整式的加减培优课后练

合集下载

3.4整式的加减培优训练(含答案)

3.4整式的加减培优训练(含答案)
3.4整式的加减
专题一同类项与去(添)括号
1.若5a|x|b2与—0.2a3b|y|是同类项,则x、y的值分别是( )
A.x=±3,y=±2 B.x=3,y=2
C.x=—3,y=—2 D.x=3,y=—2
2.已知代数式— xa+bya﹣1与3x2y的和是单项式,则a﹣b的相反数为( )
A.2 B.0
C.﹣2 D.1
3.已知a—b=—3,c+d=2,则(a﹣d)—b+c)的值为( )
A.﹣5 B.1
C.5 D.﹣1
专题二整式的加减运算
4.有理数a,b,c在数轴上的位置如图所示,式子|a|+|b|+|a+b|+|c-b|化简结果为( )
A.2a+3b-cB.3b-c
C.c-bD.3b+c
5.现规定一种运算:a※b=ab+a-b,其中a、b为有理数,化简a※b+(b-a)※2,并求出当a=— ,b=2时该式的值.
答案
1.A【解析】∵5a|x|b2与—0.2a3b|y|是同类项,∴|x|=3,|y|=2,解得x=±3,y=±2.故选A.
2.C【解析】∵代数式— xa+bya﹣1与3x2y的和是单项式,
∴代数式— xa+bya﹣1与3x2y是同类项,
∴a+b=2,a—1=1,解得:a=2,b=0.
∴a—b=2,即a﹣b的相反数是—2.
故选C.
3.A【解析】根据题意有(a—d)—(b+c)=(a—b)—(c+d)=—3—2=—5,故选A.
4.B【解析】由已知得a<0、b>0、a+b>0、b-c<0,所以|a|+|b|+|a+b|+|b-ቤተ መጻሕፍቲ ባይዱ|=
-a+b+(a+b)+(b-c)=-a+b+a+b+b-c=3b—c.

(word完整版)整式的加减乘除培优精华

(word完整版)整式的加减乘除培优精华

练习:1、下列那些式子是单项式,并指出他的系数和次数 2013 a 2bba +5x y 2 2013y x + 0 -10 π b a 2221012⨯2、若c ax y -是关于x ,y 的单项式,且系数为2013,次数为12,则a= ,c= 。

3、12)1(++n y x m 是关于x ,y 的四次单项式,则m= ,n= 。

4、下列那些式子是多项式,并指出他的次数,读法,各项的次数x 2+x 3+x 40 4—2π 9 x 4y b a y x +- 6ab+4 243(a+b)5、z y xy x +++444读作: ; 1425-+++-z xz y xy 读作: ;6、2013435232--+-+b a ab b a b a 这个多项式的最高次项是 ,一次项是 ,二次项是 ,三次项是 ,常数项是 。

7、已知4543433515a y y x y x y x +-+-,按a 升幂排列为: ; 按a 的降幂排列为 ;按b 升幂排列为: ;按b 的降幂排列为 . 8、下列那些式子是整式12π -4yxz x 2-y 22a-b+8c 543 43x 4y 0 322013y x + b a 2221012⨯9、若b b a x y x 532-+和是同类项则a= ,b= 。

若363543y x y x nn m -+和是同类项则m= ,n= 。

11、若442-+x x 的值为0,则51232-+x x 的值是________.12、如果代数式535ax bx cx ++-当2x =-时的值为13,那么当2x =时,该式的值是 . 13、若3a =-,25b =,则20072006a b +的个位数字是=________。

14、已知012=-+a a ,求2013223++a a = 。

15、当2x =时,代数式31ax bx -+的值等于17-,那么当1x =-时,代数式31235ax bx --的值 。

整式的加减(培优篇)

整式的加减(培优篇)

初一(上)数学整式的加减(培优篇)关卡一:单项式、多项式1.(1)单项式是关于的五次单项式,则 ;z yx n 123-z y x ,,,=n (2)关于的多项式是二次三项式,则 , ;x b x x x a b-+--3)4(=a =b (3)如果是关于的五次四项式,那么 。

