2008高考江苏数学试卷含附加题详细解答全版080718
2008年江苏高考数学试题(含答案详解)

2008年普通高校招生统一考试江苏卷(数学)1. ()cos()6f x wx π=-的最小正周期为5π,其中0w >,则w = 。
【解析】本小题考查三角函数的周期公式。
2105T w w ππ==⇒=。
答案102.一个骰子连续投2次,点数和为4的概率为 。
【解析】本小题考查古典概型。
基本事件共66⨯个,点数和为4的有(1,3)、(2,2)、(3,1)共3个,故316612P ==⨯。
答案112 3.11i i-+表示为a bi +(,)a b R ∈,则a b += 。
【解析】本小题考查复数的除法运算, 1,0,11ii a b i-=∴==+ ,因此a b +=1。
答案14. {}2(1)37,A x x x =-<-则A Z 的元素个数为 。
【解析】本小题考查集合的运算和解一元二次不等式。
由2(1)37x x -<-得2580x x -+<因为0∆<,所以A φ=,因此A Z φ= ,元素的个数为0。
答案05.,a b 的夹角为0120,1,3a b == ,则5a b -= 。
【解析】本小题考查向量的线形运算。
因为1313()22a b ⋅=⨯⨯-=-,所以22225(5)2510a b a b a b a b -=-=+-⋅ =49。
因此5a b -=7。
答案76.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随意投一点,则落入E 中的概率为 。
【解析】本小题考查古典概型。
如图:区域D 表示边长为4的正方形ABCD 的内部(含边界),区域E 表示单位圆及其内部,因此214416P ππ⨯==⨯。
答案16π7.某地区为了解70~80岁老人的日平均睡眠时间(单位:h ),随机选择了50位老人进行调在上述统计数据的分析中,一部分计算算法流程图,则输出的S 的值是 。
2008年江苏省高考数学试卷及答案

梦想不会辜负一个努力的人绝密★启用前2008年普通高等学校招生全国统一考试(江苏卷)数 学参考公式:样本数据1x ,2x ,,n x 的标准差锥体体积公式222121[()()()]n s x x x x x x n=-+-++-13V Sh =其中x 为样本平均数 其中S 为底面面积、h 为高柱体体积公式 球的表面积、体积公式V Sh =24πS R =,34π3V R =其中S 为底面面积,h 为高 其中R 为球的半径一、填空题:本大题共1小题,每小题5分,共70分. 1.)6cos()(πω-=x x f 最小正周期为5π,其中0>ω,则=ω 2.一个骰子连续投2次,点数和为4的概率3.),(11R b a bi a ii∈+-+表示为,则b a += 4.{}73)1(2-<-=x x x A ,则A Z 的元素的个数 5.b a ,的夹角为120,,3,1==b a 则=-b a 56在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率7. 某地区为了解70~80岁老人的日平均睡眠时间(单位:h ), 随机选择了50位老人进行调查。
下表是这50位老人日睡眠时间的 频率分布表。
序号 (i ) 分组 (睡眠时间) 组中值(i G ) 频数 (人数) 频率 (i F ) 1 [4,5) 4.5 6 0.12 2 [5,6) 5.5 10 0.20 3 [6,7) 6.5 20 0.40 4 [7,8) 7.5 10 0.20 5[8,9)8.540.08在上述统计数据的分析中,一部分计算算法流程图,则输出的S 的值是 。
8.直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b= ▲ 9.在平面直角坐标系中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点P (0,p )在线段AO 上(异于端点),设p c b a ,,,均为非零实数,直线CP BP ,分别交AB AC ,于点F E ,,一同学已正确算的OE 的方程:01111=⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛-y a p x c b ,请你求OF 的方程: 10.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10。
2008江苏高考数学试题及参考答案

