2004年高考数学试卷(江苏卷)
历年江苏卷数学 2004年高考.江苏卷.数学试题及答案

时间(小时) 2004年普通高等学校招生全国统一考试数学(江苏卷)一、选择题(5分×12=60分)1.设集合P={1,2,3,4},Q={R x x x ∈≤,2},则P ∩Q 等于( )(A){1,2} (B) {3,4} (C) {1} (D) {-2,-1,0,1,2}2.函数y=2cos 2x+1(x ∈R )的最小正周期为( ) (A)2π (B)π (C)π2 (D)π4 3.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 ( )(A)140种 (B)120种 (C)35种 (D)34种4.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是( ) (A)33π100cm (B) 33π208cm (C) 33π500cm (D) 33π3416cm 5.若双曲线18222=-by x 的一条准线与抛物线x y 82=的准线重合,则双曲线离心率为 ( ) (A)2 (B)22 (C) 4 (D)246.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( )(A)0.6小时 (B)0.9小时 (C)1.0小时 (D)1.5小时7.4)2(x x +的展开式中x 3的系数是 ( )(A)6 (B)12 (C)24 (D)488.若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则 ( )(A)a=2,b=2 (B)a= 2 ,b=2 (C)a=2,b=1 (D)a= 2 ,b= 29.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上和概率是 ( )(A)5216 (B)25216 (C)31216 (D)9121610.函数13)(3+-=x x x f 在闭区间[-3,0]上的最大值、最小值分别是 ( )(A)1,-1 (B)1,-17 (C)3,-17 (D)9,-1911.设k>1,f(x)=k(x-1)(x ∈R ) . 在平面直角坐标系xOy 中,函数y=f(x)的图象与x 轴交于A点,它的反函数y=f -1(x)的图象与y 轴交于B 点,并且这两个函数的图象交于P 点. 已知四边形OAPB 的面积是3,则k 等于 ( )(A)3 (B)32 (C)43 (D)6512.设函数)(1)(R x xx x f ∈+-=,区间M=[a ,b](a<b),集合N={M x x f y y ∈=),(},则使M=N 成立的实数对(a ,b)有 ( )(A)0个 (B)1个 (C)2个 (D)无数多个二、填空题(4分×4=16分)13.二次函数y=ax 2+bx+c(x ∈R )的部分对应值如下表:则不等式ax 2+bx+c>0的解集是_______________________.14.以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是________________.15.设数列{a n }的前n 项和为S n ,S n =2)13(1-n a (对于所有n ≥1),且a 4=54,则a 1的数值是_______________________.16.平面向量,中,已知=(4,-3)=1,且⋅=5,则向量=__________.三、解答题(12分×5+14分=74分)17.已知0<α<2π,tan 2α+cot 2α=25,求sin(3πα-)的值. 18.在棱长为4的正方体ABCD-A 1B 1C 1D 1中,O 是正方形A 1B 1C 1D 1的中心,点P 在棱CC 1上,且CC 1=4CP.(Ⅰ)求直线AP 与平面BCC 1B 1所成的角的大小(结果用反三角函数值表示);(Ⅱ)设O 点在平面D 1AP 上的射影是H ,求证:D 1H ⊥AP; (Ⅲ)求点P 到平面ABD 1的距离.19.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损. 某投资人打算投资甲、乙两个项目. 根据预测,甲、乙项目可能的最大盈利率分别为100· B 1 P A CD A 1 C 1 D 1BO H ·﹪和50﹪,可能的最大亏损分别为30﹪和10﹪. 投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元. 问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?20.设无穷等差数列{a n }的前n 项和为S n .(Ⅰ)若首项=1a 32 ,公差1=d ,求满足2)(2k kS S =的正整数k ; (Ⅱ)求所有的无穷等差数列{a n },使得对于一切正整数k 都有2)(2k k S S=成立.21.已知椭圆的中心在原点,离心率为12,一个焦点是F (-m,0)(m 是大于0的常数). (Ⅰ)求椭圆的方程;(Ⅱ)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M. =,求直线l 的斜率.22.已知函数))((R x x f ∈满足下列条件:对任意的实数x 1,x 2都有)]()()[()(λ2121221x f x f x x x x --≤-和2121)()(x x x f x f -≤-,其中λ是大于0的常数.设实数a 0,a ,b 满足 0)(0=a f 和)(λa f a b -=(Ⅰ)证明1λ≤,并且不存在00a b ≠,使得0)(0=b f ;(Ⅱ)证明20220))(λ1()(a a a b --≤-;(Ⅲ)证明222)]()[λ1()]([a f b f -≤.2004年普通高等学校招生全国统一考试数学(江苏卷)参考答案一、选择题ABDCA BCADC BA二、填空题13、{2x x <-或3}x >14、22(1)(1)25x y -+-=15、2 16、43(,)55b =-r 三、解答题17、解:由题意可知4sin 5α=,sin()3πα∴-=18、解(1)APB ∠=(2)略(319、解:10318x y x y +≤⎧⎨+≤⎩,设0.5z x y =+ 当46x y =⎧⎨=⎩时,z 取最大值7万元20、解:(1)4k =(2)100a d =⎧⎨=⎩或112a d =⎧⎨=⎩或110a d =⎧⎨=⎩21、解:(1)2222143x y m m +=(2)k =±或022、解:(1)不妨设12x x >,由[]2121212()()()()x x x x f x f x λ-≤-⋅-可知12()()0f x f x ->,()f x ∴是R 上的增函数∴不存在00b a ≠,使得0()0f b = 又[]2212121212()()()()()x x x x f x f x x x λ-≤-⋅-≤-Q 1λ∴≤(2)要证:222000()(1)()b a a a λ-≤--即证:2200()()2()()a a f a f a a a λ⎡⎤-+≤-⎣⎦(*) 不妨设0a a >,由[]2121212()()()()x x x x f x f x λ-≤-⋅- 得00()()()f a f a a a λ-≥-,即0()()f a a a λ≥-,则2002()()2()f a a a a a λ-≥- (1)由1212()()f x f x x x -≤-得00()()f a f a a a -≤- 即0()f a a a ≤-,则22200()()2()a a f a a a λλ⎡⎤-+≤-⎣⎦ (2)由(1)(2)可得2200()()2()()a a f a f a a a λ⎡⎤-+≤-⎣⎦222000()(1)()b a a a λ∴-≤--(3)220[()]()f a a a ≤-Q ,22220(1)[()](1)()f a a a λλ∴-≤--220[()]()f b b a ≤-Q又由(2)中结论222000()(1)()b a a a λ-≤--222[()](1)[()]f b f a λ∴≤-。
2004年高考.江苏卷.数学试题及答案

C1
(Ⅲ)求点 P 到平面 ABD1 的距离.
