3-4 生活中的优化问题举例
高中数学选修1-1优质学案:§3.4 生活中的优化问题举例

§3.4生活中的优化问题举例学习目标1.了解导数在解决实际问题中的作用.2.掌握利用导数解决简单的实际生活中的优化问题.知识点生活中的优化问题1.生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.2.利用导数解决优化问题的实质是求函数最值.3.解决优化问题的基本思路:上述解决优化问题的过程是一个典型的数学建模过程.1.生活中常见到的收益最高、用料最省等问题就是数学中的最大、最小值问题.(√) 2.解决应用问题的关键是建立数学模型.(√)类型一几何中的最值问题例1请你设计一个包装盒如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E,F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x cm.(1)若广告商要求包装盒侧面积S 最大,则x 应取何值?(2)若广告商要求包装盒容积V 最大,则x 应取何值?并求出此时包装盒的高与底面边长的比值.考点 几何类型的优化问题 题点 几何体体积的最值问题解 (1)由题意知包装盒的底面边长为2x cm , 高为2(30-x )cm,0<x <30,所以包装盒侧面积为S =42x ×2(30-x ) =8x (30-x )≤8×⎝⎛⎭⎪⎫x +30-x 22=8×225,当且仅当x =30-x ,即x =15时,等号成立, 所以若广告商要求包装盒侧面积S 最大,则x =15. (2)包装盒容积V =2x 2·2(30-x ) =-22x 3+602x 2(0<x <30),所以V ′=-62x 2+1202x =-62x (x -20). 令V ′>0,得0<x <20; 令V ′<0,得20<x <30.所以当x =20时,包装盒容积V 取得最大值,此时包装盒的底面边长为202cm ,高为102cm ,包装盒的高与底面边长的比值为1∶2.反思与感悟 面积、体积(容积)最大,周长最短,距离最小等实际几何问题,求解时先设出恰当的变量,将待求解最值的问题表示为变量的函数,再按函数求最值的方法求解,最后检验.特别注意:在列函数关系式时,要注意实际问题中变量的取值范围,即函数的定义域. 跟踪训练1 已知圆柱的表面积为定值S ,当圆柱的容积V 最小时,圆柱的高h 的值为________.考点 几何类型的优化问题 题点 几何体体积的最值问题 [答案]6πS 3π[解析] 设圆柱的底面半径为r ,则S 圆柱底=2πr 2, S 圆柱侧=2πrh ,∴圆柱的表面积S =2πr 2+2πrh , ∴h =S -2πr 22πr.又圆柱的体积V =πr 2h =r2(S -2πr 2)=rS -2πr 32,V ′(r )=S -6πr 22,令V ′(r )=0,得S =6πr 2,∴h =2r , ∵V ′(r )只有一个极值点, ∴当h =2r 时圆柱的容积最小. 又r =S6π,∴h =2S 6π=6πS 3π. 即当圆柱的容积V 最小时, 圆柱的高h 为6πS 3π. 类型二 实际生活中的最值问题 命题角度1 利润最大问题例2 某集团为了获得更大的收益,每年要投入一定的资金用于广告促销.经调查,每年投入广告费t (百万元),可增加销售额-t 2+5t (百万元)(0≤t ≤3).(1)若该公司将当年的广告费控制在3百万元之内,则应投入多少广告费,才能使该公司由此获得的收益最大?(2)现该公司准备共投入3百万元,分别用于广告促销和技术改造,经预测,每投入技术改造费x 百万元,可增加的销售额为-13x 3+x 2+3x (百万元).请设计一个资金分配方案,使该公司由此获得的收益最大.(收益=销售额-投入) 考点 函数类型的优化问题 题点 利用导数求解最大利润问题解 (1)设投入t (百万元)的广告费后增加的收益为f (t )(百万元),则有f (t )=(-t 2+5t )-t =-t 2+4t =-(t -2)2+4(0≤t ≤3),∴当t =2时,f (t )取得最大值4,即投入2百万元的广告费时,该公司由此获得的收益最大.(2)设用于技术改造的资金为x (百万元),则用于广告促销的资金为(3-x )(百万元),又设由此获得的收益是g (x )(百万元),则g (x )=⎝⎛⎭⎫-13x 3+x 2+3x +[-(3-x )2+5(3-x )]-3=-13x 3+4x +3(0≤x ≤3),∴g ′(x )=-x 2+4,令g ′(x )=0,解得x =-2(舍去)或x =2.又当0<x <2时,g ′(x )>0;当2<x ≤3时,g ′(x )<0,∴当x =2时,g (x )取得最大值,即将2百万元用于技术改造,1百万元用于广告促销,该公司由此获得的收益最大.