2008年普通高等学校招生全国统一考试(江苏卷)数 学本试卷分第I 卷(填空题)和第II 卷(解答题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的 准考证号、姓名,并将条形码粘贴在指定位置上.2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的标号涂黑. 参考公式: 样本数据1x ,2x ,,n x 的标准差(n s x =+−其中x 为样本平均数柱体体积公式V Sh =其中S 为底面积,h 为高一、填空题:本大题共1小题,每小题5分,共70分. 1.()cos 6f x x πω⎛⎫=−⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= ▲ . 2.一个骰子连续投2 次,点数和为4 的概率 ▲ . 3.11ii+−表示为a bi +(),a b R ∈,则a b +== ▲ . 4.A={()}2137x x x −<−,则AZ 的元素的个数 ▲ .5.a ,b 的夹角为120︒,1a =,3b = 则5a b −= ▲ .6.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2 的点构成的区域, E 是锥体体积公式13V Sh =其中S 为底面积,h 为高球的表面积、体积公式24S R π=,343V R π= 其中R 为球的半径到原点的距离不大于1 的点构成的区域,向D 中随机投一点,则所投的点落入E 中的概率是 ▲ . 7.某地区为了解70-80岁老人的日平均睡眠时间(单位:h ),随即选择了50为老人进行调查,下在上述统计数据的分析中,一部分计算见算法流程图,则输出的S 的值是 ▲ 。
2008年高考数学试卷(江苏卷)含详解

绝密★启用前2008年普通高等学校招生全国统一考试(江苏卷)数 学本试卷分第I 卷(填空题)和第II 卷(解答题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项: 1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号、姓名,并将条形码粘贴在指定位置上.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚. 3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的标号涂黑.参考公式: 样本数据1x ,2x ,,n x 的标准差锥体体积公式(n s x x =++-13V Sh =其中x 为样本平均数 其中S 为底面面积、h 为高 柱体体积公式 球的表面积、体积公式V Sh =24πS R =,34π3V R =其中S 为底面面积,h 为高 其中R 为球的半径一、填空题:本大题共14小题,每小题5分,共70分. 1.)6cos()(πω-=x x f 最小正周期为5π,其中0>ω,则=ω ▲ 2.一个骰子连续投2次,点数和为4的概率 ▲3.),(11R b a bi a ii∈+-+表示为的形式,则b a += ▲ 4.{}73)1(2-<-=x x x A ,则集合A Z 中有 ▲ 个元素5.b a ,的夹角为120,1,3a b ==,则5a b -= ▲6.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率 ▲7.某地区为了解70~80岁老人的日平均睡眠时间(单位:h ),现随机地选择50位老人做调查,在上述统计数据的分析中,一部分计算见算法流程图,则输出的S 的值为 . 8.直线b x y +=21是曲线ln (0)y x x =>的一条切线,则实数b 的值为 ▲9.在平面直角坐标系中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点P (0,p )在线段AO 上(异于端点),设p c b a ,,,均为非零实数,直线CP BP ,分别交AB AC ,于点F E ,,一同学已正确算的OE 的方程:01111=⎪⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-y a p x c b ,请你求OF 的方程: ( ▲ )011=⎪⎪⎭⎫ ⎝⎛-+y a p x 10.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10。
2008年高考数学(江苏)卷

2008年普通高等学校招生全国统一考试(江苏卷)数 学本试卷共4页,包含填空题(第1题~第14题)、解答题(第15题~第20题)两部分。
本试卷满分160分,考试时间为120分钟。
一、填空题:本大题共1小题,每小题5分,共70分. 1.若函数cos()(0)6y x πωω=->最小正周期为5π,则ω= . 2.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为4的概率是 . 3.若将复数11ii+-表示为(,,a bi a b R i +∈是虚数单位)的形式,则a b += . 4.若集合2{|(1)37,}A x x x x R =-<+∈,则A Z 中有 个元素5.已知向量a 和b 的夹角为0120,||1,||3a b == ,则|5|a b -= .6.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投点在E 中的概率是7.某地区为了解7080-岁的老人的日平均睡眠时间(单位:h ),随机选择了50位老人进行调查,下表是这50位老人睡眠时间的频率分布表:在上述统计数据的分析中一部分计算见算法流程图,则输出的S 的值为 8.