52)2(4232+---+-x x q x xp x =+q p 2.如果关于的多项式与是次数相同的多项式,求的值x 21424-+x ax x x b53+4322123-+-b b b 3.已知是关于的三次三项式,求的值.5)1(3||2+--y m yx m y x ,1322+-m m 4.若多项式是关于的五次二项式,求的值()22532mx y n y +--x y ,222m mn n -+5.如果为四次三项式,则________。

()1233m xy m xy x ---+m =关卡二:同类项1.my x 22与是同类项,则=_____,=_____.y x n3-m n 2.单项式与是同类项,则的值为( ) 1-+-a b a b x y x 23b a -A .2 B . C .0 D .12-3.如果与的和是单项式,那么与取值为( )2522+-n m b a23-n ab m n A . B . C . D .3,2==n m 2,3==n m 2,3=-=n m 2,3-==n m 4.已知与是同类项,则的值是( )y xn 72001+y x m 322002+-2)2(n m -A .16 B .4×2001 C .-4×2002 D .5关卡三:去括号、添括号法则去括号法则: (1)括号前面是”+”号,去掉”+”号和括号,括号里的各项不变号;(2)括号前面是”-”号,去掉”-”号和括号,括号里的各项都变号.添括号法则: (1)添括号时,括号前添“+”号,括到括号里的各项都不变符号; (2)添括号时,括号前添“-”号,括到括号里的各项都改变符号。