反思与感悟 解决此类有关利润的实际应用题,应灵活运用题设条件,建立利润的函数关系,常见的基本等量关系有: (1)利润=收入-成本.(2)利润=每件产品的利润×销售件数.跟踪训练2 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.考点 函数类型的优化问题 题点 利用导数求解最大利润问题解 (1)因为当x =5时,y =11,所以a2+10=11,所以a =2.(2)由(1)可知,该商品每日的销售量 y =2x -3+10(x -6)2, 所以商场每日销售该商品所获得的利润f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2,3<x <6.从而f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6).于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可得,x =4是函数f (x )在区间(3,6)内的极大值点,也是最大值点. 所以当x =4时,函数f (x )取得最大值,且最大值为42.答 当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大. 命题角度2 用料(费用)最省问题例3 某网球中心欲建连成片的网球场数块,用128万元购买土地10000平方米,该中心每块球场的建设面积为1000平方米,球场的总建筑面积的每平方米的平均建设费用与球场数有关,当该中心建球场x 块时,每平方米的平均建设费用(单位:元)可近似地用f (x )=800⎝⎛⎭⎫1+15ln x 来刻画.为了使该球场每平方米的综合费用最省(综合费用是建设费用与购地费用之和),该网球中心应建几个球场? 考点 函数类型的优化问题 题点 利用导数解决费用最省问题解 设建成x 个球场,则1≤x ≤10,每平方米的购地费用为128×1041000x =1280x (元),因为每平方米的平均建设费用(单位:元)可近似地用f (x )=800⎝⎛⎭⎫1+15ln x 来表示, 所以每平方米的综合费用为g (x )=f (x )+1280x =800+160ln x +1280x (x >0),所以g ′(x )=160(x -8)x 2(x >0),令g ′(x )=0,则x =8,当0<x <8时, g ′(x )<0,当x >8时,g ′(x )>0,所以当x =8时,函数取得极小值,且为最小值. 故当建成8个球场时,每平方米的综合费用最省.反思与感悟 费用、用料最省问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际作答. 跟踪训练3 某地建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y 万元. (1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小? 考点 函数类型的优化问题 题点 利用导数解决费用最省问题 解 (1)设需新建n 个桥墩,则(n +1)x =m , 即n =mx-1,所以y =f (x )=256n +(n +1)(2+x )x =256⎝⎛⎭⎫m x -1+m x (2+x )x =256mx+m x +2m -256. (2)由(1)知,f ′(x )=-256m x 2+1212mx -=m 2x 232512x ⎛⎫- ⎪⎝⎭.令f ′(x )=0,得32x =512, 所以x =64.当0<x <64时,f ′(x )<0,f (x )在区间(0,64)内为减函数; 当64<x <640时,f ′(x )>0,f (x )在区间(64,640)内为增函数, 所以f (x )在x =64处取得最小值. 此时n =m x -1=64064-1=9.故需新建9个桥墩才能使y 最小.1.某公司的盈利y (元)和时间x (天)的函数关系是y =f (x ),且f ′(100)=-1,这个数据说明在第100天时( ) A .公司已经亏损 B .公司的盈利在增加 C .公司的盈利在逐渐减少D .公司有时盈利有时亏损 考点 函数类型的优化问题 题点 利用导数求解最大利润问题 [答案] C[解析] 因为f ′(100)=-1,所以函数图象在x =100处的切线的斜率为负值,说明公司的盈利在逐渐减少.2.已知某厂家生产某种产品的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+36x +126,则使该生产厂家获取最大年利润的年产量为( )A .11万件B .9万件C .7万件D .6万件考点 函数类型的优化问题 题点 利用导数求解最大利润问题 [答案] D[解析] 由y ′=-x 2+36=0, 解得x =6或x =-6(舍去). 