设直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b 的值是9.如图,在平面直角坐标系xoy 中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点(0,)P p 在线段AO 上的一点(异于端点),这里p c b a ,,,均为非零实数,设直线CP BP ,分别与边AB AC ,交于点F E ,,某同学已正确求得直线OE 的方程为序号i 分组 (睡眠时间) 组中值(i G ) 频数 (人数) 频率(i F ) 1 [4,5) 4.5 6 0.12 2 [5,6) 5.510 0.20 3 [6,7) 6.5 20 0.40 4 [7,8) 7.510 0.20 5 [8,9] 8.54 0.08AB CDEF01111=⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-y a p x c b ,请你完成直线OF 的方程: ( )011=⎪⎪⎭⎫ ⎝⎛-+y a p x 。
2008高考江苏数学试卷含附加题详细解答(全word版)080718

2008年普通高等学校招生全国统一考试(江苏卷)数 学一、填空题:本大题共1小题,每小题5分,共70分. 1.若函数cos()(0)6y x πωω=->最小正周期为5π,则ω= ▲ . 解:2105T ππωω==⇒=2.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为4的概率是 ▲ .解:基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3 个,故316612P ==⨯ 3.若将复数11ii+-表示为(,,a bi a b R i +∈是虚数单位)的形式,则a b += ▲ . 解:∵()21112i i i i ++==- ,∴0,1a b ==,因此1a b += 4.若集合2{|(1)37,}A x x x x R =-<+∈,则AZ 中有 ▲ 个元素解:由2(1)37x x -<+得2560x x --<,(1,6)A =-∴,因此}{0,1,2,3,4,5AZ =,共有6个元素.5.已知向量a 和b 的夹角为0120,||1,||3a b ==,则|5|a b -= ▲ . 解:()2222552510a b a ba ab b -=-=-+=22125110133492⎛⎫⨯-⨯⨯⨯-+= ⎪⎝⎭,57a b -=6.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投点在E 中的概率是 ▲解:如图:区域D 表示边长为4 的正方形的内部(含边界),区域E 表示单位 圆及其内部,因此.214416P ππ⨯==⨯8.设直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b 的值是 ▲ 解: '1y x = ,令112x =得2x =,故切点坐标为(2,ln2),代入直线方程得ln 21ln 21b b =+⇒=-7.某地区为了解7080-岁的老人的日平均睡眠时间(单位:h ), 随机选择了50位老人进行调查,下表是这50位老人睡眠时间的 频率分布表:在上述统计数据的分析中一部分计算见算法流程图,则输出的S 的值为 ▲解:由算法流程图可知S 为5组数据中的组中值(i G )与对应频率(i F )之积的和,1122334455S G F G F G F G F G F =++++4.50.125.50.206.50.407.50.28.50.08=⨯+⨯+⨯+⨯+⨯ 6.42=9.如图,在平面直角坐标系xoy 中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点(0,)P p 在线段AO 上的一点(异于端点),这里p c b a ,,,均为非零实数,设直线 CP BP ,分别与边AB AC ,交于点F E ,,某同学已正确求得直线OE 的方 程为01111=⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-y a p x c b ,请你完成直线OF 的方程: ( ▲ )011=⎪⎪⎭⎫⎝⎛-+y a p x 。
全国各地2008年数学高考真题及答案-(江苏卷)含详解

