万元购进某种品牌的服装,由于销售状况良好,服装店又调拨11万元资金购进该种服装,但这次的单价比第一次的单价贵20元,购进服装的数量比第一次的2倍还多50件,求该服装第一次的单价.为解决此问题,设该服装第一次的单价为x元,根据题意列出方程,其中正确的是()A.11 4.525020x x=⨯++B.1100004500025020x x=⨯++C.1100004500025020x x=⨯+-D.1100004500025020x x=⨯-+3.甲、乙两地相距160千米,一辆汽车从甲地到乙地的速度比原来提高了25%,结果比原来提前0.4小时到达,那么这辆汽车原来的速度为()A.80千米/小时B.90千米/小时C.100千米/小时D.110千米/小时4.《九章算术》是我国古代重要的数学专著之一,其中记录的一道题译为;把一份文件用慢马送到900里外的城市,需要的时间比规定时间多1天;如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍.根据题意列方程为900900213x x⨯=+-,其中x表示()A.快马的速度B.慢马的速度C.规定的时间D.以上都不对5.为扎实推进“五育”并举工作,加强劳动教育,某校投入2万元购进了一批劳动工具.开展课后服务后,学生的劳动实践需求明显增强,需再次采购一批相同的劳动工具,已知采购数量与第一次相同,但采购单6.一个圆柱形容器的容积为3Vm,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用t则大,小两根水管的注水速一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间min.7.八年级学生去距学校10千米的荆州博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车A.实际工作时每天铺设的管道比原计划降低了20%,结果延误3天完成了这一任务B.实际工作时每天铺设的管道比原计划降低了20%,结果提前3天完成了这一任务C.实际工作时每天铺设的管道比原计划提高了20%,结果延误3天完成了这一任务D.实际工作时每天铺设的管道比原计划提高了20%,结果提前3天完成了这一任务二、填空题数称为调和数,如15,5,3也是一组调和数.现有一组调和数:x ,3,2(3)x >,则x = . 12.甲、乙两船从相距150km 的A ,B 两地同时匀速沿江出发相向而行,甲船从A 地顺流航行90km 时与从B 地逆流航行的乙船相遇.甲、乙两船在静水中的航速均为30km/h ,则江水的流速为 km/h . 13.甲、乙、丙三名工人共承担装搭一批零件.已知甲乙丙丁四人聊天时的对话信息如表,如果每小时只安排1名工人,那么按照甲、乙、丙的轮流顺序至完成工作任务,共需 小时. 甲说:我单独完成任务所需时间比乙单独完成任务所需时间多5小时;乙说:我3小时完成的工作量与甲4小时完成的工作量相等;丙说:我工作效率不高,我的工作效率是乙的工作效率的12;丁说:我没参加此项工作,但我可以计算你们的工作效率,知道工程问题三者关系是:工作效率⨯工作时间=工作总量.三、解答题14.为深刻践行习近平总书记的“绿水青山就是金山银山”重要思想,某单位积极开展植树活动,准备购买甲、乙两种树苗、已知用800元购买甲种树苗的棵数与用680元购买乙种树苗的棵数相同,乙种树苗每棵比甲种树苗便宜6元.(1)求甲种树苗的单价;(请根据题意列方程解答)(2)若购买这两种树苗共100棵,且费用不超过3800元,则至少购买乙种树苗多少棵?15.科学中,经常需要把两种物质混合制作成混合物,研究混合物的物理性质和化学性质.现将甲、乙两种密度分别为ρ甲,ρ乙的液体混合(ρρ<甲乙),研究混合物的密度(=物体的质量物体的密度物体的体积),假设混合前后液体的总体积不变,令等体积的甲乙两种液体的混合溶液密度为1ρ,等质量的甲乙两种液体的混合溶液的密度为2ρ.(1)请用含ρ甲,ρ乙式子表示1ρ;(2)比较1ρ,2ρ的大小,并通过运算说明理由:(3)现有密度为31.2g /cm 的盐水600g ,加适量的水(密度为31.0g /cm )进行稀释,问:需要加水多少g ,才能使密度为31.1g /cm 的鸡蛋悬浮在稀释后的盐水中?16.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg 产品,甲型机器人搬运800kg 产品所用时间与乙型机器人搬运600kg 产品所用时间相等.