当0<x <6时,y ′>0; 当x >6时,y ′<0, ∴在x =6时y 取最大值.3.用长为18m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2∶1,则该长方体的最大体积为( ) A .2m 3 B .3m 3 C .4m 3D .5m 3 考点 几何类型的优化问题 题点 几何体体积的最值问题 [答案] B[解析] 设长方体的宽为x (m),则长为2x (m),高为h =18-12x 4=92-3x (m)⎝⎛⎭⎫0<x <32,故长方体的体积为V (x )=2x 2⎝⎛⎭⎫92-3x=9x 2-6x 3⎝⎛⎭⎫0<x <32, 从而V ′(x )=18x -18x 2=18x (1-x ),令V ′(x )=0,解得x =1或x =0(舍去).当0<x <1时,V ′(x )>0;当1<x <32时,V ′(x )<0, 故在x =1处V (x )取得极大值,并且这个极大值就是V (x )的最大值,从而最大体积V =V (1)=9×12-6×13=3(m 3).4.容积为256的方底无盖水箱,它的高为________时最省材料.考点 函数类型的优化问题题点 利用导数解决费用最省问题[答案] 4[解析] 设水箱高为h ,底面边长为a ,则a 2h =256,其表面积为S =a 2+4ah =a 2+4a ·256a 2=a 2+210a. 令S ′=2a -210a 2=0,得a =8. 当0<a <8时,S ′<0;当a >8时,S ′>0,故当a =8时,S 最小,此时h =2882=4. 5.某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低额x (单位:元,0≤x ≤21)的平方成正比.已知当商品单价降低2元时,每星期多卖出24件.(1)将一个星期的商品销售利润表示成x 的函数;(2)如何定价才能使一个星期的商品销售利润最大?考点 函数类型的优化问题题点 利用导数求解最大利润问题解 (1)设商品降价x 元,则每星期多卖的商品数为kx 2.若记商品在一个星期的获利为f (x ),则有f(x)=(30-x-9)(432+kx2)=(21-x)(432+kx2).由已知条件,得24=k×22,于是有k=6.所以f(x)=-6x3+126x2-432x+9072,x∈[0,21].(2)由(1)得f′(x)=-18x2+252x-432=-18(x-2)(x-12).当x变化时,f′(x),f(x)的变化情况如下表:故当x=12时,f(x)取得极大值.因为f(0)=9072,f(12)=11664.所以当定价为30-12=18(元)时,才能使一个星期的商品销售利润最大.1.利用导数解决生活中优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f(x).(2)求函数的导函数f′(x),解方程f′(x)=0.(3)比较函数在区间端点和使f′(x)=0的点的函数值的大小,最大(小)者为最大(小)值.2.正确理解题意,建立数学模型,利用导数求解是解答应用问题的主要思路.另外需要特别注意:(1)合理选择变量,正确写出函数[解析]式,给出函数定义域;(2)与实际问题相联系;(3)必要时注意分类讨论思想的应用.。
2013-2014学年 高中数学 人教A版选修1-1 第三章 3.4生活中的优化问题举例

半径为 6 cm 时,利润最大.
研一研·问题探究、课堂更高效
§ 3.4
小结
本 讲 栏 目 开 关
解决此类有关利润的实际应用题, 应灵活运用题设条
件,建立利润的函数关系,常见的基本等量关系有
练一练·当堂检测、目标达成落实处
§ 3.4
2.某银行准备新设一种定期存款业务,经预算,存款量与存 款利率的平方成正比, 比例系数为 k(k>0).已知贷款的利率 为 0.048 6,且假设银行吸收的存款能全部放贷出去.设存 款利率为 x,x∈(0,0.048 6),若使银行获得最大收益,则
本 讲 栏 目 开 关
A.4
解析
B.6
C.4.5
D.8
设底面边长为 x,高为 h,
2
256 则 V(x)=x · h=256,∴h= 2 , x 256 2 4×256 2 2 ∴S(x)=x +4xh=x +4x· 2 =x + , x x 4×256 ∴S′(x)=2x- . x2 256 令 S′(x)=0,解得 x=8,∴h= 2 =4. 8
研一研·问题探究、课堂更高效
从而,f′(x)=10[(x-6)2+2(x-3)(x-6)]
§ 3.4
=30(x-4)(x-6).