绝密★启用前2008年普通高等学校招生全国统一考试(江苏卷)数 学本试卷分第I 卷(填空题)和第II 卷(解答题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项: 1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号、姓名,并将条形码粘贴在指定位置上.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚. 3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的标号涂黑.参考公式:样本数据1x ,2x , ,n x 的标准差锥体体积公式s =13V Sh =其中x 为样本平均数 其中S 为底面面积、h 为高 柱体体积公式 球的表面积、体积公式V Sh =24πS R =,34π3V R =其中S 为底面面积,h 为高 其中R 为球的半径一、填空题:本大题共14小题,每小题5分,共70分. 1.)6cos()(πω-=x x f 最小正周期为5π,其中0>ω,则=ω ▲ 2.一个骰子连续投2次,点数和为4的概率 ▲3.),(11R b a bi a ii∈+-+表示为的形式,则b a += ▲ 4.{}73)1(2-<-=x x x A ,则集合A Z 中有 ▲ 个元素5.b a ,的夹角为120,1,3a b == ,则5a b -= ▲6.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率 ▲7.某地区为了解70~80岁老人的日平均睡眠时间(单位:h ),现随机地选择50位老人做调查,在上述统计数据的分析中,一部分计算见算法流程图,则输出的S 的值为 . 8.直线b x y +=21是曲线ln (0)y x x =>的一条切线,则实数b 的值为 ▲9.在平面直角坐标系中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点P (0,p )在线段AO 上(异于端点),设p c b a ,,,均为非零实数,直线CP BP ,分别交AB AC ,于点F E ,,一同学已正确算的OE 的方程:01111=⎪⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-y a p x c b ,请你求OF 的方程: ( ▲ )011=⎪⎪⎭⎫⎝⎛-+y a p x 10.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10。
(与标准答案不一致)2008江苏数学试卷含附加题

绝密★启用前2008年普通高等学校招生全国统一考试(江苏卷)数 学参考公式:样本数据1x ,2x , ,n x 的标准差s =其中x 为样本平均数柱体体积公式 V S h = 其中S 为底面积,h 为高一、填空题:本大题共1小题,每小题5分,共70分.1.若函数cos()(0)6y x πωω=->最小正周期为5π,则ω= 。
【解析】本小题考查三角函数的周期公式。
2105T ππωω==⇒= 【答案】102.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率是 .【解析】本小题考查古典概型.基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3个,故316612P ==⨯。
锥体体积公式13V Sh =其中S 为底面积,h 为高 球的表面积、体积公式24S R π=,343V R π=【答案】1123.若将复数11ii+-表示为(,,a bi a b R i +∈是虚数单位)的形式,则a b += 。
【解析】本小题考查复数的除法运算.∵()21112i i i i ++==-, ∴a =0,b =1,因此1a b +=。
【答案】14.若集合2{|(1)37,}A x x x x R =-<+∈,则A Z 中有 个元素。
【解析】本小题考查集合的运算和解一元二次不等式.由2(1)37x x -<+得2560x x --<,(1,6)A =-∴,因此}{0,1,2,3,4,5A Z = ,共有6个元素.【答案】65.已知向量a 和b 的夹角为0120,||1,||3a b == ,则|5|a b -= . 【解析】本小题考查向量的线性运算.()2222552510a b a ba ab b -=-=-+=22125110133492⎛⎫⨯-⨯⨯⨯-+= ⎪⎝⎭,5a b -= 7.【答案】76.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年普通高等学校招生全国统一考试(江苏卷)数 学一、填空题:本大题共1小题,每小题5分,共70分. 1.若函数cos()(0)6y x πωω=->最小正周期为5π,则ω= ▲ . 解:2105T ππωω==⇒=2.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为4的概率是 ▲ .解:基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3 个,故316612P ==⨯ 3.若将复数11ii+-表示为(,,a bi a b R i +∈是虚数单位)的形式,则a b += ▲ . 解:∵()21112i i i i ++==- ,∴0,1a b ==,因此1a b += 4.若集合2{|(1)37,}A x x x x R =-<+∈,则A Z I 中有 ▲ 个元素解:由2(1)37x x -<+得2560x x --<,(1,6)A =-∴,因此}{0,1,2,3,4,5A Z =I ,共有6个元素.5.