·O
A1
B1
·H
P
D 第 2页 (2共 6页)
A
C B
19.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损. 某投资人打算投资甲、乙两个项目. 根据预测,甲、乙项目可能的最大盈利率分别为 100
﹪和 50﹪,可能的最大亏损分别为 30﹪和 10﹪. 投资人计划投资金额不超过 10 万元,要 求确保可能的资金亏损不超过 1.8 万元. 问投资人对甲、乙两个项目各投资多少万元,才 能使可能的盈利最大?
设实数 a0,a,b 满足 f (a0 ) 0 和 b a λf (a) (Ⅰ)证明 λ 1 ,并且不存在 b0 a0 ,使得 f (b0 ) 0 ; (Ⅱ)证明 (b a0 ) 2 (1 λ2 )(a a0 ) 2 ; (Ⅲ)证明 [ f (b)]2 (1 λ2 )[ f (a)]2 .
先后抛掷 3 次,至少出现一次 6 点向上和概率是
(
)
(A) 5 216
(B) 25 216
(C) 31 216
(D) 91 216
10.函数 f (x) x 3 3x 1 在闭区间[-3,0]上的最大值、最小值分别是
(
)
(A)1,-1
(B)1,-17
(C)3,-17
(D)9,-19
11.设 k>1,f(x)=k(x-1)(x∈R) . 在平面直角坐标系 xOy 中,函数 y=f(x)的图象与 x 轴交于 A
M=N 成立的实数对(a,b)有
(
)
(A)0 个
(B)1 个
(C)2 个
(D)无数多个
二、填空题(4 分×4=16 分)
2004年高考试题——数学(江西卷)(理)

阅读使人充实,会谈使人敏捷,写作使人精确。
——培根2004年普通高等学校招生全国统一考试数学(江苏卷)第I 卷(选择题共60分)一、选择题(5分×12=60分)1.设集合P={1,2,3,4},Q={R x x x ∈≤,2},则P ∩Q 等于( ) A .{1,2} B . {3,4}C . {1}D . {-2,-1,0,1,2}2.函数y=2cos 2x+1(x ∈R )的最小正周期为 ( )A .2πB .πC .π2D .π43.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 ( )A .140种B .120种C .35种D .34种4.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是 ( )A .33π100cmB . 33π208cmC . 33π500cmD . 33π3416cm 5.若双曲线18222=-by x 的一条准线与抛物线x y 82=的准线重合,则双曲线的离心率为( ) A .2 B .22 C . 4D .24 6.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( )A .0.6小时B .0.9小时C .1.0小时D .1.5小时7.4)2(x x +的展开式中x 3的系数是( ) A .6 B .12 C .24 D .488.若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则 ( )A .a =2,b=2B .a = 2 ,b=2C .a =2,b=1D .a = 2 ,b= 2 9.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是( ) A .5216 B .25216 C .31216 D .9121610.函数13)(3+-=x x x f 在闭区间[-3,0]上的最大值、最小值分别是( ) A .1,-1 B .1,-17 C .3,-17 D .9,-1911.设k>1,f(x)=k(x-1)(x ∈R ) . 在平面直角坐标系xOy 中,函数y=f(x)的图象与x 轴交于A点,它的反函数y=f -1(x)的图象与y 轴交于B 点,并且这两个函数的图象交于P 点. 已知四边形OAPB 的面积是3,则k 等于( ) A .3 B .32 C .43 D .6512.设函数)(1)(R x x x x f ∈+-=,区间M=[a ,b](a<b),集合N={M x x f y y ∈=),(},则使M=N 成立的实数对(a ,b)有 ( )A .0个B .1个C .2个D .无数多个第II 卷(非选择题 共90分)二、填空题(4分×4=16分)13.二次函数y=ax 2+bx+c(x ∈R )的部分对应值如下表:则不等式ax 2+bx+c>0的解集是_______________________.14.以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是________________.15.设数列{a n }的前n 项和为S n ,S n =2)13(1-n a (对于所有n ≥1),且a 4=54,则a 1的数值是_______________________.16.平面向量a ,b 中,已知a =(4,-3),b =1,且a ·b =5,则向量b =__________.三、解答题(12分×5+14分=74分)17.已知0<α<2π,tan 2α+cot 2α=25,求sin(3πα-)的值.18.在棱长为4的正方体ABCD-A 1B 1C 1D 1中,O 是正方形A 1B 1C 1D 1的中心,点P 在棱CC 1上,且CC 1=4CP.(Ⅰ)求直线AP 与平面BCC 1B 1所成的角的大小(结果用反三角函数值表示);(Ⅱ)设O 点在平面D 1AP 上的射影是H ,求证:D 1H ⊥AP ;(Ⅲ)求点P 到平面ABD 1的距离.19.