于是,当 x 变化时,f′(x),f(x)的变化情况如下表: x
本 讲 栏 目 开 关
(3,4) + 单调递增
4 0 极大值 42
(4,6) - 单调递减
f′(x) f(x)
研一研·问题探究、课堂更高效
§ 3.4
设 P(y2,y)(0≤y≤2)是曲线 MD 上任一点,
四年级生活中的优化问题举例教案

四年级生活中的优化问题举例教案教案标题:四年级生活中的优化问题举例教案教学目标:1. 了解和理解优化问题的概念。
2. 能够应用优化问题的解决方法,解决生活中的实际问题。
3. 培养学生的问题解决能力和创新思维。
教学重点:1. 理解优化问题的定义和特点。
2. 学会将生活中的实际问题转化为数学模型。
3. 运用数学方法解决优化问题。
教学准备:1. 教师准备:白板、黑板笔、教学课件。
2. 学生准备:课本、练习册、铅笔、尺子。
教学过程:Step 1: 导入(5分钟)教师通过提问和讨论引导学生思考,激发学生对优化问题的兴趣和好奇心。
例如:“你们有没有遇到过需要在一定条件下寻找最佳解决方案的问题呢?可以举个例子。
”Step 2: 概念讲解(10分钟)教师通过课件或黑板笔画出一个图形,如一个长方形花坛,解释什么是优化问题。
然后,教师向学生解释优化问题的定义和特点,即在给定的条件下,寻找最佳解决方案。
Step 3: 举例说明(15分钟)教师给出几个与学生生活相关的优化问题的例子,如:1. 一个学生要从家里走到学校,他应该选择哪条路线才能用最短的时间到达?2. 一个学生想买一本书,他应该选择哪家书店才能以最低的价格购买到?3. 一个学生想要制作一个最大的正方形海报,他应该如何剪裁纸张才能使得剩余的废纸最少?教师与学生一起分析这些问题,引导学生思考如何将这些问题转化为数学模型,并解决这些问题的最佳策略。
Step 4: 解决问题(20分钟)教师指导学生运用数学方法解决上述的优化问题。
教师可以提供一些解题思路和方法,如列出方程、绘制图形等。
学生根据教师的指导,独立或小组合作解决问题。
Step 5: 总结(5分钟)教师与学生一起总结本节课所学内容,强调优化问题的重要性和实际应用。
鼓励学生将所学知识应用到更多生活场景中。
Step 6: 作业布置(5分钟)教师布置相关的练习作业,要求学生运用所学知识解决更多的优化问题。
鼓励学生在实际生活中积极思考并解决优化问题。
2022-2021年《金版学案》数学·选修1-1(人教A版)习题:3.4生活中的优化问题举例

第三章 导数及其应用 3.4 生活中的优化问题举例A 级 基础巩固 一、选择题1.把长为12 cm 的细铁丝截成两段,各自摆成一个正三角形,那么这两个正三角形的面积之和的最小值是( )A.323 cm 2 B .4 cm 2 C .3 2 cm 2D .2 3 cm 2解析:设一个正三角形的边长为x cm ,则另一个正三角形的边长为(4-x )cm ,则这两个正三角形的面积之和为S =34x 2+34(4-x )2=32[(x -2)2+4]≥23(cm 2).答案:D2.某公司生产一种产品,固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x (0≤x ≤390)的关系是R (x )=-x 3900+400x ,0≤x ≤390,则当总利润最大时,每年生产的产品单位数是( )A .150B .200C .250D .300解析:由题意可得总利润P (x )=-x 3900+300x -20 000,0≤x ≤390,由P ′(x )=0,得x =300.当0≤x <300时,P ′(x )>0;当300<x ≤390时,P ′(x )<0,所以当x =300时,P (x )最大.答案:D3.将8分为两个非负数之和,使其立方和最小,则这两个数为( ) A .2和6 B .4和4 C .3和5D .以上都不对解析:设一个数为x ,则另一个数为8-x ,其立方和y =x 3+(8-x )3=83-192x +24x 2且0≤x ≤8,y ′=48x -192.令y ′=0,即48x -192=0,解得x =4.当0≤x <4时,y ′<0;当4<x ≤8时,y ′>0,所以当x =4时,y 取得微小值,也是最小值.答案:B4.做一个容积为256 m 3的方底无盖水箱,所用材料最省时,它的高为( ) A .6 m B .8 m C .4 m D .2 m解析:设底面边长为x m ,高为h m .则有x 2h =256, 所以h =256x 2.所用材料的面积设为S m 2,则有S =4x ·h +x 2=4x ·256x 2+x 2=256×4x +x 2.S ′=2x -256×4x 2,令S ′=0得x =8,因此h =25664=4(m).答案:C5.假如圆柱截面的周长l 为定值,则体积的最大值为( )A.⎝ ⎛⎭⎪⎫l 63π B.⎝ ⎛⎭⎪⎫l 33π C.⎝ ⎛⎭⎪⎫l 43π D.14⎝ ⎛⎭⎪⎫l 43π 解析:设圆柱的底面半径为r ,高为h ,体积为V ,则4r +2h =l ,所以 h =l -4r 2,V =πr 2h =l 2πr 2-2πr 3⎝ ⎛⎭⎪⎫0<r <l 4. 则V ′=l πr -6πr 2,令V ′=0,得r =0或r =l6,而r >0,所以 r =l6是其唯一的极值点.所以 当r =l6时,V 取得最大值,最大值为⎝ ⎛⎭⎪⎫l 63π.答案:A 二、填空题6.某商品每件的成本为30元,在某段时间内,若以每件x 元出售,可卖出(200-x )件,当每件商品的定价为________元时,利润最大.解析:由题意知,利润S (x )=(x -30)(200-x )=-x 2+230x -6000(30≤x ≤200),所以S ′(x )=-2x +230,令S ′(x )=0,解得x =115.当30≤x <115时,S ′(x )>0;当115<x ≤200时,S ′(x )<0,所以当x =115时,利润S (x )取得极大值,也是最大值.答案:1157.已知某矩形广场面积为4万平方米,则其周长至少为________米.