根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运kg x 产品,可列方程为__________.小惠同学设甲型机器人搬运800kg 产品所用时间为y 小时,可列方程为__________.(2)求乙型机器人每小时搬运多少千克产品.17.某大型品牌书城购买了A B 、两种新出版书籍,商家用1600元购买A 书籍,1200元购买B 书籍,A B 、两种书籍的进价之和为40元,且购买A 书籍的数量是B 书籍的2倍.(1)求商家购买A 书籍和B 书籍的进价;(2)商家在销售过程中发现,当A 书籍的售价为每本25元,B 书籍的售价为每本33元时,平均每天可卖出50本A 书籍,25本 B 书籍.据统计,B 书籍的售价每降低0.5元平均每天可多卖出5本.商家在保证A 书籍的售价和销量不变且不考虑其他因素的情况下,为了促进B 的销量,想使A 书籍和B 书籍平均每天的总获利为775元,则每本B 书籍的售价为多少元?18.为更好地满足市民休闲、健身需求,提升群众的幸福感获得感,丰都县从年初开始对滨江公园进行“微改造”、“精提升”,将原有的边坡地带改造为观景平台,同时增设多处具有体育、文化、智慧元素的文体场所和设施,把3.5公里滨江健身长廊打造成智慧休闲乐园.施工过程中共有5000吨渣土要运走,现计划由甲、乙两个工程队运走渣土,已知甲、乙两个工程队,原计划乙平均每天运走的渣土比甲平均每天运走的渣土多13,这样乙运走2600吨渣土的时间比甲运走剩下渣土的时间少3天. (1)求原计划乙平均每天运渣土多少吨?(2)实际施工时,甲平均每天运走的渣土比原计划增加了m 吨,乙平均每天运走的渣土比原计划增加了200m ,甲、乙合作10天后,乙临时有其他任务;剩下的渣土由甲再单独工作5天完成.若运走每吨渣土的运输费用为30元,请求出乙工程队的运输费用.答案第1页,共1页 参考答案 1.【答案】B2.【答案】B3.【答案】A4.【答案】C5.【答案】B6.【答案】A7.【答案】C8.【答案】A9.【答案】810.【答案】1260012600251.5x x-= 11.【答案】612.【答案】613.【答案】319414.【答案】(1)40元(2)34棵15.【答案】(1)12ρρρ+=乙甲(2)12ρρ>(3)需要加水50g 16.【答案】(1)80060010x x=+ 80060010y y -=(2)乙型机器人每小时搬运30kg 产品 17.【答案】(1)商家购买A 书籍的进价为16元/本,购买B 书籍的进价为24元/本;(2)29元. 18.【答案】(1)200(2)6900。
专题07分式方程-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】

备战2023年中考数学必刷真题考点分类专练(全国通用)专题07分式方程一.选择题(共7小题)1.(2022•德阳)如果关于x 的方程2x+m x−1=1的解是正数,那么m 的取值范围是( )A .m >﹣1B .m >﹣1且m ≠0C .m <﹣1D .m <﹣1且m ≠﹣2【分析】先去分母将分式方程化成整式方程,再求出方程的解x =﹣1﹣m ,利用x >0和x ≠1得出不等式组,解不等式组即可求出m 的范围. 【解析】两边同时乘(x ﹣1)得, 2x +m =x ﹣1, 解得:x =﹣1﹣m ,又∵方程的解是正数,且x ≠1, ∴{x >0x ≠1,即{−1−m >0−1−m ≠1, 解得:{m <−1m ≠−2,∴m 的取值范围为:m <﹣1且m ≠﹣2. 故答案为:D .【点评】本题主要考查了分式方程的解,一元一次不等式,正确求得分式方程的解并考虑产生增根的情形是解题的关键.2.(2022•遂宁)若关于x 的方程2x =m 2x+1无解,则m 的值为( )A .0B .4或6C .6D .0或4【分析】解分式方程可得(4﹣m )x =﹣2,根据题意可知,4﹣m =0或x =−12=−24−m ,求出m 的值即可. 【解析】2x =m 2x+1,2(2x +1)=mx , 4x +2=mx , (4﹣m )x =﹣2, ∵方程无解,∴4﹣m =0或x =−12=−24−m ,∴m =4或m =0, 故选:D .【点评】本题考查分式方程的解法,熟练掌握分式方程的解法,分式方程无解的条件是解题的关键. 3.