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目. 根据预测,甲、乙项目可能的最大盈利率分别为100﹪和50﹪,可能的最大亏损率分别为30﹪和10﹪. 投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元. 问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?20.设无穷等差数列{a n }的前n 项和为S n .(Ⅰ)若首项=1a 32,公差1=d ,求满足2)(2k k S S =的正整数k ; (Ⅱ)求所有的无穷等差数列{a n },使得对于一切正整数k 都有2)(2k k S S=成立.21.已知椭圆的中心在原点,离心率为12,一个焦点是F (-m,0)(m 是大于0的常数). (Ⅰ)求椭圆的方程;(Ⅱ)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M. =,求直线· B 1 P A C D A 1 C 1D 1 B O H ·l 的斜率.22.已知函数))((R x x f ∈满足下列条件:对任意的实数x 1,x 2都有)]()()[()(λ2121221x f x f x x x x --≤- 和2121)()(x x x f x f -≤-,其中λ是大于0的常数.设实数a 0,a ,b 满足 0)(0=a f 和)(λa f a b -=(Ⅰ)证明1λ≤,并且不存在00a b ≠,使得0)(0=b f ;(Ⅱ)证明20220))(λ1()(a a a b --≤-;(Ⅲ)证明222)]()[λ1()]([a f b f -≤.参考答案一、选择题:本题考查基本知识和基本运算,每小题5分,满分60分.1.A 2.B 3.D 4.C 5.A 6.B 7.C 8.A 9.D 10.C11.B 12.A二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分.13.),3()2,(+∞--∞14.25)2()1(22=-+-y x 15.2 16.)53,54(- 三、解答题17.本小题主要考查三角函数的基本公式和三角函数的恒等变换等基本知识,以及推理能力和运算能力.满分12分.解:由已知54sin ,25sin 22cot 2tan===+αααα得. .53s i n 1c o s ,202=-=∴<<ααπα 从而 3s i n c o s 3c o s s i n )3s i n (παπαπα⋅-⋅=- )334(10123532154-=⨯-⨯=. 18.本小题主要考查线面关系和正方体性质等基本知识,考查空间想象能力和推理论证能力.满分12分.解法一:(I )连结BP. ∵AB ⊥平面BCC 1B 1, ∴AP 与平面BCC 1B 1所成的角就是∠APB,∵CC 1=4CP,CC 1=4,∴CP=I.在Rt △PBC 中,∠PCB 为直角,BC=4,CP=1,故BP=17.在Rt △APB 中,∠ABP 为直角,tan ∠APB=,17174=BP AB ∴∠APB=.17174arctan 19.本小题主要考查简单线性规划的基本知识,以及运用数学知识解决实际问题的能力.满分12分.解:设投资人分别用x 万元、y 万元投资甲、乙两个项目.由题意知⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+.0,0,8.11.03.0,10y x y x y x目标函数z =x +0.5y.上述不等式组表示的平面区域如图所示,阴影部分(含边界)即可行域. 作直线05.0:0=+y x l ,并作平行于直线0l 的一组直线,,5.0R z z y x ∈=+与可行域相交,其中有一条直线经过可行域上的M 点,且 与直线05.0=+y x 的距离最大,这里M 点是直线10=+y x和8.11.03.0=+y x 的交点.解方程组⎩⎨⎧=+=+,8.11.03.0,10y x y x 得x =4,y=6 此时765.041=⨯+⨯=z (万元).07> ∴当x =4,y=6时z 取得最大值.答:投资人用4万元投资甲项目、6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大.20.本小题主要考查数列的基本知识,以及运用数学知识分析和解决问题的能力.满分12分.解:(I )当1,231==d a 时,n n n n n d n n na S n +=-+=-+=21212)1(232)1( 由22242)21(21,)(2k k k k S S k k +=+=得, 即 0)141(3=-k k 又4,0=≠k k 所以.(II )设数列{a n }的公差为d ,则在2)(2n n S S =中分别取k=1,2,得 ⎪⎩⎪⎨⎧⨯+=⨯+=⎪⎩⎪⎨⎧==211211224211)2122(2344,,)()(d a d a a a S S S S 即由(1)得 .1011==a a 或 当,60)2(,01===d d a 或得代入时若21)(,0,0,0,0k k n n S S S a d a =====从而则成立 若知由则216,324)(,18),1(6,6,02331===-===n n S S S n a d a,)(239S s ≠故所得数列不符合题意. 当20,)2(64)2(,121==+=+=d d d d a 或解得得代入时 若;)(,,1,0,1212成立从而则k k n n S S n S a d a =====若成立从而则221)(,)12(31,12,2,1n n n S S n n S n a d a ==-+++=-=== .