已知向量a r 和b r 的夹角为0120,||1,||3a b ==r r ,则|5|a b -=r r ▲ . 解:()2222552510a b a ba ab b -=-=-+r r r r r r r r g =22125110133492⎛⎫⨯-⨯⨯⨯-+= ⎪⎝⎭,57a b -=r r6.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投点在E 中的概率是 ▲ 解:如图:区域D 表示边长为4 的正方形的内部(含边界),区域E 表示单位 圆及其内部,因此.214416P ππ⨯==⨯8.设直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b 的值是 ▲ 解: '1y x = ,令112x =得2x =,故切点坐标为(2,ln2),代入直线方程得ln 21ln 21b b =+⇒=-7.某地区为了解7080-岁的老人的日平均睡眠时间(单位:h ), 随机选择了50位老人进行调查,下表是这50位老人睡眠时间的 频率分布表:在上述统计数据的分析中一部分计算见算法流程图,则输出的S 的值为 ▲解:由算法流程图可知S 为5组数据中的组中值(i G )与对应频率(i F )之积的和,1122334455S G F G F G F G F G F =++++4.50.125.50.206.50.407.50.28.50.08=⨯+⨯+⨯+⨯+⨯ 6.42=9.如图,在平面直角坐标系xoy 中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点(0,)P p 在线段AO 上的一点(异于端点),这里p c b a ,,,均为非零实数,设直线 CP BP ,分别与边AB AC ,交于点F E ,,某同学已正确求得直线OE 的方 程为01111=⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-y a p x c b ,请你完成直线OF 的方程: ( ▲ )011=⎪⎪⎭⎫⎝⎛-+y a p x 。
解:画草图,由对称性可猜想填11c b -.事实上,由截距式可得直线AB :1x yb a+=,直线CP :1x y c p += ,两式相减得11110x y b c p a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,显然直线AB 与CP 的交点F 满足此方程,又原点O 也满足此方程,故为所求直线OF 的方程.10.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(3≥n )从左向右的第3个数为 ▲解:前n -1 行共有正整数1+2+…+(n -1)个,即22n n-个,因此第n 行第3 个数是全体正整数中第22n n -+3个,即为262n n -+.11.设,,x y z 为正实数,满足230x y z -+=,则2y xz 的最小值是 ▲解:由230x y z -+=得32x zy +=,代入2y xz 得229666344x z xz xz xz xz xz +++≥=, 当且仅当x =3z 时取“=”.12.在平面直角坐标系xOy 中,椭圆)0(12222>>=+b a b y a x 的焦距为2c ,以O 为圆心,a 为半径作圆M ,若过20a P c ⎛⎫⎪⎝⎭,作圆M 的两条切线相互垂直,则椭圆的离心率为 ▲解:设切线PA 、PB 互相垂直,又半径OA 垂直于PA ,所以△OAP是等腰直角三角形,故22a a c=,解得22c e a ==.13.满足条件BC AC AB 2,2==的三角形ABC 的面积的最大值 ▲解:设BC =x ,则AC =2x ,根据面积公式得ABC S ∆=21sin 1cos 2AB BC B x B ⨯=-, 根据余弦定理得2222242cos 24AB BC AC x x B AB BC x +-+-==⨯244x x-=,代入上式得ABC S ∆=()22221281241416x x x x --⎛⎫--=⎪⎝⎭1 2 3 4 5 67 8 9 1011 12 13 14 15 ………………由三角形三边关系有22x x +>+>⎪⎩解得22x <<,故当212,x x ==时ABC S ∆=14.设函数3()31()f x ax x x R =-+∈,若对于任意的[]1,1-∈x 都有0)(≥x f 成立,则实数a 的值为 ▲解:若0x =,则不论a 取何值,()0f x ≥显然成立; 当0x > 即(0,1]x ∈时,3()310f x ax x =-+≥可化为,2331a x x ≥- 设()2331g x x x =-,则()()'4312x g x x -=, 所以()g x 在区间10,2⎛⎤ ⎥⎝⎦上单调递增,在区间1,12⎡⎤⎢⎥⎣⎦上单调递减,因此()max 142g x g ⎛⎫==⎪⎝⎭,从而4a ≥; 当0x < 即[)1,0x ∈-时,3()310f x ax x =-+≥可化为2331a x x≤-,()()'4312x g x x -=0>()g x 在区间[)1,0-上单调递增,因此()()ma 14n g x g =-=,从而4a ≤,综上4a =二、解答题:本大题共6小题,共90分。