第四章整式的加减:多项式与整式的加减培优训练人教版2024—2025学年七年级上册

第四章整式的加减:多项式与整式的加减培优训练人教版2024—2025学年七年级上册

第四章整式的加减:多项式与整式的加减培优训练人教版2024—2025学年七年级上册例1:已知n 是自然数,多项式 x x y n 2331--+ 是三次三项式,那么n 等于 . 变式1:代数式b x x a 2431-++是四次二项式,求a,b 的值.变式2:已知关于x ,y 的代数式(a ﹣3)x 2y |a |+(b +2)为五次单项式,求a 2﹣3ab +b 2的值.变式3:多项式是关于x ,y 的三次二项式,则m 的值是 .变式4:若4xy |k |﹣5(k ﹣3)y 2+1是四次三项式,则k 的值为( )A .±2B .2C .﹣3D .±3 变式5:我们对一个单项式A 进行这样的变化:①A 的系数不发生变化;②将A 包含的所有字母按照英语字母表的顺序进行排列;③从左至右,将A 中每个字母的次数变为其右侧相邻字母的次数,最右侧字母的次数不发生变化.经历上述变化后,单项式A 变为单项式A ′.我们称A ′为A 的“右变次单项式”,例如,的“右变次单项式”为,﹣2a 3b 2c 的“右变次单项式”为﹣2a 2bc ,a 2b 4c 3d 5的“右变次单项式”为a 4b 3c 5d 5.(1)的“右变次单项式”为 ,﹣a 4b 3c 2的“右变次单项式”为 ;(2)若5次单项式A 的“右变次单项式”为3ab ,则A = ;(3)若单项式A 的“右变次单项式”为A ′,单项式B 的“右变次单项式”为B ′,且A +B =7a 6b 4c 2,则A ′+B ′= ;(4)若仅含有字母a ,b ,c 的27次单项式A 的系数为5,“右变次单项式”为A 1,A 1的“右变次单项式”为A 2,若A 1的次数为28,A 2的次数为27,则A = .例2:若多项式()x y x x x mx 537852222+--++-的值与x 无关,求])45(2[22m m m m +---的值.变式6:若多项式x 3+(3m ﹣1)x 2﹣5x +7与多项式x 4+2x 3+8x 2+x ﹣1的差不含二次项,则m 的值为( )A .4B .﹣4C .3D .﹣3变式7:若关于x 的多项式3x 2﹣x +1+kx 中不含一次项,则k 的值为( )A .1B .﹣1C .0D .±1变式8:已知M =2a 2﹣ab +b ﹣1,M ﹣3N =a 2+3ab +2b +1.若计算M ﹣[2N ﹣(M ﹣N )]的结果与字母b 无关,则a 的值是 . 变式9:已知关于x 的多项式2mx 3﹣2x 2+3x ﹣(2x 3+nx )不含三次项和一次项,求(m ﹣n )3的值.变式10:已知A =2a 2﹣a ﹣ab ,B =a 2﹣b +ab .(1)化简A ﹣2B ;(2)若A ﹣2B 的值与a 的取值无关,求A ﹣2B 的值.变式11:关于a 的多项式4a 3﹣2ma 2+3a ﹣1与5a 3﹣4a 2+(n ﹣1)a ﹣1的和不含a 2和a 项.(1)求m ,n 的值;(2)求(4m 2n ﹣3mn 2)﹣2(m 2n +mn 2)的值.变式12:已知代数式A=2x2+3xy+2y﹣1,B=x2﹣xy+x﹣1.(1)当x=2,y=﹣2时,求A﹣2B的值;(2)若A﹣2B的值与x的取值无关,求y的值.变式13:已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.(1)化简:2A﹣3B;(2)若,xy=1,求2A﹣3B的值;(3)若2A﹣3B的值与y的取值无关,求此时2A﹣3B的值.变式14:有四个数,第一个数是a2+b,第二个数比第一个数的2倍少a2,第三个数是第一个数与第二个数的差的3倍,第四个数比第一个数少﹣2b,若第二个数用x表示,第三个数用y表示,第四个数用z表示.(1)用a,b分别表示x,y,z三个数;(2)若第一个数的值是3时,求这四个数的和;(3)已知m,n为常数,且mx+2ny﹣3z﹣4的结果与a,b无关,求m,n的值.例3:若单项式与﹣2x n y3的和仍为单项式,则其和为.变式15:如果单项式﹣y与2x4y n+3的和是单项式,那么(m+n)2024的值为()A.22024B.0C.1D.﹣1变式16:如果代数式4x2a﹣1y与的差是单项式,那么3a+b=.变式17:若3a n+1b2与a3b m+3的差仍是单项式,则m﹣n=.例4:已知M=﹣2a2+4a+1,N=﹣3a2+4a﹣1,则M与N的大小关系是()A.M>N B.M<NC.M=N D.以上都有可能变式18:已知M=4x2﹣3x﹣2,N=6x2﹣3x+6,则M与N的大小关系是()A.M<N B.M>NC.M=N D.以上都有可能例5:理解与思考:整体代换是数学的一种思想方法.例如:若x2+x=0,则x2+x+1186=;我们将x2+x作为一个整体代入,则原式=0+1186=1186.仿照上面的解题方法,完成下面的问题:(1)若x2+x﹣1=0,则x2+x+2021=;(2)如果a+b=3,求2(a+b)﹣4a﹣4b+21的值;(3)若a2+2ab=20,b2+2ab=8,求a2+2b2+6ab的值.变式19:理解与思考:整体代换是数学的一种思想方法.例如:若x2+x=0,则x2+x+1186=;我们将x2+x作为一个整体代入,则原式=0+1186=1186.仿照上面的解题方法,完成下面的问题:(1)如果a+b=3,求2(a+b)﹣4a﹣4b+21的值;(2)若a2+2ab=20,b2+2ab=8,求a2+2b2+6ab的值.(3)当x=2024时,代数式ax5+bx3+cx﹣5的值为m,求当x=﹣2024时,代数式ax5+bx3+cx﹣5的值.变式20:如图.在正方形ABCD的边长为3,以A为圆心,2为半径作圆弧.以D为圆心,3为半径作圆弧.若图中阴影部分的面积分为S1、S2.则S1﹣S2=.。