综上,共有3个满足条件的无穷等差数列:①{a n } : a n =0,即0,0,0,…;②{a n } : a n =1,即1,1,1,…;③{a n } : a n =2n -1,即1,3,5,…,21.本小题主要考查直线、椭圆和向量等基本知识,以及推理能力和运算能力.满分12分.解:(I )设所求椭圆方程是).0(12222>>=+b a by a x 由已知,得 ,21,==a c m c 所以m b m a 3,2==. (1) (2)故所求的椭圆方程是1342222=+m y m x(II )设Q (Q Q y x ,),直线),0(),(:km M m x k y l 则点+= 当),,0(),0,(,2km M m F -=由于由定比分点坐标公式,得 ,62.139494,)3,32(.31210,32212022222±==+-=++=-=+-=k mm k m m km m Q km km y m m x Q Q 解得所以在椭圆上又点 km km y m m x Q Q -=-=-=--⨯-+=-=21,221)()2(0,2时当. 于是.0,134422222==+k m m k m m 解得 故直线l 的斜率是0,62±. 22.本小题主要考查函数、不等式等基本知识,以及综合运用数学知识解决问题的能力.满分14分.证明:(I )任取则由,,,2121x x R x x ≠⊂ )]()()[()(2121221x f x f x x x x --≤-λ和|||)()(|2121x x x f x f -≤- ② 可知 22121212121221|||)()(|||)]()()[()(x x x f x f x x x f x f x x x x -≤-⋅-≤--≤-λ,从而 1≤λ. 假设有则由使得,0)(,000=≠b f a b ①式知 .0)]()()[()(00000200矛盾=--≤-<b f a f b a b a λ∴不存在.0)(,000=≠b f a b 使得 (II )由)(a f a b λ-= ③可知 220202020)]([)()(2)()]([)(a f a f a a a a a f a a a b λλλ+---=--=- ④ 由和0)(0=a f ①式,得20000)()]()()[()()(a a a f a f a a a f a a -≥--=-λ ⑤由0)(0=a f 和②式知,20202)()]()([)]([a a a f a f a f -≤-= ⑥ 由⑤、⑥代入④式,得 2022022020)()(2)()(a a a a a a a b -+---≤-λλ202))(1(a a --=λ (III )由③式可知22)]()()([)]([a f a f b f b f +-= 22)]([)]()()[(2)]()([a f a f b f a f a f b f +-+-= 22)]([)]()([2)(a f a f b f ab a b +--⋅--≤λ (用②式)222)]([)]()()[(2)]([a f a f b f a b a f +---=λλ 2222)]([)(2)([a f a b a f +-⋅⋅-≤λλλ (用①式)2222222)]()[1()]([)]([2)]([a f a f a f a f λλλ-=+-=。
江苏省2004高考数学 名师整理真题分类汇编 选修系列

(十年高考)江苏省2004-2013年高考数学 名师整理真题分类汇编 选修系列一、选择填空题1.(江苏2006年5分)设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 ▲ 【答案】18。
【考点】线性规划问题。
【分析】画出可行域,得在直线22x y -=与直线1x y -=-的交点A(3,4)处,目标函数z 最大,最大值为18。
2.(江苏2007年5分)在平面直角坐标系xOy ,已知平面区域{(,)|1,A x y x y =+≤且0,0}x y ≥≥,则平面区域{(,)|(,)}B x y x y x y A =+-∈的面积为【 】 A .2 B .1 C .12 D .14【答案】B 。
【考点】简单线性规划的应用。
【分析】令u x y v x y =+⎧⎨=-⎩。
则100u u v u v ≤⎧⎪+≥⎨⎪-≥⎩。
作出区域是等腰直角三角形,可求出面积11221=⨯⨯=s 。
故选B 。
二、解答题1.(江苏2008年附加10分)选修4—1 几何证明选讲如图,设△ABC 的外接圆的切线AE 与BC 的延长线交于点E ,∠BAC 的平分线与BC 交于点D . 求证:2ED EB EC =⋅.【答案】证明:如图,∵AE 是圆的切线,∴ABC CAE ∠=∠。
又∵AD 是∠BAC 的平分线,∴BAD CAD ∠=∠。
∴ABC BAD CAE CAD ∠+∠=∠+∠。
BCEDA∵ADE ABC BAD ∠=∠+∠, DAE CAE CAD ∠=∠+∠, ∴ ADE DAE ∠=∠。
∴EA=ED。
∵ EA 是圆的切线,∴由切割线定理知,2EA EC EB =⋅。
而EA=ED ,∴2ED EB EC =⋅。
【考点】与圆有关的比例线段。
【分析】根据已知EA 是圆的切线,AC 为过切点A 的弦得两个角相等,再结合角平分线条件,从而得到△EAD 是等腰三角形,再根据切割线定理即可证得。
2004年高考.江苏卷.数学试题及答案