请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤。
15.如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角αβ,,它们的终边分别交单位圆于A B ,两点.已知A B ,两点的横坐标分别是10,5.(1)求tan()αβ+的值; (2)求2αβ+的值.解:(1)由已知条件即三角函数的定义可知cos 105αβ==, 因α为锐角,故sin 0α>,从而sin 10α==同理可得sin β==, 因此 1tan 7,tan 2αβ==.BCDEF B 所以tan()αβ+=17tan tan 2311tan tan 172αβαβ++==---⨯g ; (2)132tan(2)tan[()]111(3)2αβαββ-++=++==---⨯, 30,0,02,222πππαβαβ<<<<<+<又故从而由 tan(2)1αβ+=- 得 324παβ+=.16.如图,在四面体ABCD 中,CB CD AD BD =⊥,,点E F ,分别是AB BD ,的中点. 求证:(1)直线//EF 面ACD ;(2)平面EFC ⊥面BCD . 证: (1)∵E,F 分别是AB BD ,的中点.∴EF 是△ABD 的中位线,∴E F ∥AD ,∵E F ∥⊄面ACD ,AD ⊂面ACD ,∴直线E F ∥面ACD ; (2)∵AD ⊥BD ,E F ∥AD ,∴E F ⊥BD ,∵CB=CD ,F 是BD的中点,∴CF ⊥BD 又EF ∩CF=F, ∴BD ⊥面EFC , ∵B D ⊂面BCD ,∴面EFC ⊥面BCD17.如图,某地有三家工厂,分别位于矩形ABCD 的两个顶点A ,B 及CD 的中点P 处.AB =20km ,BC =10km .为了处理这三家工厂的污水,现要在该矩形区域上(含边界)且与A ,B 等距的一点O 处,建造一个污水处理厂,并铺设三条排污管道AO ,BO ,PO .记铺设管道的总长度为y km . (1)按下列要求建立函数关系式:(Ⅰ)设BAO θ∠=(rad ),将y 表示成θ的函数;(Ⅱ)设OP x =(km ),将y 表示成x 的函数; (2)请你选用(1)中的一个函数关系确定污水处理厂的位置,使铺设的污水管道的总长度最短。
解:(Ⅰ)①由条件知PQ 垂直平分AB ,若∠BAO=θ(rad) ,则10cos cos AQ OA θθ==, 故10cos OB θ=,又OP =1010tan θ-, 所以10101010tan cos cos y OA OB OP θθθ=++=++-,所求函数关系式为2010sin 10cos y θθ-=+04πθ⎛⎫≤≤ ⎪⎝⎭②若OP=x (km) ,则OQ =10-x ,所以=所求函数关系式为)010y x x =+≤≤(Ⅱ)选择函数模型①,()()()'2210cos cos 2010sin 102sin 1cos cos sin y θθθθθθθ-----==g令'y =0 得sin 12θ=,因为04πθ<<,所以θ=6π,当0,6πθ⎛⎫∈ ⎪⎝⎭时,'0y < ,y 是θ的减函数;当,64ππθ⎛⎫∈⎪⎝⎭时,'0y > ,y 是θ的增函数,所以当θ=6π时,min 10y =+。
这时点P 位于线段AB 的中垂线上,在矩形区域内且距离AB km 处。
18.在平面直角坐标系xOy 中,记二次函数2()2f x x x b =++(x ∈R )与两坐标轴有 三个交点.经过三个交点的圆记为C . (1)求实数b 的取值范围; (2)求圆C 的方程;(3)问圆C 是否经过定点(其坐标与b 的无关)?请证明你的结论. 解:本小题主要考查二次函数图象与性质、圆的方程的求法. (Ⅰ)令0x =,得抛物线与y 轴交点是()0,b ;令()220f x x x b =++=,由题意0b ≠且0∆>,解得1b <且0b ≠.(Ⅱ)设所求圆的一般方程为2x 20y Dx Ey F ++++=令0y =得20x Dx F ++=这与220x x b ++=是同一个方程,故2,D F b ==. 令0x =得20y Ey +=,此方程有一个根为b ,代入得出1E b =--. 所以圆C 的方程为222(1)0x y x b y b ++-++=. (Ⅲ)圆C 必过定点,证明如下:假设圆C 过定点0000(,)(,)x y x y b 不依赖于 ,将该点的坐标代入圆C 的方程,并变形为22000002(1)0x y x y b y ++-+-= (*)为使(*)式对所有满足1(0)b b <≠的b 都成立,必须有010y -=,结合(*)式得22000020x y x y ++-=,解得000002 11x x y y ==⎧⎧⎨⎨==⎩⎩,-,或,,经检验知,点(0,1),(2,0)-均在圆C 上,因此圆C 过定点。