2019-2020年中考模拟测试卷(二) 数学
【附5套中考模拟试卷】河南省安阳市2019-2020学年中考数学模拟试题(2)含解析

B.线段DB绕点D顺时针旋转一定能与线段DI熏合
C.∠CAD绕点A顺时针旋转一定能与∠DAB重合
D.线段ID绕点I顺时针旋转一定能与线段IB重合
10.如图,在矩形ABCD中,E是AD上一点,沿CE折叠△CDE,点D恰好落在AC的中点F处,若CD= ,则△ACE的面积为( )
2.下列计算错误的是( )
A.4x3•2x2=8x5B.a4﹣a3=a
C.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b2
3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是( )
A.甲和乙B.乙和丙C.甲和丙D.只有丙
4.如图,已知▱ABCD中,E是边AD的中点,BE交对角线AC于点F,那么S△AFE:S四边形FCDE为( )
A.1B. C.2D.2
11.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为( )
A.4B.5C.6D.7
12.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得A.1:3B.1:4C.1:5D.1:6
5.某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在()
A.50.5~60.5分B.60.5~70.5分C.70.5~80.5分D.80.5~90.5分
6.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:
A. B. C. D.
18.如图,在正方形ABCD中,等边三角形AEF的顶点E,F分别在边BC和CD上,则∠AEB=__________.
2019-2020学年上海市青浦区九年级第二学期(二模)考试数学试卷(含答案)

青浦区2019学年九年级第二次学业质量调研测试数 学 试 卷(时间100分钟,满分150分) Q2020.05考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂] 1. (0)a a ≠的倒数是( ▲ )(A )a ; (B )a -; (C )1a ; (D )1a-. 2.计算2(2)x -的结果,正确的是( ▲ )(A )22x ; (B )22x -; (C )24x ; (D )24x -. 3.如果反比例函数ky x=的图像分布在第二、四象限,那么k 的取值范围是( ▲ ) (A )0k >; (B )0k <; (C )0k ≥; (D )0k ≤. 4.下列方程中,没有实数根的是( ▲ )(A ); (B );(C );(D ). 5. 为了解某校初三400名学生的体重情况,从中抽取50名学生的体重进行分析.在这项调查220x x -=2210x x --=2210x x -+=2220x x -+=中,下列说法正确的是( ▲ )(A )400名学生中每位学生是个体; (B )400名学生是总体; (C )被抽取的50名学生是总体的一个样本; (D )样本的容量是50. 6.如图1,点G 是ABC ∆的重心,联结AG 并延长交BC 边于点D .设a AB =u u u r r ,b GD =u u u r r ,那么向量BC u u u r 用向量a r 、b r表示为( ▲(A )32BC b a =-u u u rr r; (B )32BC b a =+u u u rr r;(C )62BC b a =-u u u r r r;(D )62BC b a =+u u u rr r.二、填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案] 7. 计算:3a a ÷= ▲ .8. 在实数范围内因式分解:22m -= ▲ . 9. 函数y 的定义域是 ▲ .10.不等式组1020.x x +≥⎧⎨->⎩,的解集是 ▲ .11.如果将直线3y x =平移,使其经过点(0,-1),那么平移后的直线表达式是 ▲ . 12.从2,3,4,5,6这五个数中任选一个数,选出的这个数是素数的概率是 ▲ . 13.如果点D 、E 分别是ABC ∆的AB 、AC 边的中点,那么ADE ∆与ABC ∆的周长之比是 ▲ .图114.已知点C 在线段AB 上,且012AC AB <<.如果⊙C 经过点A ,那么点B 与⊙C 的位置关系是 ▲ .15.随机选取50粒种子在适宜的温度下做发芽天数的试验,试验的结果如右表所示.估计该作物种子发芽的天数的平均数约为 ▲ 天.16.在ABC ∆中,3AB AC ==,2BC =,将ABC ∆绕着点B 顺时针旋转,如果点A 落在射线BC 上的点A '处.那么=AA ' ▲ .17.在Rt ABC ∆中,90oACB ∠=,3AC =,4BC =.分别以A 、B 为圆心画圆,如果⊙A 经过点C ,⊙B 与⊙A 相交,那么⊙B 的半径r 的取值范围是 ▲ . 18.小明学习完《相似三角形》一章后,发现了一个有趣的结论:在两个不相似的直角三角形中,分别存在经过直角顶点的一条直线,把直角三角形分成两个小三角形后,如果第一个直角三角形分割 出来的一个小三角形与第二个直角三角形分割出来的一个小三角形相似,那么分割出来的另外两个小三角形也相似.他把这样的 两条直线称为这两个直角三角形的相似..