时间(小时) 2004年普通高等学校招生全国统一考试数学(江苏卷)一、选择题(5分×12=60分)1.设集合P={1,2,3,4},Q={R x x x ∈≤,2},则P ∩Q 等于( )(A){1,2} (B) {3,4} (C) {1} (D) {-2,-1,0,1,2}2.函数y=2cos 2x+1(x ∈R )的最小正周期为( ) (A)2π (B)π (C)π2 (D)π4 3.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 ( )(A)140种 (B)120种 (C)35种 (D)34种4.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是( ) (A)33π100cm (B) 33π208cm (C) 33π500cm (D) 33π3416cm 5.若双曲线18222=-by x 的一条准线与抛物线x y 82=的准线重合,则双曲线离心率为 ( ) (A)2 (B)22 (C) 4 (D)246.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( )(A)0.6小时 (B)0.9小时 (C)1.0小时 (D)1.5小时7.4)2(x x +的展开式中x 3的系数是 ( )(A)6 (B)12 (C)24 (D)488.若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则 ( )(A)a=2,b=2 (B)a= 2 ,b=2 (C)a=2,b=1 (D)a= 2 ,b= 29.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上和概率是 ( )(A)5216 (B)25216 (C)31216 (D)9121610.函数13)(3+-=x x x f 在闭区间[-3,0]上的最大值、最小值分别是 ( )(A)1,-1 (B)1,-17 (C)3,-17 (D)9,-1911.设k>1,f(x)=k(x-1)(x ∈R ) . 在平面直角坐标系xOy 中,函数y=f(x)的图象与x 轴交于A点,它的反函数y=f -1(x)的图象与y 轴交于B 点,并且这两个函数的图象交于P 点. 已知四边形OAPB 的面积是3,则k 等于 ( )(A)3 (B)32 (C)43 (D)6512.设函数)(1)(R x xx x f ∈+-=,区间M=[a ,b](a<b),集合N={M x x f y y ∈=),(},则使M=N 成立的实数对(a ,b)有 ( )(A)0个 (B)1个 (C)2个 (D)无数多个二、填空题(4分×4=16分)13.二次函数y=ax 2+bx+c(x ∈R )的部分对应值如下表:则不等式ax +bx+c>0的解集是_______________________.14.以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是________________.15.设数列{a n }的前n 项和为S n ,S n =2)13(1-n a (对于所有n ≥1),且a 4=54,则a 1的数值是_______________________.16.平面向量,中,已知a =(4,-3)=1,且b a ⋅=5,则向量b =__________.三、解答题(12分×5+14分=74分)17.已知0<α<2π,tan 2α+cot 2α=25,求sin(3πα-)的值. 18.在棱长为4的正方体ABCD-A 1B 1C 1D 1中,O 是正方形A 1B 1C 1D 1的中心,点P 在棱CC 1上,且CC 1=4CP.(Ⅰ)求直线AP 与平面BCC 1B 1所成的角的大小(结果用反三角函数值表示);(Ⅱ)设O 点在平面D 1AP 上的射影是H ,求证:D 1H ⊥AP ; (Ⅲ)求点P 到平面ABD 1的距离.· B 1 P D A 1 C 1 D 1O H ·19.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目. 根据预测,甲、乙项目可能的最大盈利率分别为100﹪和50﹪,可能的最大亏损分别为30﹪和10﹪. 投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元. 问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?20.设无穷等差数列{a n }的前n 项和为S n .(Ⅰ)若首项=1a 32 ,公差1=d ,求满足2)(2k kS S =的正整数k ; (Ⅱ)求所有的无穷等差数列{a n },使得对于一切正整数k 都有2)(2k k S S=成立.21.已知椭圆的中心在原点,离心率为12,一个焦点是F (-m,0)(m 是大于0的常数). (Ⅰ)求椭圆的方程;(Ⅱ)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M. =,求直线l 的斜率.22.已知函数))((R x x f ∈满足下列条件:对任意的实数x 1,x 2都有)]()()[()(λ2121221x f x f x x x x --≤-和2121)()(x x x f x f -≤-,其中λ是大于0的常数.