部编数学七年级上册第二章整式的加减(培优)(解析版)含答案

部编数学七年级上册第二章整式的加减(培优)(解析版)含答案

人教7年级 数学 第二章 整式 (培优).一、单选题1.若 3x m y 3 与﹣2x 2y n 是同类项,则( )A .m=1,n=1B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2【答案】B2.单项式﹣5x 2yz 2的系数和次数分别是( )A .5,4B .﹣5,5C .5,5D .﹣5,﹣5【答案】B3.如果3ab 2m-1与9ab m +1是同类项,那么m 等于( )A .2B .1C .﹣1D .0【答案】A4.当x=1时,ax +b +1的值为−2,则(a +b−1)(1−a−b )的值为A .− 16B .− 8C .8D .16【答案】A5.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x+C .()232x x ++D .()36x x ++【答案】B6.若多项式32281x x x -+-与多项式323253x mx x +-+的差不含二次项,则m 等于( )A .2B .-2C .4D .-4【答案】D7.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( )A .甲B .乙C .丙D .一样【答案】C8.用棋子摆出下列一组图形:按照这种规律摆下去,第n 个图形用的棋子个数为( )A .3nB .6nC .3n +6D .3n +3【答案】D9.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:()()2222223355a ab b a ab b a +---++=26b -,空格的地方被墨水弄脏了,请问空格中的一项是( )A .+2abB .+3abC .+4abD .-ab【答案】A10.已知5,2a b ==,且||a b b a -=-,则a+b 的值为( )A .3或7B .-3或-7C .-3D .-7【答案】B二、填空题11.已知多项式x |m |+(m ﹣2)x ﹣10是二次三项式,m 为常数,则m 的值为_____.【答案】-212.若多项式3(a 2-2ab -b 2)-(a 2+mab +2b 2)中不含有ab 项,则m =________.【答案】-613.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母y ,则a 的值为__________.【答案】114.某音像社出租光盘的收费方法是:每张光盘在租后的头两天每天收0.8元,以后每天收0.5元,那么一张光盘在出租后的第n 天(n 是大于2的自然数)应收租金____元;那么第10天应收租金__________元.【答案】(0.60.5)n + 5.615.若单项式-12a 2x b m 与a n b y-1可合并为12a 2b 4,则xy-mn=___________.【答案】-3三、解答题16.已知A =2x 2﹣1,B =3﹣2x 2,求A ﹣2B 的值.【答案】6x 2-717.已知有理数a ,b 在数轴上的位置如图所示,化简:232a b a b b a +----.【答案】73a b-+18.已知xy x y+=2,求代数式3533x xy y x xy y -+-+-的值。

(完整版)《整式的加减》培优训练

(完整版)《整式的加减》培优训练

《整式的加减》培优训练一、 整体代入求值1、已知x-3y=2,求值:6-4x+12y = .2、已知a+b+c=0,求值:(a+b)(b+c)(c+a)+abc= .3、当x=1时,多项式ax 2+bx+1的值为5,则当x=-1时,多项式3ax 2+3bx+1的值等于 。

4、多项式(2x-7y-1)2+5的最小值是 ,此时3-4x+14y= 。

5、已知2n-m=5,求值:5(m-2n )2+6n-3m-70。

6、已知a+b=5,ab=-1,求值:(3a 2b 2-2ab-5b )-(5a-2ab-2a 2b 2).二、 借助绝对值进行化简1、有理数a,b,c 在数轴上的位置如图所示,化简: |c|-|c+b|+|a-c|+|b+a|2、有理数a,b 在数轴上的位置如上图(同第1题图)所示,化简:|1-3b|-2|2+b|+|2-3b|3、有理数a,b,c 在数轴上的位置如图所示,化简: |2a-b|+|b-c|-|c-3a|三、 与字母取值无关问题1、若多项式x 2-8+2mxy-3y 3+6xy 中不含xy 项,则m = .2、若关于x 、y 的多项式6mx 2+4nxy+2x 与-2xy+x 2-y-4d 的差中不含二次项,求m,n 的值。

4、若(2x 2+ax-y+6)-(bx 2-3x+5y-1)的值与字母x 的取值无关,求a b的值。

5、若无论x 为何值,多项式2x 2y-3ax-4x 2+6x+2ay 恒为一个定值,求此定值。

-3 -2 -1 0 1 2 3 4 · b · ac ·四、整式加减的实际应用问题1、如图,①用代数式表示阴影部分的面积;②当a =4cm时,计算阴影部分的面积。

(π取3.14,结果精确到0.1)2、两个正方形如图放置,边长分别为m、n,则阴影部分面积为多少?3、某船顺水航行了5小时,逆水航行3小时已知船在静水中速度为a千米/小时,流水速度为b千米/小时则船顺水航行的路程比逆水航行的路程5、张师傅下岗后再就业,做起了小生意,第一次进货时,他以每件为a元的价格购进了20件甲种小商品,以每件b元的价格购进了30件乙种小商品(a>b)。