(2022•广元)某药店在今年3月份购进了一批口罩,这批口罩包括一次性医用外科口罩和N 95口罩,且两种口罩的只数相同,其中一次性医用外科口罩花费1600元,N 95口罩花费9600元.已知一次性医用外科口罩的单价比N 95口罩的单价少10元,那么一次性医用外科口罩的单价为多少元?设一次性医用外科口罩单价为x 元,则列方程正确的是( ) A .9600x−10=1600x B .9600x+10=1600xC .9600x=1600x−10D .9600x=1600x+10【分析】设该药店购进的一次性医用外科口罩的单价是x 元,则购进N 95口罩的单价是(x +10)元,利用数量=总价÷单价,结合购进两种口罩的只数相同,即可得出关于x 的分式方程.【解析】设该药店购进的一次性医用外科口罩的单价是x 元,则购进N 95口罩的单价是(x +10)元, 依题意得:9600x+10=1600x,故选:B .【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键. 4.(2022•云南)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木.该活动开始后,实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x 棵,则下列方程正确的是( ) A .400x−50=300x B .300x−50=400xC .400x+50=300xD .300x+50=400x【分析】根据实际植树400棵所需时间与原计划植树300棵所需时间相同,可以列出相应的分式方程,本题得以解决. 【解析】由题意可得,400x=300x−50,故选:B .【点评】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,找出等量关系,列出相应的方程.5.(2022•丽水)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50002x=4000x−30,则方程中x 表示( )A .足球的单价B .篮球的单价C .足球的数量D .篮球的数量【分析】设篮球的数量为x 个,足球的数量是2x 个,列出分式方程解答即可. 【解析】设篮球的数量为x 个,足球的数量是2x 个. 根据题意可得:50002x=4000x−30,故选:D .【点评】此题主要考查了由实际问题抽象出分式方程,得到相应的关系式是解决本题的关键.6.(2022•重庆)关于x 的分式方程3x−ax−3+x+13−x =1的解为正数,且关于y 的不等式组{y +9≤2(y +2)2y−a 3>1的解集为y ≥5,则所有满足条件的整数a 的值之和是( ) A .13B .15C .18D .20【分析】解分式方程得得出x =a ﹣2,结合题意及分式方程的意义求出a >2且a ≠5,解不等式组得出{y ≥5y >a+32,结合题意得出a ≤7,进而得出2<a ≤7且a ≠5,继而得出所有满足条件的整数a 的值之和,即可得出答案. 【解析】解分式方程得:x =a ﹣2, ∵x >0且x ≠3, ∴a ﹣2>0且a ﹣2≠3, ∴a >2且a ≠5,解不等式组得:{y ≥5y >a+32,∵不等式组的解集为y ≥5, ∴a+32<5,∴a <7,∴2<a <7且a ≠5,∴所有满足条件的整数a 的值之和为3+4+6=13, 故选:A .【点评】本题考查了分式方程的解,解一元一次不等式组,解一元一次不等式,一元一次不等式的整数解,正确求解分式方程,一元一次不等式组,一元一次不等式是解决问题的关键.7.(2022•重庆)若关于x 的一元一次不等式组{x −1≥4x−13,5x −1<a的解集为x ≤﹣2,且关于y 的分式方程y−1y+1=a y+1−2的解是负整数,则所有满足条件的整数a 的值之和是( )A .﹣26B .﹣24C .﹣15D .﹣13【分析】解不等式组得出{x ≤−2x <a+15,结合题意得出a >﹣11,解分式方程得出y =a−13,结合题意得出a =﹣8或﹣5,进而得出所有满足条件的整数a 的值之和是﹣8﹣5=﹣13,即可得出答案.【解析】解不等式组{x −1≥4x−135x −1<a 得:{x ≤−2x <a+15,∵不等式组{x −1≥4x−135x −1<a 的解集为x ≤﹣2,∴a+15>−2,∴a >﹣11, 解分式方程y−1y+1=ay+1−2得:y =a−13, ∵y 是负整数且y ≠﹣1, ∴a−13是负整数且a−13≠−1,∴a =﹣8或﹣5,∴所有满足条件的整数a 的值之和是﹣8﹣5=﹣13, 故选:D .