分割线.... 如图2、图3,直线CG 、DH 分别是两个不相似的Rt ABC ∆ 和Rt DEF ∆的相似分割线,CG 、DH 分别与斜边AB 、EF 交于 点G 、 H ,如果BCG ∆与DFH ∆相似,3AC =,5AB =,4DE =,8DF =,那么AG = ▲ .三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上]GCA图2HFED图319.(本题满分10分)计算:2121182-⎛⎫- ⎪⎝⎭.20.(本题满分10分)解方程:24211422x x x x -=---+. 21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图4,在Rt ABC ∆中,90ACB ∠=o,4AC BC ==, 点D 在边BC 上,且3BD CD =,DE AB ⊥,垂足为点E ,联结CE .(1)求线段AE 的长; (2)求ACE ∠的余切值.22.(本题满分10分,第(1)小题3分,第(2)小题7分)某湖边健身步道全长1500米,甲、乙两人同时从同一起 点匀速向终点步行.甲先到达终点后立刻返回,在整个步行过 程中,甲、乙两人间的距离y (米)与出发的时间x的关系如图5中OA —AB 折线所示.(1)用文字语言描述点A 的实际意义; (2)求甲、乙两人的速度及两人相遇时x 的值. 23.(本题满分12分,第(1)小题7分,第(2)小题5分)如图6,在平行四边形ABCD 中,BE 、DF 分别是平行四边形的ABCDE 图4GBA图5两个外角的平分线,12EAF BAD ∠=∠,边AE 、AF 分别交两条角平分线于点E 、F .(1)求证:ABE ∆∽FDA ∆;(2)联结BD 、EF ,如果2DF AD AB =⋅,求证:BD EF =.24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图7,在平面直角坐标系xOy 中,二次函数243y a x a x =-+ 的图像与x 轴正半轴交于点A 、B ,与y 轴相交于点C ,顶点为D ,且tan 3∠=CAO .(1)求这个二次函数的解析式;(2)点P 是对称轴右侧抛物线上的点,联结CP ,交对称轴于点F ,当:2:3CDF FDP S S =V V 时,求点P 的坐标;(3)在(2)的条件下,将△PCD 沿直线MN 翻折,当点P 恰好与点O 重合时,折痕MN 交轴于点M ,交轴于点N ,求OM ON的值.x y 图7备用图25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图8,已知AB 是半圆O 的直径,6AB =,点C 在半圆O 上.过点A 作AD ⊥OC ,垂足为点D ,AD 的延长线与弦BC 交于点E ,与半圆O 交于点F (点F 不与点B 重合).(1)当点F 为»BC的中点时,求弦BC 的长; (2)设OD x =,DE AEy =,求与的函数关系式;(3)当△AOD 与△CDE 相似时,求线段OD 的长.y x OABCDE FOABCDE F备用图图8青浦区2019学年九年级第二次学业质量调研测试评分参考 202005一、选择题:1.C ; 2.C ; 3.B ; 4.D ; 5.D ; 6.C .二、填空题:7.2a ; 8.(m m ; 9.3x ≥-;10.12x -≤<; 11.31y x =-; 12.35;13.1:2; 14.点B 在⊙C 外; 15.1.8;16. 17.2<r <8; 18.3.三、解答题:19.解:原式4+. ····················································· (8分)=3. ············································································· (2分)20.解:两边同乘以(2)(2)x x +-,得242(2)4(2)x x x x -+=--- ································································ (4分)2320x x -+=.·················································································· (2分) 解得121,2x x ==. ·············································································· (2分) 经检验,11x =是原方程的根,22x =是原方程的增根,舍去. ······················· (1分)所以,原方程的根是1x =.······································································· (1分) 21.证明:(1)∵4BC =,3BD CD =, ∴3BD =. ······································ (1分)∵AB=BC , ∠ACB =90°∴∠A =∠B =45°.································· (1分)∵DE ⊥AB , ∴在Rt △DEB 中,cos 2BE B BD==.