人教版七年级数学上册第2章 2.2.3 整式的加减 培优训练 (含答案)

人教版七年级数学上册第2章    2.2.3  整式的加减   培优训练  (含答案)

人教版七年级上册第二章整式的加减2.2.3整式的加减培优训练一.选择题(共10小题,3*10=30)1.化简5(2x-3)+4(3-2x)的结果为( )A.2x-3 B.2x+9C.8x-3 D.18x-32.化简a-(5a-3b)+(2b-a)的结果是()A.7a-bB.-5a+5bC.7a+5b D.-5a-b3. 若a-b=2,b-c=-3,则a-c等于( )A.1 B.-1C.5 D.-54.已知A=5a-3b,B=-6a+4b,则A-B等于()A.-a+bB.11a+bC.11a-7b D.-a-7b5.一个多项式与x2-2x+1的和是3x-2,则这个多项式为( )A.x2-5x+3 B.-x2+x-1C.-x2+5x-3 D.x2-5x-136.用2a+5b减去4a-4b的一半,应当得到( )A.4a-b B.b-aC.a-9b D.7b7.如果(3x2-2)-(3x2-y)=-2,那么代数式(x+y)+3(x-y)-4(x-y-2)的值是() A.4B.20C.8D.-68.若P是三次多项式,Q也是三次多项式,P+Q一定是()A .三次多项式B .六次多项式C .不高于三次的多项式或单项式D .单项式9.多项式36x 2-3x +5与3x 3+12mx 2-5x +7相加后,不含二次项,则常数m 的值是( )A .2B .-3C .-2D .-810.一家商店以每包a 元的价格买进30包甲种茶叶,又以每包b 元的价格买进60包乙种茶叶.如果以每包a +b 2的价格卖出这两种茶叶,那么卖完后,这家商店( ) A .赚了 B .赔了C .不赔不赚D .不能确定赔或赚二.填空题(共8小题,3*8=24)11.化简:(x 2+y 2)-3(x 2-2y 2)=________________.12.一个长方形的一边长是2a +3b ,另一边的长是a +b ,则这个长方形的周长是________.13.某客车上原有(4a -2b)人,中途有一半人下车,又上来若干人,这时车上共有乘客(10a -6b)人,则中途上车的乘客有_____________人.14.三个小队植树,第一队种x 棵,第二队种的树比第一队种的树的2倍多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树____________棵.15.三角形的周长为48,第一边长为4a +3b ,第二边比第一边的2倍少2a -b ,则第三边的长为_______________.16. 如果关于x 的多项式(8x 2-2nx +14)-(8x 1-m -6x +5)的值与x 无关,则m +n =___.17.已知小明的年龄是m 岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红年龄的12还多1岁,则这三名同学的年龄之和是____________. 18. 已知两个完全相同的大长方形,长为a ,各放入四个完全一样的白色小长方形后,得到图(1)、图(2),那么,图(1)阴影部分的周长与图(2)阴影部分的周长的差是______________.(用含a 的代数式表示)三.