【点评】本题考查了分式方程的解,解一元一次不等式组,正确求解分式方程和一元一次不等式组是解决问题的关键.二.填空题(共6小题)8.(2022•宁波)定义一种新运算:对于任意的非零实数a ,b ,a ⊗b =1a +1b .若(x +1)⊗x =2x+1x,则x 的值为 −12 .【分析】根据新定义列出分式方程,解方程即可得出答案. 【解析】根据题意得:1x+1+1x=2x+1x,化为整式方程得:x +x +1=(2x +1)(x +1), 解得:x =−12,检验:当x =−12时,x (x +1)≠0, ∴原方程的解为:x =−12. 故答案为:−12.【点评】本题考查了解分式方程,新定义,根据新定义列出分式方程是解题的关键.9.(2022•江西)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x 人,则可列分式方程为160x =140x−10.【分析】由实际问题找到合适的等量关系即可抽象出分式方程.【解析】设甲每小时采样x 人,则乙每小时采样(x ﹣10)人,根据题意得:160x=140x−10.故答案为:160x=140x−10.【点评】本题考查由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.10.(2022•金华)若分式2x−3的值为2,则x 的值是 4 .【分析】依据题意列出分式方程,解分式方程即可求得结论. 【解析】由题意得:2x−3=2,去分母得:2=2(x ﹣3), 去括号得:2x ﹣6=2, 移项,合并同类项得:2x =8, ∴x =4.经检验,x =4是原方程的根, ∴x =4. 故答案为:4.【点评】本题主要考查了解分式方程,解分式方程需要验根,这是容易丢掉的步骤.11.(2022•泸州)若方程x−3x−2+1=32−x 的解使关于x 的不等式(2﹣a )x ﹣3>0成立,则实数a 的取值范围是 a <﹣1 .【分析】先解分式方程,再将x 代入不等式中即可求解. 【解析】x−3x−2+1=32−x ,x−3x−2+x−2x−2=−3x−2,2x−2x−2=0,解得:x =1, ∵x ﹣2≠0,2﹣x ≠0, ∴x =1是分式方程的解,将x =1代入不等式(2﹣a )x ﹣3>0,得: 2﹣a ﹣3>0, 解得:a <﹣1,∴实数a 的取值范围是a <﹣1, 故答案为:a <﹣1.【点评】本题考查分式方程的解,不等式的解集,解题的关键是正确求出分式方程的解,要注意分母不能为0.12.(2022•成都)分式方程3−x x−4+14−x=1的解为 x =3 .【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【解析】去分母得:3﹣x ﹣1=x ﹣4, 解得:x =3,经检验x =3是分式方程的解, 故答案为:x =3【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验. 13.(2022•邵阳)分式方程5x−2−3x=0的解是 x =﹣3 .【分析】依据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论. 【解析】去分母,得:5x ﹣3(x ﹣2)=0, 整理,得:2x +6=0,解得:x=﹣3,经检验:x=﹣3是原分式方程的解,故答案为:x=﹣3.【点评】本题主要考查解分式方程能力,熟练掌握解分式方程的步骤是关键.三.解答题(共10小题)14.(2022•苏州)解方程:xx+1+3x=1.【分析】先两边同乘以x(x+1)化为整式方程:x2+3(x+1)=x(x+1),解整式方程得x=−32,再检验即可得答案.【解析】方程两边同乘以x(x+1)得:x2+3(x+1)=x(x+1),解整式方程得:x=−3 2,经检验,x=−32是原方程的解,∴原方程的解为x=−3 2.【点评】本题考查解分式方程,解题的关键是掌握解分式方程的一般步骤,特别注意解分式方程必须检验.15.(2022•眉山)解方程:1x−1=32x+1.【分析】按照解分式方程的步骤,进行计算即可解答.【解析】1x−1=32x+1,方程两边同乘(x﹣1)(2x+1)得:2x+1=3(x﹣1),解这个整式方程得:x=4,检验:当x=4时,(x﹣1)(2x+1)≠0,∴x=4是原方程的解.