设实数a 0,a ,b 满足 0)(0=a f 和)(λa f a b -=(Ⅰ)证明1λ≤,并且不存在00a b ≠,使得0)(0=b f ;(Ⅱ)证明20220))(λ1()(a a a b --≤-;(Ⅲ)证明222)]()[λ1()]([a f b f -≤.2004年普通高等学校招生全国统一考试数学(江苏卷)参考答案 一、选择题ABDCA BCADC BA二、填空题13、{2x x <-或3}x >14、22(1)(1)25x y -+-=15、216、43(,)55b =-三、解答题17、解:由题意可知4sin 5α=,sin()3πα∴-=18、解(1)arctan APB ∠=(2)略(319、解:10318x y x y +≤⎧⎨+≤⎩,设0.5z x y =+当46x y =⎧⎨=⎩时,z 取最大值7万元20、解:(1)4k =(2)100a d =⎧⎨=⎩或112a d =⎧⎨=⎩或110ad =⎧⎨=⎩21、解:(1)2222143x y m m +=(2)k =±或022、解:(1)不妨设12x x >,由[]2121212()()()()x x x x f x f x λ-≤-⋅-可知12()()0f x f x ->,()f x ∴是R 上的增函数∴不存在00b a ≠,使得0()0f b =又[]2212121212()()()()()x x x x f x f x x x λ-≤-⋅-≤-1λ∴≤(2)要证:222000()(1)()b a a a λ-≤--即证:2200()()2()()a a f a f a a a λ⎡⎤-+≤-⎣⎦(*) 不妨设0a a >,由[]2121212()()()()x x x x f x f x λ-≤-⋅-得00()()()f a f a a a λ-≥-,即0()()f a a a λ≥-,则2002()()2()f a a a a a λ-≥- (1) 由1212()()f x f x x x -≤-得00()()f a f a a a -≤- 即0()f a a a ≤-,则22200()()2()a a f a a a λλ⎡⎤-+≤-⎣⎦ (2) 由(1)(2)可得2200()()2()()a a f a f a a a λ⎡⎤-+≤-⎣⎦222000()(1)()b a a a λ∴-≤--(3)220[()]()f a a a ≤-,22220(1)[()](1)()f a a a λλ∴-≤--220[()]()f b b a ≤-又由(2)中结论222000()(1)()b a a a λ-≤--222[()](1)[()]f b f a λ∴≤-。
2004年高考数学

2004年高考数学数学是一门严谨而又充满挑战的学科,对于每个参加高考的考生来说,数学试题往往是最具难度和复杂性的一部分。
2004年高考数学试题更是备受关注,让我们一起来回顾一下这一年的高考数学试题。
一、选择题部分选择题是数学试卷中的起始部分,也是考生们展现自己基础知识和解题能力的时刻。
2004年高考数学试题的选择题部分共分为两个小题,各有若干个选项供考生选择。
这部分试题涵盖了数与式、函数、几何、概率等多个知识点。
二、填空题部分填空题部分是考核考生计算和推理能力的重要环节。
2004年高考数学试题的填空题部分主要包括了选择恰当的数学公式、推理步骤和计算过程等。
这些题目旨在考察考生对数学知识的掌握程度和应用能力。
三、解答题部分解答题是数学试卷中的重头戏,也是考生们展现自己分析问题和解决问题能力的机会。
2004年高考数学试题的解答题部分主要包括证明、计算和应用题。
这些题目需要考生灵活运用所学的知识和技巧,结合具体情境进行综合分析和求解。
四、解析推理题部分解析推理题是高考数学试题中的难点和热点,要求考生具备较高的数学综合能力和逻辑思维能力。
2004年高考数学试题的解析推理题部分主要包括数理逻辑、数列数和、平面向量、概率等。
这些题目需要考生在限定的条件下进行推理和分析,并给出具体的解题步骤和结论。
五、综合运用题部分综合运用题是数学试卷中的综合考查环节,要求考生具备较强的应用能力和创新思维能力。
2004年高考数学试题的综合运用题部分主要涉及函数、三角函数、数列、几何和概率等多个数学分支。
这些题目通过结合实际情景,考察考生综合运用所学知识和技巧解决实际问题的能力。
2004年高考数学试题的难度和复杂程度不容小觑,对于每个参加高考的考生来说都是一次巨大的挑战。
通过对试题的回顾和分析,我们可以了解到数学知识点的考察重点和解题技巧。
希望每个考生都能在备考过程中充分准备,发挥自己最好的水平,取得优异的成绩。
加油!。
2004年高考数学江苏卷及答案

8.若函数 的图象过两点(-1,0)和(0,1),则( )
(A)a=2,b=2 (B)a= ,b=2 (C)a=2,b=1 (D)a= ,b=
9.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是( )
0
-4
-6
-6
-4
0
6
则不等式ax2+bx+c>0的解集是_______________________.
14.以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是________________.
15.设数列{an}的前n项和为Sn,Sn= (对于所有n≥1),且a4=54,则a1的数值是_______________________.
(A)3 (B) (C) (D)
12.设函数 ,区间M=[a,b](a<b),集合N={ },则使M=N成立的实数对(a,b)有( )
(A)0个(B)1个(C)2个(D)无数多个
二、填空题(4分×4=16分)
13.二次函数y=ax2+bx+c(x∈R)的部分对应值如下表:
x
-3
-2
-1
0
1
2
3
4
y
6
20.设无穷等差数列{an}的前n项和为Sn.
(Ⅰ)若首项 ,公差 ,求满足 的正整数k;
(Ⅱ)求所有的无穷等差数列{an},使得对于一切正整数k都有 成立.
21.已知椭圆的中心在原点,离心率为 ,一个焦点是F(-m,0)(m是大于0的常数). (Ⅰ)求椭圆的方程;(Ⅱ)设Q是椭圆上的一点,且过点F、Q的直线 与y轴交于点M.若 ,求直线 的斜率.