解答题(共7小题,46分)19. (6分)化简:(1)(9x-6y)-(5x-4y);(2)2(m2+2m)-(5m-m2);(3)3(2x2-y2)-2(3y2-2x2).20. (6分)化简,再求值:(1)(x3-2x2+x-4)-2(x3-x2+2x-2),其中x=-2;(2)3x2y-[2xy2-2(xy-32x2y)]+3xy2-xy,其中x=3,y=-13.21. (6分)计算:(1)(x2-y2)-3(x2-2y2);(2)(9a-2b)-[8a-(5b-2a)]+2c;(3)2a2-3[2a-2(-a2+2a-1)-4].22. (6分) 黑板上有一道题,是一个多项式减去3x2-5x+1,某同学由于大意,将减号抄成了加号,得出的结果是5x2+3x-7,求出这道题的正确结果.23. (6分)某校有A,B,C三个课外活动小组,A小组有学生(x+2y)名,B小组学生人数是A小组学生人数的3倍,C小组比A小组多3名学生,问A,B,C三个课外活动小组共有多少名学生?24. (8分)已知多项式A,B,其中B=5x2+3x-4,马小虎同学在计算“3A+B”时,误将“3A+B”看成了“A+3B”,求得的结果为12x2-6x+7.求正确答案.25. (8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:+(-3x2+5x-7)=-2x2+3x-6.(1)求所捂的多项式;(2)若x为正整数,任取几个x值并求出所捂多项式的值,你能发现什么规律?(3)若所捂多项式的值为144,请直接写出正整数x的取值.参考答案1-5ABBCC 6-10DCCBD11. -2x2+7y212.6a+8b13. (8a-5b)14. (4x+6)15. 48-10a-10b16. 217. (4m-5)岁18.a19. 解:(1)原式=9x-6y-5x+4y=4x-2y(2)原式=2m2+4m-5m+m2=3m2-m(3)原式=6x2-3y2-6y2+4x2=10x2-9y220. 解:(1)原式=x3-2x2+x-4-2x3+2x2-4x+4=-x3-3x. 当x=-2时,原式=-(-2)3-3×(-2)=14解:原式=3x2y-2xy2+2xy-3x2y+3xy2-xy=xy2+xy.当x=3,y=-13时,原式=3×(-13)2+3×(-13)=-2321. 解:(1)原式=x2-y2-3x2+6y2=-2x2+5y2(2)原式=9a-2b-(8a-5b+2a)+2c=9a-2b-8a+5b-2a+2c=-a+3b+2c(3)原式=2a2-3(2a+2a2-4a+2-4)=2a2-3(2a2-2a-2)=2a2-6a2+6a+6=-4a2+6a+622. 解:该多项式为(5x2+3x-7)-(3x2-5x+1)=2x2+8x-8.所以正确的结果为(2x2+8x-8)-(3x2-5x+1)=-x2+13x-923. 解:(x+2y)+3(x+2y)+(x+2y)+3=5(x+2y)+3=5x+10y+3.答:A,B,C三个课外活动小组共有(5x+10y+3)名学生24. 解:根据题意知A=12x2-6x+7-3B=12x2-6x+7-3(5x2+3x-4)=12x2-6x+7-15x2-9x+12=-3x2-15x+19,则3A+B=3(-3x2-15x+19)+5x2+3x-4=-9x2-45x+57+5x2+3x-4=-4x2-42x+5325. 解:(1)(-2x2+3x-6)-(-3x2+5x-7)=-2x2+3x-6+3x2-5x+7=x2-2x+1,即所捂的多项式是x2-2x+1(2)当x=1时,x2-2x+1=1-2+1=0;当x=2时,x2-2x+1=4-4+1=1;当x=3时,x2-2x+1=9-6+1=4;当x=4时,x2-2x+1=16-8+1=9,由上可以发现规律是所捂多项式的值是(x-1)2(3)x=13。