∴BE =·· (2分)在Rt △ACB 中,AB ==AE =·············· (1分)(2)∵过点E 作EH ⊥AC 于点H.∴在Rt △AHE 中,cos AH A AE ==,AH=cos45AE ⋅︒= 52············· (1分) ∴53422CH AC AH =-=-=,∴EH= AH=52···································· (2分) ∴在Rt △CHE 中,cot ∠ECB =35CH EH=,即∠ECB 的余切值是35············· (2分)22.解:(1)20分钟时,甲乙两人相距500米. ··············································· (3分)(2)1500==7520V 米分甲,1000==5020V 米乙分··································· (4分)依题意,可列方程:75(x -20)+50(x -20)=500 ······································· (1分) 解这个方程,得 x =24 ····································································· (1分)答:甲的速度是每分钟75米,乙的速度是每分钟50米,两人相遇时x 的值为24. ·· (1分)23.证明:(1)∵∠EAF=12∠BAD.∴∠DAF+∠BAE=12∠BAD ·························(1分)∵DF平分∠HDC,∴∠HDF=12∠HDC.····································(1分)又∵ABCD是平行四边形,∴AB∥CD.∴∠BAD=∠CDH.∴∠HDF =∠DAF+∠BAE.·······················································(1分)又∵∠HDF =∠DAF+∠F, ·······················································(1分)∴∠BAE=∠F. ······································································(1分)同理:∠DAF=∠E···································································(1分)∴△ABE∽△FDA ····································································(1分)(2)作AP平分∠DAB交CD∴∠DAP=12∠BAD,∵∠HDF=12∠CDH,且∠BAD=∠CDH∴DF∥AP ·······················································································(1分)同理:BE∥AP,∴DF∥BE∵△ABE∽△FDA ∴AD DFBE AB=,即BE DF AD AB⋅=⋅···························(1分)又∵2DF AD AB =⋅∴BE =DF ························································································ (1分) ∴四边形DFEB 是平行四边形 ····························································· (1分) ∴BD =EF ························································································ (1分)24.解:(1)∵二次函数243y ax ax =-+的图像与y 轴交于点C ,∴点C 的坐标为(0,3) ∴OC =3 ·························································· (1分)联结AC ,在Rt △AOC 中,tan ∠CA O=OC OA=3∴OA =1 ·························· (1分) 将点A (1,0)代入243y ax ax =-+,得430a a -+=, ······················· (1分) 解得: 1a =.所以,这个二次函数的解析式为 243y x x =-+. ································· (1分) (2)过点C 作CG ⊥DF ,过点P 作PQ ⊥DF ,垂足分别为点G 、Q .∵抛物线243y x x =-+的对称轴为直线2x =,∴2CG =.