解析:设广场的长为x 米,则宽为40 000x 米,于是其周长为y =2⎝ ⎛⎭⎪⎫x +40 000x (x>0),所以y ′=2⎝ ⎛⎭⎪⎫1-40 000x 2, 令y ′=0,解得x =200(x =-200舍去),这时y =800.当0<x <200时,y ′<0;当x >200时,y ′>0.所以当x =200时,y 取得最小值,故其周长至少为800米.答案:8008.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为________.解析:设圆柱的底面半径R ,母线长为L ,则V =πR 2L =27π,所以L =27R 2.要使用料最省,只需使圆柱表面积最小.S 表=πR 2+2πRL =πR 2+2π·27R,令S ′表=2πR -54πR2=0,得R =3,即当R =3时,S 表最小.答案:3 三、解答题9.如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm 2,四周空白的宽度为10 cm ,两栏之间的中缝空白的宽度为5 cm.怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?解:设广告的高和宽分别为x cm ,y cm ,则每栏的高和宽分别为x -20,y -252,其中x >20,y >25.两栏面积之和为2(x -20)· y -252=18 000,由此得y =18 000x -20+25.广告的面积S =xy =x ⎝ ⎛⎭⎪⎪⎫18 000x -20+25=18 000x x -20+25x , 所以 S ′=18 000[(x -20)-x ](x -20)2+25=-360 000(x -20)2+25. 令S ′>0得x >140,令S ′<0得20<x <140.所以 函数在(140,+∞)上单调递增,在(20,140)上单调递减,所以 S (x )的最小值为S (140).当x =140时,y =175.即当x =140,y =175时,S 取得最小值24 500,故当广告的高为140 cm ,宽为175 cm 时,可使广告的面积最小.10.现有一批货物由海上从A 地运往B 地,已知轮船的最大航行速度为35海里/时,A 地到B 地之间的航行距离约为500海里,每小时的运输成本由燃料费和其余费用组成,轮船每小时的燃料费与轮船速度的平方成正比(比例系数为0.6),其余费用为每小时960元.(1)把全程运输成本y (元)表示为速度x (海里/时)的函数; (2)为了使全程运输成本最小,轮船应以多大速度航行?解:(1)依题意得y =500x (960+0.6x 2)=480 000x +300x ,且由题意知函数的定义域为(0,35],即y =480 000x+300x (0<x ≤35).(2)由(1)得y ′=-480 000x 2+300,令y ′=0,解得x =40或x =-40(舍去).由于函数的定义域为(0,35],所以函数在定义域内没有极值点.又当0<x ≤35时,y ′<0,所以函数y =480 000x +300x 在(0,35]上单调递减,故当x =35时,函数y=480 000x +300x 取得最小值.故为了使全程运输成本最小,轮船应以35海里/时的速度航行.B 级 力量提升1.某公司的盈利y (元)和时间x (天)的函数关系是y =f (x ),且f ′(100)=-1,这个数据说明在第100天时( )A .公司已经亏损B .公司的盈利在增加C .公司的盈利在渐渐削减D .公司有时盈利有时亏损解析:由于f ′(100)=-1,所以函数图象在x =100处的切线的斜率为负值,说明公司的盈利在渐渐削减.答案:C2.某公司租地建仓库,每月土地占用费y 1(万元)与仓库到车站的距离成反比,而每月库存货物的运费y 2(万元)与仓库到车站的距离成正比.假如在距离车站10千米处建仓库,y 1和y 2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站________千米处.解析:依题意可设每月土地占用费y 1=k 1x ,每月库存货物的运费y 2=k 2x ,其中x 是仓库到车站的距离,k 1,k 2是比例系数.于是由2=k 110,得k 1=20;由8=10k 2,得k 2=45.因此,两项费用之和为y =20x +4x5(x >0),y ′=-20x 2+45,令y ′=0,得x =5或x =-5(舍去).当0<x <5时,y ′<0;当x >5时,y ′>0.因此,当x =5时,y 取得微小值,也是最小值.故当仓库建在离车站5千米处时,两项费用之和最小.答案:53.某公司生产某种产品的固定成本为20 000元,每生产1吨该产品需增加投入100元,已知总收益满足函数R (x )=⎩⎨⎧400 x -12x 2(0≤x ≤400),80 000(x >400),其中x 是该产品的月产量(单位:吨). (1)将利润表示为月产量的函数f (x );(2)当月产量为何值时,该公司所获利润最大?最大利润为多少元? 解:(1)f (x )=⎩⎪⎨⎪⎧-12x 2+300x -20 000(0≤x ≤400),60 000-100x (x >400).(2)当0≤x ≤400时,f ′(x )=-x +300, 当0≤x <300时,f ′(x )>0,f (x )是增函数; 当x >300时,f ′(x )<0,f (x )是减函数;所以 当x =300时,f (x )取得极大值,也是最大值,且最大值为25 000. 当x >400时,f (x )=60 000-100x ,易知f (x )是减函数, 所以 f (x )<60 000-100×400=20 000<25 000, 综上,当x =300时,f (x )有最大值25 000.即当月产量为300吨时,利润最大,最大利润为25 000元.。
生活中的优化问题举例

=v3 -5v2+6 000(0<v≤100).