【点评】本题考查了解分式方程,熟记解分式方程的步骤是解题的关键,需要特别注意解分式方程需要检验.16.(2022•嘉兴)(1)计算:(1−√83)0−√4.(2)解方程:x−32x−1=1.【分析】(1)分别利用0指数幂、算术平方根的定义化简,然后加减求解; (2)首先去分母化分式方程为整式方程,然后解整式方程,最后验根. 【解析】(1)原式=1﹣2=﹣1; (2)去分母得x ﹣3=2x ﹣1, ∴﹣x =3﹣1, ∴x =﹣2,经检验x =﹣2是分式方程的解, ∴原方程的解为:x =﹣2.【点评】本题分别考查了实数的运算和解分式方程,实数的运算主要利用0指数幂及算术平方根的定义,解分式方程的基本方法时去分母. 17.(2022•宿迁)解方程:2x x−2=1+1x−2.【分析】根据解分式方程的步骤,先去分母化为整式方程,再求出方程的解,最后进行检验即可. 【解析】2x x−2=1+1x−2, 2x =x ﹣2+1, x =﹣1,经检验x =﹣1是原方程的解, 则原方程的解是x =﹣1.【点评】此题考查了解分式方程,用到的知识点是解分式方程的步骤:去分母化整式方程,解整式方程,最后要把整式方程的解代入最简公分母进行检验.18.(2022•常德)小强的爸爸平常开车从家中到小强奶奶家,匀速行驶需要4小时.某天,他们以平常的速度行驶了12的路程时遇到了暴雨,立即将车速减少了20千米/小时,到达奶奶家时共用了5小时,问小强家到他奶奶家的距离是多少千米?【分析】设平常的速度是x 千米/小时,根据“到达奶奶家时共用了5小时”列分式方程,求解即可. 【解析】设平常的速度是x 千米/小时, 根据题意,得(1−12)⋅4x x−20+2=5,解得x =60,经检验,x =60是原方程的根, 4×60=240(千米),答:小强家到他奶奶家的距离是240千米.【点评】本题考查了分式方程的应用,理解题意并根据题意建立等量关系是解题的关键.19.(2022•乐山)第十四届四川省运动会定于2022年8月8日在乐山市举办.为保证省运会期间各场馆用电设施的正常运行,市供电局为此进行了电力抢修演练.现抽调区县电力维修工人到20千米远的市体育馆进行电力抢修.维修工人骑摩托车先行出发,10分钟后,抢修车装载完所需材料再出发,结果他们同时到达体育馆.已知抢修车是摩托车速度的1.5倍,求摩托车的速度.【分析】设摩托车的速度为x 千米/小时,则抢修车的速度为1.5x 千米/小时,根据时间=路程÷速度结合骑摩托车的维修工人比乘抢修车的工人多用10分钟到达,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解析】设摩托车的速度为x 千米/小时,则抢修车的速度为1.5x 千米/小时, 依题意,得:20x−201.5x=1060,解得:x =10,经检验,x =10是原方程的解,且符合题意. 答:摩托车的速度为10千米/小时.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20.(2022•扬州)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名? 【分析】设每个小组有学生x 名,由题意得:3603x−3604x=3,解分式方程并检验后即可得出答案.【解析】设每个小组有学生x 名, 由题意得:3603x−3604x=3,解得:x =10, 当x =10时,12x ≠0, ∴x =10是分式方程的根, 答:每个小组有学生10名.【点评】本题考查了分式方程的应用,根据题意列出分式方程是解决问题的关键.21.(2022•达州)某商场进货员预测一种应季T 恤衫能畅销市场,就用4000元购进一批这种T 恤衫,面市后果然供不应求.商场又用8800元购进了第二批这种T 恤衫,所购数量是第一批购进量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批T 恤衫每件的进价分别是多少元?(2)如果两批T 恤衫按相同的标价销售,最后缺码的40件T 恤衫按七折优惠售出,要使两批T 恤衫全部售完后利润率不低于80%(不考虑其他因素),那么每件T 恤衫的标价至少是多少元?【分析】(1)设该商场购进第一批、第二批T 恤衫每件的进价分别是x 元和(x +4)元,根据所购数量是第一批购进量的2倍列出方程解答即可;(2)设每件T 恤衫的标价至少是y 元,根据题意列出不等式解答即可.