····················· (1分)∵23CDF FDP CG PQ S S ∆∆==,∴3PQ =. ························································· (1分) ∴点P 的横坐标为5. ······································································· (1分) ∴把5x =代入 243y x x =-+,得 8y =∴点P 的坐标为(5,8) ········· (1分)(3)过点P 作PH ⊥OM ,垂足分别为点H∵点P 的坐标为(5,8) ∴OH=5,PH=8. ··············································· (1分) ∵将△PCD 沿直线MN 翻折,点P 恰好与点O 重合,∴MN OP ⊥,∴∠ONM +∠NOP=90°. ···················································· (1分) 又∵∠POH +∠NOP=90°,∴∠ONM =∠POH . ········································································ (1分) ∴85tan tan OMPHONM POM ON OH ∠=∠===.············································ (1分) 25.解:(1)联结OF ,交BC 于点H .∵F 是»BC 中点,∴OF ⊥BC ,BC =2BH . ····················································· (1分)∴∠BOF =∠COF .∵OA =OF 且OC ⊥AF ,∴∠AOC=∠COF∴∠AOC =∠COF =∠BOF =60° ·································································· (1分)在Rt BOH ∆中,Sin ∠BOH =BHOB =2························································ (1分)∴BH BC =·········································································· (1分) (2)联结BF .∵AF ⊥OC ,垂足为点=D ,∴AD =DF . ······················································· (1分) 又∵OA = OB ,∴OD ∥BF ,22BF OD x ==. ································································· (1分)∴32DECDxEF BF x -==, ············································································· (1分)∴33DEx DFx -=+ 即33DE x AD x -=+ ·································································· (1分) ∴36DEx AE -=, ····················································································· (1分) ∴36x y -=. ······················································································· (1分) (3)AOD ∆∽CDE ∆,分两种情况:①当DOA DCE ∠=∠时,CB AB //,不符合题意,舍去. (1分) ②当DAO DCE ∠=∠时,联结OF .∵,OA OF OB OC ==,∴,OAF OFA OCB OBC ∠=∠∠=∠.DAO DCE ∠=∠ΘOBC OCB OFA OAF ∠=∠=∠=∠∴. (1分) ∵2AOD OCB OBC OAF ∠=∠+∠=∠, (1分)30OAF ∴∠=︒ ,2321==∴OA OD . (1分) 即,线段OD 的长为32。
2019年河北省石家庄市桥西区中考数学模拟试卷(二)

2019年河北省石家庄市桥西区中考数学模拟试卷(二)一、选择题(本大题共16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项的代码填在题后的括号内)1.(3分)比1小3的数是()A.﹣1B.﹣2C.﹣3D.22.(3分)下列图形具有两条对称轴的是()A.等边三角形B.平行四边形C.矩形D.正方形3.(3分)近似数5.10精确到()A.个位B.十分位C.百分位D.十位4.(3分)如图所示的几何体是由4个相同的小正方体搭成的,它的左视图是()A.B.C.D.5.(3分)下列等式成立的是()A.x2+3x2=3x4B.0.00028=2.8×10﹣3C.(a3b2)3=a9b6D.(﹣a+b)(﹣a﹣b)=b2﹣a26.(3分)下列图形中,能确定∠1>∠2的是()A.B.C.D.7.(3分)下列赋予4m实际意义的叙述中不正确的是()A.若葡萄的价格是4元/千克,则4m表示买m千克葡萄的金额B.若m表示一个正方形的边长,则4m表示这个正方形的周长C.将一个小木块放在水平桌面上,若4表示小木块与桌面的接触面积,m表示桌面受到的压强,则4m表示小木块对桌面的压力D.若4和m分别表示一个两位数中的十位数字和个位数字,则4m表示这个两位数8.(3分)下列说法中正确的个数是()①0的相反数是0;②(﹣1)2=2;③4的平方根是2;④是无理数;⑤(﹣2x)3•x=﹣8x4.A.1个B.2个C.3个D.4个9.