整式的加减(培优篇)

整式的加减(培优篇)

北师大版初一(上)数学整式的加减(培优篇)关卡一:单项式、多项式1、在代数式32b ,2xy +3,-2,5x ab +,xy 3,b a +1,单项式有 个,多项式有 个,整式有 个,代数式有 个。

2、下列代数式中,单项式共有( )2222,4,1,3,1,3,31y xy x xy y ax a xy ab ++-+A.3个B.4个C.5个D.6个3、432y x -的系数是______,次数是______. 4、多项式6842323----y y x y x xy 是______次______项式,最高次项是______,它的三次项系数是______,常数项是______,按字母y 的降幂排列为_________5.多项式1-2x 是由单项式 、 的和组成。

6.下列式子中属于二次三项式的是( ).A .2x 2+3;B .-x 2+3x-1;C .x 3+2x 2+3;D .x 4-x 2+1.7、(1)单项式z y x n 123-是关于x 、y 、z 的五次单项式,则n ;(2)关于x 的多项式b x x x a b -+--3)4(是二次三项式,则a= ,b= ;(3)如果52)2(4232+---+-x x q x x p 是关于x 的五次四项式,那么p+q= 。

8、一个两位数,两个数字的和是x ,若个位上的数字是y ,则这个两位数是 。

9、下列判断中正确的是( )(A )3a 2bc 与bca 2不是同类项B )52n m 不是整式 (C )单项式-x 3y 2的系数是-1(D )3x 2-y +5xy 2是二次三项式10.下列说法中正确的是( )(A )x 的系数是0(B )22与42不是同类项(C )y 的次数是0(D )25xyz 是三次单项式关卡二:同类项1、m y x 22与y x n 3-是同类项,则m =_____,n =_____. 2、单项式1-+-a b a b x 与3x 2y 是同类项,则a-b 的值为( )A .2B .-2C .0D .13、如果2522+-n m b a 与23-n ab 的和是单项式,那么m 与n 取值为( )(A )m=2,n=3(B )m=3,n=2(C )m=-3,n=2(D )m=3,n=-24、下列各组代数式中互为相反数的有( )(1)a -b 与-a -b ;(2)a +b 与-a -b ;(3)a +1与1-a ;(4)-a +b 与a -b 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的加减培优课
一、选择题(每小题4分,共32分)
1、下列各式符合代数式书写规范的是( )。

A 、a b
B 、a ×3
C 、3x -1个
D 、22
1n 2、对代数式a 2+b 2的意义表达不确切的是( )。

A 、a 、b 的平方和
B 、a 与b 的平方的和
C 、a 2与b 2的和
D 、a 的平方与b 的平方的和
3,若代数式2x 2+3x +7的值是8,则代数式4x 2+6x +15的值是( )。

A 、2
B 、17
C 、3
D 、16
4.下列各组中的两项是同类项的是 ( )
(A )ab 与 abc . (B )35-与3x -.
(C )y x 25与 x y 23. (D )xy 2-与.yx 5-
5.若m xy 2-和33
1y x n 是同类项,则 ( ) (A )1,1==n m ; (B )3,1==n m . (C )1,3==n m ; (D )3,3==n m . 6.)]([c b a ---去括号应得 ( )
(A )c b a -+-; (B )c b a +--; (C )c b a ---; (D )c b a ++-.
7.两个5次多项式相加,结果一定是 ( )
(A )5次多项式. (B )10次多项式.
(C )不超过5次的多项式. (D )无法确定.
8.一个长方形的一边长是b a 32+,另一边的长是b a +,则这个长方形的周长是 ( )
(A )b a 1612+; (B )b a 86+. (C )b a 83+; (D )b a 46+.
二、填空题(每小题4分,共28分)
1、单项式25
12R π-的系数是___________ ,次数是______________。

2、与多项式22357b ab a --的和是22743b ab a +-的多项式是______________。

3、.当k=______时,多项式22x -7kxy+23y +7xy+5y 中不含xy 项.
4、长方形的一边长为a 3,另一边比它小b a -,则其周长为______________。

5、去括号:-{-[-(1-a)-(1-b)]}=______________。

6、轮船在A 、B 两地间航行,水流速度为m 千米/时,船在静水中的速度为n 千米/时,则轮船逆流航行的速度为__________千米/时
7.如图,用灰白两色正方形瓷砖铺设地面,第n 个图案中灰色瓷砖块数为
三、计算下列各题(每小题5分,共10分)
1、2222(2)3(2)4(32)ab a a ab a ab --+---
2、()()22234x y xy x y xy x y +---
四、先化简后求值(每小题6分,共12分)
① 5x-{2y-3x+[5x-2(y-2x)+3y]},其中x=11,26
y -=-.
②)3
123()31(22122y x y x x +-+--,其中32,2=-=y x
五、(8分)有理数a 、b 、c 在数轴上对应点为A 、B 、C,其位置如图所示, 试去掉绝对值
符号并合并同类项: │c │-│c+b │+│a-c │+│b+a │.
六、(10分) 某市出租车收费标准是:起步价10元,可乘3千米;3千米到5千米,每千米价
1.3元;超过5千米,每千米价
2.4元。

1、 若某人乘坐了x(x >5)千米的路程,则他应支付的费用是多少?
2、若他支付了15元车费,你能算出他乘坐的路程吗 第1个图案 第2个图案 第3个图案。

相关文档
最新文档