【解答】(1)解:设该商场购进第一批、第二批T 恤衫每件的进价分别是x 元和(x +4)元,根据题意可得: 2×4000x=8800x+4, 解得:x =40,经检验x =40是方程的解, x +4=40+4=44,答:该商场购进第一批、第二批T 恤衫每件的进价分别是40元和44元; (2)解:400040+880044=300(件),设每件T 恤衫的标价至少是y 元,根据题意可得:(300﹣40)y +40×0.7y ≥(4000+8800)×(1+80%), 解得:y ≥80,答:每件T 恤衫的标价至少是80元.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 22.(2022•重庆)为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?【分析】(1)根据题意可知:甲原来工作5天的工作量+后来2天的工作量=600,可以列出相应的方程,然后求解即可;(2)根据题意可知:甲、乙施工的长度都是900米,再根据题意可知,两个工程队施工天数相同,即可列出相应的分式方程,然后求解即可,注意分式方程要检验.【解析】(1)设甲施工队增加人员后每天修建灌溉水渠x 米,则原计划每天施工(x ﹣20)米, 由题意可得:5(x ﹣20)+2x =600,解得x =100,答:甲施工队增加人员后每天修建灌溉水渠100米;(2)设乙施工队原来每天修建灌溉水渠m 米,则技术更新后每天修建水渠m (1+20%)=1.2m 米, 由题意可得:360m +900−3601.2m =900100,解得m =90,经检验,m =90是原分式方程的解,答:乙施工队原来每天修建灌溉水渠90米.【点评】本题考查一元一次方程的应用、分式方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的分式方程和一元一次方程.23.(2022•自贡)学校师生去距学校45千米的吴玉章故居开展研学旅行活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达.已知汽车速度是自行车速度的3倍,求张老师骑车的速度.【分析】根据题意可知:张老师骑车用的时间﹣汽车用的时间=2,即可列出相应的分式方程,然后求解即可,注意分式方程要检验.【解析】设张老师骑车的速度为x 千米/小时,则汽车的速度为3x 千米/小时,由题意可得:45x −2=453x, 解得x =15,经检验,x =15是原分式方程的解,答:张老师骑车的速度是15千米/小时.【点评】本题考查分式方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的分式方程.。
初三中考数学复习分式方程专项复习练习含答案与解析

x- 3
3- m
3-m
=3-m,即 x= 3 ,原方程无解,即此时存在 x= 3 =3,m=- 6.
7. 解:方程两边同乘以 (x-1),得 2=1+x-1,解得 x=2,把 x=2 代入原方 程检验: ∵左边=右边, ∴x=2 是分式方程的根 8. 解:方程两边同乘 x-2,1-3(x-2)=- (x-1),即 1-3x+6=- x+1,则 -2x=- 6,得 x=3.检验,当 x=3 时, x-2 ≠,0所以原方程的解为 x=3 【解析】分式方程同乘 (x-2)去分母转化为整式方程. 9. 解:去分母得 x+1=2x-14,解得 x=15, 经检验 x=15 是分式方程的解
y 900 (2)小明家与图书馆之间的路程最多是 y 米,根据题意可得 60≤180×2,解得 y≤ 60,0 则小明家与图书馆之间的路程最多是 600 米
【解析】 (1)根据等量关系:小明步行回家的时间=骑车返回时间+ 10 分钟,列 分式方程求解即可; (2)根据 (1)中计算的速度列出不等式解答即可.
【解析】 (1)设原计划每年绿化面积为 x 万平方米,则实际每年绿化面积为 1.6x
万平方米.根据 “实际每年绿化面积是原计划的 1.6 倍,这样可提前 4 年完成任
务”列出方程; (2)设平均每年绿化面积增加 a 万平方米.则由 “完成新增绿化面
积不超过 2 年”列出不等式. 13. 解:设甲队每天筑路 5x 公里,乙队每天筑路 8x 公里,根据题意得
m
无解,求 m 的值.