48 2
(2)Q′= v2 - 16
5v,
令 Q′=0,则 v=0(舍去)或 v=80,
当 0<v<80 时,Q′<0;
当 80<v≤100 时,Q′>0,
∴v=80 千米/时时,全程运输成本取得极小值,即最小值,
且
Qmin= Q(80)=2
000(元). 3
栏目 导引
第一章 导数及其应用
由V′=12x2-552x+4 320=0,得x1=10,x2=36. ∵0<x<10时,V′>0,10<x<36时,V′<0,x>36时, V′>0, ∴当x=10时,V有极大值V(10)=19 600. 又∵0<x<24, ∴V(10)又是最大值. ∴当x=10时,V有最大值V(10)=19 600. 故当容器的高为10 cm时,容器的容积最大,最大容积是19 600 cm3.
栏目 导引
第一章 导数及其应用
方法归纳 注意利用导数的方法解决实际问题时,如果在定义区间内只 有一个点使f′(x)=0,且函数在这点有极大(小)值,那么不 与端点值比较,也可以知道该点的函数值就是最大(小)值.
栏目 导引
第一章 导数及其应用
2.甲、乙两地相距 400 千米,汽车从甲地匀速行驶到乙 地,速度不得超过 100 千米/时,已知该汽车每小时的运 输成本 P(元)关于速度 v(千米/时)的函数关系是 P= 1 v4- 1 v3+15v.
栏目 导引
用料(费用)最省问题
第一章 导数及其应用
一艘轮船在航行中每小时的燃料费和它的速度的立方 成正比.已知速度为每小时10海里时,燃料费是每小时6元, 而其他与速度无关的费用是每小时96元,问轮船的速度是多 少时,航行1海里所需的费用总和最小? [解] 设速度为每小时 v 海里的燃料费是每小时 p 元,那 么由题设的比例关系得 p=k·v3,其中 k 为比例系数,它
探讨数学最优化问题在现实生活中的应用

探讨数学最优化问题在现实生活中的应用
数学最优化问题是现实生活中非常重要的一个领域。
它可以帮助我们在各种情况下找到最优解决方案,从而提高效率和效益。
以下将探讨数学最优化问题在现实生活中的应用。
1. 交通规划
在城市交通规划中,数学最优化问题可以帮助交通规划者确定哪些道路需要扩建或改建,以及如何设计路网、规划交叉口等问题。
通过对交通流量、拥堵状况等各种因素进行分析,可以通过建模求解来找到最优化的解决方案,以缓解交通拥堵问题,提高交通运输效率。
2. 财务分析
在企业财务分析中,数学最优化问题可以帮助企业确定最佳的经营策略和资金投资方案。
通过对市场需求、资产收益、风险等因素进行建模,利用各种优化算法求解,可以找到企业最优的经营策略和投资组合,从而最大化企业的盈利和效益。
3. 电力系统
在电力系统设计和管理中,数学最优化问题可以帮助工程师确定最佳的发电机容量、输电线路布局、电力市场展望等问题。
通过对电力供需、电力负载、电力成本等各种因素进行分析和建模,可以利用各种最优化算法求解目标函数,以达到最大化电力系统效益的目的。
4. 生产系统
在工业生产中,数学最优化问题可以帮助企业确定最佳的生产计划、生产布局、零部件库存管理等问题。
通过对资源利用率、工人效率、成本效益等因素进行建模,可以通过最优化求解来找到最佳的生产策略和生产规划,以提高生产效率和效益。
5. 医疗系统。
生活中的节约问题——数学优化问题举例

教学设计生活中的节约问题——数学优化问题举例大兴一中张秀春一.内容和内容解析随着低碳生活逐步深入,节约问题成了人们最为关注的问题了。
而数学中的“优化问题”是现实生活中常碰到的节约问题,比如速度最快、距离最小、费用最低、用料最省、效率最高、增长率、膨胀率等。
而解决方法可以多样,学生较为熟悉的是线性规划问题,二次函数最值问题,或结合函数图象解决最值以及用导数求函数的单调性、最值等。
线性规划是利用数学为工具,来研究在一定的人、财、物、时、空等资源条件下,如何精打细算巧安排,用最少的资源取得最大的效益,即解决节约问题。