2004年江苏省高考数学试卷

2004年江苏省高考数学试卷一、选择题(共12小题,每小题5分,满分60分)1.(★★★★)设集合P={1,2,3,4},Q={x||x-1|≤2,x∈R},则P∩Q等于()A.{3,4}B.{1,2}C.{1,2,3}D.{1,2,3,4}2.(★★★★)函数y=2cos 2x+1(x∈R)的最小正周期为()A.B.πC.2πD.4π3.(★★★★)从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有()A.140种B.120种C.35种D.34种4.(★★★★)一平面截一球得到直径是6cm的圆面,球心到这个平面的距离是4cm,则该球的体积是()A.B.C.D.5.(★★★★)若双曲线的一条准线与抛物线y 2=8x的准线重合,则双曲线离心率为()A.B.C.4D.6.(★★★★)某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均每人的课外阅读时间为()A.0.6小时B.0.9小时C.1.0小时D.1.5小时7.(★★★★)(2x+ )4的展开式中x 3的系数是()A.6B.12C.24D.488.(★★★★)若函数y=log a(x+b)(a>0,a≠1)的图象过两点(-1,0)和(0,1),则()A.a=2,b=2B.a=3,b=2C.a=2,b=1D.a=2,b=39.(★★★★)将一颗质地均匀的骰子先后抛掷3次,至少出现一次6点向上的概率是()A.B.C.D.10.(★★★)函数f(x)=x 3-3x+1在闭区间-3,0上的最大值、最小值分别是()A.1,-1B.1,-17C.3,-17D.9,-1911.(★★)设k>1,f(x)=k(x-1)(x∈R).在平面直角坐标系xOy中,函数y=f(x)的图象与x轴交于A点,它的反函数y=f -1(x)的图象与y轴交于B点,并且这两个函数的图象交于P点.已知四边形OAPB的面积是3,则k等于()A.3B.C.D.12.(★★★)设函数,区间M=a,b(a<b),集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有()A.1个B.2个C.3个D.无数多个二、填空题(共4小题,每小题4分,满分16分)13.(★★★★)二次函数y=ax 2+bx+c(x∈R)的部分对应值如表:则不等式ax 2+bx+c>0的解集是 {x|x>3或x<-2} .x-3-2-101234y60-4-6-6-40614.(★★★★)以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是(x-1)2+(y-2)2=25 .2215.(★★★)设数列{a n}的前n项和为S n,S n= (对于所有n≥1),且a 4=54,则a 1的数值是 2 .16.(★★)平面向量,中,若=(4,-3),| |=1,且•=5,则向量= (,- )三、解答题(共6小题,满分74分)17.(★★★★)已知0<α<,tan +cot = ,求sin(α- )的值.18.(★★★)在棱长为4的正方体ABCD-A 1B 1C 1D 1中,O是正方形A 1B1C 1D 1的中心,点P在棱CC1上,且CC1=4CP.(Ⅰ)求直线AP与平面BCC 1B 1所成的角的大小(结果用反三角函数值表示);(Ⅱ)设O点在平面D 1AP上的射影是H,求证:D 1H⊥AP;(Ⅲ)求点P到平面ABD 1的距离.19.(★★★)制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?20.(★★★)设无穷等差数列{a n}的前n项和为S n.(Ⅰ)若首项a 1= ,公差d=1.求满足的正整数k;(Ⅱ)求所有的无穷等差数列{a n},使得对于一切正整数k都有成立.21.(★★)“五一”期间,我市某街道办事处举行了“迎全运,促和谐”中青年篮球友谊赛.获得男子篮球冠军球队的五名主力队员的身高如下表:(单位:厘米)则该队主力队员身高的方差是 2 厘米2.号码4791023身高17818018218117922.(★★)已知函数f(x)(x∈R)满足下列条件:对任意的实数x 1,x 2都有λ(x 1-x 2)2≤(x1-x 2)f(x 1)-f(x 2)和|f(x 1)-f(x 2)|≤|x 1-x 2|,其中λ是大于0的常数,设实数a 0,a,b满足f(a 0)=0和b=a-λf(a)(Ⅰ)证明λ≤1,并且不存在b 0≠a 0,使得f(b 0)=0;(Ⅱ)证明(b-a 0)2≤(1-λ2)(a-a 0)2;(Ⅲ)证明f(b)2≤(1-λ2)f(a)2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间(小时) 2004年普通高等学校招生全国统一考试
数学(江苏卷)
一、选择题(5分×12=60分)
1.设集合P={1,2,3,4},Q={R x x x ∈≤,2},则P ∩Q 等于 ( )
(A){1,2} (B) {3,4} (C) {1} (D) {-2,-1,0,1,2}
2.函数y=2cos 2x+1(x ∈R )的最小正周期为 ( ) (A)2
π (B)π (C)π2 (D)π4 3.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 ( )
(A)140种 (B)120种 (C)35种 (D)34种
4.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是 ( ) (A)33π100cm (B) 33π208cm (C) 33π500cm (D) 33
π3416cm 5.若双曲线1822
2=-b
y x 的一条准线与抛物线x y 82=的准线重合,则双曲线离心率为 ( ) (A)2 (B)22 (C) 4 (D)24
6.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( )
(A)0.6小时 (B)0.9小时 (C)1.0小时 (D)1.5小时
7.4)2(x x +的展开式中x 3
的系数是 ( )
(A)6 (B)12 (C)24 (D)48
8.若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则 ( )
(A)a=2,b=2 (B)a= 2 ,b=2 (C)a=2,b=1 (D)a= 2 ,b= 2
9.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上和概率是 ( )
(A)5216 (B)25216 (C)31216 (D)91216
10.函数13)(3+-=x x x f 在闭区间[-3,0]上的最大值、最小值分别是 ( )
(A)1,-1 (B)1,-17 (C)3,-17 (D)9,-19
11.设k>1,f(x)=k(x-1)(x ∈R ) . 在平面直角坐标系xOy 中,函数y=f(x)的图象与x 轴
交于A 点,它的反函数y=f -1(x)的图象与y 轴交于B 点,并且这两个函数的图象交
于P 点. 已知四边形OAPB 的面积是3,则k 等于 ( )
(A)3 (B)32 (C)43 (D)65
12.设函数)(1)(R x x
x x f ∈+-=,区间M=[a ,b](a<b),集合N={M x x f y y ∈=),(},则使M=N 成立的实数对(a ,b)有 ( )
(A)0个 (B)1个 (C)2个 (D)无数多个
二、填空题(4分×4=16分)
13.二次函数y=ax 2+bx+c(x ∈R )的部分对应值如下表:
则不等式ax
+bx+c>0的解集是_______________________.