x-5 10-2x
12. 某市为创建全国文明城市,开展 “美化绿化城市 ”活动,计划经过若干年使城 区绿化总面积新增 360 万平方米.自 2013 年初开始实施后,实际每年绿化面积 是原计划的 1.6 倍,这样可提前 4 年完成任务. (1)问实际每年绿化面积多少万平方米? (2)为加大创城力度,市政府决定从 2016 年起加快绿化速度,要求不超过 2 年完 成,那么实际平均每年绿化面积至少还要增加多少万平方米?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新中考数学一轮复习同步练习含答案
最
新
讲
义
7.分式方程
一、选择题
1.(2018·荆州)解分式方程
14322x x
-=--时,去分母可得()
A.13(2)4x --=
B.13(2)4x --=-
C.13(2)4x ---=-
D.13(2)4x --=2.(2018·哈尔滨)方程
1223
x x =+的解为()A.1x =- B.0x =C.35
x =
D.1
x =3.(2018·成都)分式方程
11
12
x x x ++=-的解为()
A.1x =
B.1
x =-C.3
x = D.3x =-4.(2018·海南)分式方程21
01
x x -=+的解是(
)A.1x =- B.1x =C.1x =± D.无解
5.(2018·德州)分式方程
3
11(1)(2)
x x x x -=
--+的解为()
A.1x =
B.2
x =C.1
x =- D.无解
6.(2018·张家界)若关于x 的分式方程
3
11
m x -=-的解为2x =,则m 的值为()
A.5
B.4
C.3
D.2
7.(2018·株洲)关于x 的分式方程
230x x a
+=-的解为4x =,则常数a 的值为()
A.1
B.2
C.4
D.10
8.(2018·龙东五市)已知关于x 分式方程
2
11
m x -=+的解是负数,则m 的取值范围是()
A.3m ≤
B.3m ≤且2m ≠
C.3
m < D.3m <且2
m ≠9.(2018·重庆)若数a 使关于x 的不等式组112352x x
x x a
-+⎧<⎪
⎨⎪-≥+⎩有且只有四个整数解,且使关于
y 的方程
2211y a a
y y
++=--的解为非负数,则符合条件的所有整数a 的和为()
A.3-
B.2-
C.1
D.2
二、填空题
10.(2018·湘潭)分式方程314x
x =+的解为.11.(2018·广州)方程14
6
x x =+的解为.
12.(2018·铜仁)分式方程
31
42x x -=+的解是x =.
13.(2018·无锡)方程31
x x
x x -=+的解是.14.(2018·常德)分式方程
213024
x x x -=+-的解为x =.
15.(2018·黄石)分式方程
2415
112(1)
x x x +-=--的解为.
16.(2018·潍坊)当m 的值为
时,解分式方程
533x m
x x
-=--会出现增根.17.(2018·眉山)已知关于x 的分式方程
233
x k x x -=--有一个正数解,则k 的取值范围为
.
18.(2018·达州)若关于x 的分式方程3233x a a x x +=--无解,则a 的值为.
19.(2018·齐齐哈尔)若关于x 的方程2134416
m m x x x ++=-+-无解,则m 的值为.
三、解答题
20.(2018·柳州)解方程:
212
x x =-.21.(2018·连云港)解方程:
32
01x x
-=-.22.(2018·镇江)解方程:
2121x x x =++-.23.(2018·大庆)解方程:
113x x x
-=+.
24.(2018·绵阳)解方程:
13
222x x x
-+=--.25.(2018·呼和浩特)解方程:
33
122x x x
-+=--.26.(2018·南通)解方程:
21133x x x x =+++.27.(2018·广西)解方程:
21133x x x x -=--.28.(2018·贺州)解方程:
2
41
111
x x x -+=-+.29.(2018·贵港)解方程:
241
142
x x +=--.30.(2018·巴中)若分式方程
2
312
22x a x x x x
-+=--有增根,求实数a 的值.参考答案
一、1.B 2.D
3.A
4.
B
5.
D
6.
B
7.
D
8.
D
9.
C
二、填空题10.2x =11.2x =12.9-13.32
x =-
14.1-15.0.5
x =16.2
17.6k <且3
k ≠
三、20.4x =21.2x =-22.12x =-23.34x =-
24.23x =
25.1
x =26.
32x =-
27.
1.5
x =28.无解
29.1
x =-30.实数a 的值为4或8。