它在工程设计、经济管理、科学研究等方面的应用非常广泛。
而本节内容主要是应用线性规划和导数解决生活中的节约问题,使学生体会线性规划、导数在解决生活中的节约问题的广泛作用和强大实力。
教材主要在效率、利润、最大容量三个方面举例说明。
从教学内容分析,教材例题与学生生活经验有一定的差距离,问题信息量大,数学建模要求高,在具体的教学中,可以设置有一定梯度和接近学生生活中的节约问题,提高学生的学习兴趣,同时告诉学生如何去思考解决这类问题的一般思路。
二、教学目标:1、知识目标:(1)进一步了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念;巩固线性规划问题的一般解法(即图解法);会求线性目标函数的最大值、最小值。
(2)巩固导数的相关概念、性质及导数的意义,用导数求实际问题的最大值、最小值。
理解什么是数学中的优化问题。
2、能力目标:培养学生建模能力及提高学生解决实际问题的能力;同时渗透数形结合、化归的数学思想方法,培养学生的节约意识和“用数学” 的意识及创新能力。
3、情感目标:通过对物资调运、产品安排、下料问题等问题的调查、研究,培养学生的节约意识和习惯,倡导学生的低碳生活,使学生了解社会主义市场经济,建立市场经济意识,焕发学生振兴中华的责任感。
三.教学难点和重点分析重点:线性规划、导数的应用,了解生活中的节能问题,熟练掌握生活中常遇到的“效率最高”,“容量最大”,“利润最大”的解决方案。
生活中的优化问题举例(三课时)

解∴:每由瓶于饮瓶料子的的利半润径:为r,所以每瓶饮料的利润是
y f (r) 0.2 4 r3 0.8 r 2
=
r3 0.8π(
3 - r2)
(0 r 6)
3
令f '(r ) = 0.8π(r 2 - 2r ) 0,得r = 2
r
(0,2)
2
(2,6]
f '(r)
-
0
+
f (r)
减函数↘ -1.07
=
购地总费用 建筑总面积)
[解]设楼房每平方米的平均综合费用为f x元,则
f (x) (560 48x) 216010000 560 48x 10800
2000x
x
f '(x) 48 10800 . x2
令f x 0得x 15.
当x 15时, f x 0,当0 x 15时, f x 0,
计算机把信息存储到磁盘上,磁盘是带有磁性介质 的圆盘,并由操作系统将其格式化成磁道和扇区.
磁道是指不同半径所构成的同心圆轨道,扇区是 指被圆心角分割成的扇形区域.磁道上的定长的 弧可作为基本存储单元,根据其磁化与否可分别 记录数据0或1,几个基本单元通常称为比特(bit).
例3:现有一张半径为R 的磁盘,它的
因此,当x 15时, f x取最小值f 15 2000.
答:为了楼房每平方米的综合费用最少,该楼房应建为15层.
作业:课本P37习题1.4 A组 6 B组 1
生活中的优化问题举例
第三课时 问题3、磁盘的最大存储量问题
(1) 你知道计算机是如何存储、检索信息的吗? (2) 你知道磁盘的结构吗? (3)如何使一个圆环状的磁盘存储尽可能多的信息?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能力拓展提升
一、选择题
11.某公司生产一种产品,固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x (0≤x ≤390)的关系是R (x )=-x 3
9 000+400x,0≤x ≤390,则当总利润最大时,每年生产的产品单位数是( )
A .150
B .200
C .250
D .300
[答案] D
[解析] 由题意可得总利润P (x )=-x 3
900+300x -20 000,0≤x ≤390.由P ′(x )=0,得x =300.
当0≤x ≤300时,p ′(x )>0;当300<x ≤390时,P ′(x )<0,所以当x =300时,P (x )最大,故选D.