14.以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是________________.
15.设数列{a n }的前n 项和为S n ,S n =2
)13(1-n a (对于所有n ≥1),且a 4=54,则a 1的数值是_______________________.
16.平面向量b a ,中,已知=(4,-3)=1,且⋅=5,则向量=__________.
三、解答题(12分×5+14分=74分)
17.已知0<α<2π,tan 2α+cot 2α=25,求sin(3
πα-)的值. 18.在棱长为4的正方体ABCD-A 1B 1C 1D 1中,O 是正方形A 1B 1C 1D 1的中心,点P 在棱CC 1上,且CC 1=4CP.
(Ⅰ)求直线AP 与平面BCC 1B 1所成的角的大小(结果用反三角函数值表示);
(Ⅱ)设O 点在平面D 1AP 上的射影是H ,求证:D 1H ⊥AP ; (Ⅲ)求点P 到平面ABD 1的距离.
· B 1 P
C
D A 1 C 1 D 1
O H ·
19.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损. 某投资人打算投资甲、乙两个项目. 根据预测,甲、乙项目可能的最大盈利率分别为100﹪和50﹪,可能的最大亏损分别为30﹪和10﹪. 投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元. 问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?
20.设无穷等差数列{a n }的前n 项和为S n .
(Ⅰ)若首项=1a 32 ,公差1=d ,求满足2)(2k k
S S =的正整数k ; (Ⅱ)求所有的无穷等差数列{a n },使得对于一切正整数k 都有2)(2k k S S
=成立.
21.已知椭圆的中心在原点,离心率为12
,一个焦点是F (-m,0)(m 是大于0的常数). (Ⅰ)求椭圆的方程;
(Ⅱ)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M. =,
求直线l 的斜率.
22.已知函数))((R x x f ∈满足下列条件:对任意的实数x 1,x 2都有
)]()()[()(λ2121221x f x f x x x x --≤-和2121)()(x x x f x f -≤-,其中λ是大于0的常数.设实数a 0,a ,b 满足 0)(0=a f 和)(λa f a b -=
(Ⅰ)证明1λ≤,并且不存在00a b ≠,使得0)(0=b f ;
(Ⅱ)证明20220))(λ1()(a a a b --≤-;
(Ⅲ)证明222)]()[λ1()]([a f b f -≤.
2004年普通高等学校招生全国统一考试(江苏卷)参考答案
一、选择题
ABDCA BCADC BA
二、填空题
13、{2x x <-或3}x >
14、22(1)(1)25x y -+-=
15、2
16、43(,)55b =-
三、解答题
17、解:由题意可知4sin 5
α=,
sin()3π
α∴-=
18、解(1)APB ∠=(2)略
(319、解:10318
x y x y +≤⎧⎨+≤⎩,设0.5z x y =+
当46x y =⎧⎨=⎩
时,z 取最大值7万元 20、解:(1)4k =
(2)100a d =⎧⎨=⎩或112a d =⎧⎨=⎩或110
a d =⎧⎨=⎩ 21、解:(1)22
22143x y m m
+=
(2)k =±或0
22、解:(1)不妨设12x x >,由[]2
121212()()()()x x x x f x f x λ-≤-⋅-
可知12()()0f x f x ->,
()f x ∴是R 上的增函数
∴不存在00b a ≠,使得0()0f b = 又[]2212121212()()()()()x x x x f x f x x x λ-≤-⋅-≤- 1λ∴≤
(2)要证:222
000()(1)()b a a a λ-≤--
即证:2200()()2()()a a f a f a a a λ⎡⎤-+≤-⎣⎦ (*)
不妨设0a a >,
由[]2
121212()()()()x x x x f x f x λ-≤-⋅- 得00()()()f a f a a a λ-≥-,
即0()()f a a a λ≥-,
则2
002()()2()f a a a a a λ-≥- (1) 由1212()()f x f x x x -≤-得00()()f a f a a a -≤- 即0()f a a a ≤-,
则22
2
00()()2()a a f a a a λλ⎡⎤-+≤-⎣⎦ (2)
由(1)(2)可得22
00()()2()()a a f a f a a a λ⎡⎤-+≤-⎣⎦
222000()(1)()b a a a λ∴-≤--
(3)220[()]()f a a a ≤-,
2222
0(1)[()](1)()
f a a a λλ∴-≤-- 220[()]()f b b a ≤-
又由(2)中结论222000()(1)()b a a a λ-≤--
222[()](1)[()]f b f a λ∴≤-。