12.三棱锥O -ABC 中,OA 、OB 、OC 两两垂直,OC =2x ,OA =x ,OB =y ,且x +y =3,则三棱锥O -ABC 体积的最大值为( )
A .4
B .8 C.43 D.8
3
[答案] C
[解析] V =13×2x 22·y =x 2y 3=x 2(3-x )3=3x 2-x
3
3(0<x <3),
V ′=6x -3x 2
3=2x -x 2=x (2-x ). 令V ′=0,得x =2或x =0(舍去). ∴x =2时,V 最大为4
3.
13.要制作一个圆锥形的漏斗,其母线长为20cm ,要使其体积最大,则高为( )
A.3
3cm B.103
3cm C.163
3cm D.2033cm
[答案] D
[解析] 设圆锥的高为x ,则底面半径为202-x 2, 其体积为V =1
3πx (400-x 2) (0<x <20), V ′=13π(400-3x 2),令V ′=0,解得x =2033. 当0<x <2033时,V ′>0;当203
3<x <20时,V ′<0 所以当x =203
3时,V 取最大值.
14.若一球的半径为r ,作内接于球的圆柱,则其圆柱侧面积最大值为( )
A .2πr 2
B .πr 2
C .4πr 2
D.12πr 2
[答案] A
[解析] 设内接圆柱的底面半径为r 1,高为t ,
则S =2πr 1t =2πr 12r 2-r 21=4πr 1r 2-r 2
1. ∴S =4πr 2r 21-r 41. 令(r 2r 21-r 41)′=0
得r 1=2
2r .
此时S =4π·22r ·r 2
-⎝ ⎛⎭
⎪⎫22r 2
=4π·22r ·2
2r =2πr 2. 二、填空题
15.做一个容积为256的方底无盖水箱,它的高为________时最省料.
[答案] 4
[解析] 设底面边长为x ,则高为h =256
x 2,其表面积为S =x 2+4×256x 2×x =x 2
+256×4x ,S ′=2x -256×4x 2,令S ′=0,则x =8,则当高h =256
64=4时S 取得最小值.
16.某厂生产某种产品x 件的总成本:C (x )=1 200+275x 3
,又产品单价的平方与产品件数x 成反比,生产100件这样的产品的单价为50元,总利润最大时,产量应定为________件.
[答案] 25
[解析] 设产品单价为a 元,又产品单价的平方与产品件数x 成反比,即a 2x =k ,
由题知a =500x .总利润y =500x -275x 3-1 200(x >0),y ′=250
x -
225x 2
,
由y ′=0,得x =25,x ∈(0,25)时,y ′>0,x ∈(25,+∞)时,y ′<0,所以x =25时,y 取最大值.
三、解答题
17.已知某厂生产x 件产品的成本为c =25 000+200x +140x 2(元). (1)要使平均成本最低,应生产多少件产品?
(2)若产品以每件500元售出,要使利润最大,应生产多少件产品?
[解析] (1)设平均成本为y 元,则
y =25 000+200x +1
40x 2
x =25 000x +200+x
40(x >0), y ′=⎝ ⎛⎭⎪⎫25 000x +200+x 40′=-25 000x 2+1
40. 令y ′=0,得x 1=1 000,x 2=-1 000(舍去). 当在x =1 000附近左侧时,y ′<0; 在x =1 000附近右侧时,y ′>0; 故当x =1 000时,y 取得极小值.
由于函数只有一个极小值点,那么函数在该点取得最小值,因此要使平均成本最低,应生产1 000件产品.
(2)利润函数为L =500x -(25 000+200x +x 2
40) =300x -25 000-x 2
40. ∴L ′=300-x
20.
令L ′=0,得x =6 000,当x 在6 000附近左侧时,L ′>0;当x 在6 000附近右侧时,L ′<0,故当x =6 000时,L 取得极大值.
由于函数只有一个使L ′=0的点,且函数在该点有极大值,那么函数在该点取得最大值.因此,要使利润最大,应生产6 000件产品.
18.已知圆柱的表面积为定值S ,求当圆柱的容积V 最大时圆柱的高h 的值.
[分析]将容积V表达为高h或底半径r的函数,运用导数求最值.由于表面积S=2πr2+2πrh,此式较易解出h,故将V的表达式中h消去可得V是r的函数.
[解析]设圆柱的底面半径为r,高为h,则S圆柱底=2πr2,
S圆柱侧=2πrh,∴圆柱的表面积S=2πr2+2πrh.
∴h=S-2πr2 2πr,
又圆柱的体积V=πr2h=r
2(S-2πr 2)=
rS-2πr3
2,V′=
S-6πr2
2,
令V′=0得S=6πr2,∴h=2r,
又r=S
6π,∴h=2
S
6π=
6πS
3π.
即当圆柱的容积V最大时,圆柱的高h为6πS 3π.。