(3分)如图,将边长为3a的正方形沿虚线剪成两个正方形和两个长方形.若去掉边长为2b的小正方形后,再将剩余部分拼成一个矩形,则矩形的周长为()A.3a+2b B.6a+4b C.12a D.12a﹣4b 10.(3分)下表是某学习小组一次数学测验的成绩统计表:分数70 80 90 100人数1 3 x 1已知该小组本次数学测验的平均分是85分,则测验成绩的众数是()A.80分B.85分C.90分D.80分和90分11.(2分)已知,则A=()A.B.C.D.x2﹣112.(2分)如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以大于的长为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.若∠B=34°,则∠BDC的度数是()A.68°B.112°C.124°D.146°13.(2分)如图,在平面直角坐标系中,函数y=kx与的图象交于A,B两点,过A 作y轴的垂线,交函数的图象于点C,连接BC,则△ABC的面积为()A.1B.2C.3D.414.(2分)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则cos∠BDE的值是()A.B.C.D.15.(2分)某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下()元.A.8B.16C.24D.3216.(2分)如图,抛物线y=ax2+bx+c的顶点坐标为(1,n),与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.(3分)比较大小:32.18.(3分)若a,b互为相反数,则a2b+ab2=.19.(4分)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O 夹角为60°的方向运动到⊙O上的点A4处;A4A0间的距离是;…按此规律运动到点A2019处,则点A2019与点A0间的距离是.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(8分)小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:.(1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是x=2,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?21.(9分)修建隧道可以方便出行.如图:A,B两地被大山阻隔,由A地到B地需要爬坡到山顶C地,再下坡到B地.若打通穿山隧道,建成直达A,B两地的公路,可以缩短从A地到B地的路程.已知:从A到C坡面的坡度i=1:,从B到C坡面的坡角∠CBA=45°,BC=4公里.(1)求隧道打通后从A到B的总路程是多少公里?(结果保留根号)(2)求隧道打通后与打通前相比,从A地到B地的路程约缩短多少公里?(结果精确到0.01)(≈1.414,≈1.732)22.(9分)我市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如下两幅统计图.请你根据图中所给信息解答下列问题:(1)一等奖所占的百分比是;三等奖的人数是人;(2)据统计,在获得一等奖的学生中,男生与女生的人数比为1:1,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率;(3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?23.(9分)如图1,菱形ABCD中,∠ABC=120°,P是对角线BD上的一点,点E在AD的延长线上,且P A=PE,PE交CD于F,连接CE.(1)证明:△ADP≌△CDP;(2)判断△CEP的形状,并说明理由;(3)如图2,把菱形ABCD改为正方形ABCD,其他条件不变,直接写出线段AP与线段CE的数量关系.24.(10分)如图1,在直角坐标系中,一次函数的图象l1与y轴交于点A(0,2),与一次函数y=x﹣3的图象l2交于点E(m,﹣5).(1)求m的值及l1的表达式;(2)直线l1与x轴交于点B,直线l2与y轴交于点C,求四边形OBEC的面积;(3)如图2,已知矩形MNPQ,PQ=2,NP=1,M(a,1),矩形MNPQ的边PQ在x 轴上平移,若矩形MNPQ与直线l1或l2有交点,直接写出a的取值范围.25.(11分)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.(1)当BP=时,△MBP~△DCP;(2)当⊙P与正方形ABCD的边相切时,求BP的长;(3)设⊙P的半径为x,请直接写出正方形ABCD中恰好有两个顶点在圆内的x的取值范围.26.(12分)探究:已知二次函数y=ax2﹣2x+3经过点A(﹣3,0).(1)求该函数的表达式;(2)如图所示,点P是抛物线上在第二象限内的一个动点,且点P的横坐标为t,连接AC,P A,PC.①求△ACP的面积S关于t的函数关系式;②求△ACP的面积的最大值,并求出此时点P的坐标.拓展:在平面直角坐标系中,点M的坐标为(﹣1,3),N的坐标为(3,1),若抛物线y=ax2﹣2x+3(a<0)与线段MN有两个不同的交点,请直接写出a的取值范围.2019年河北省石家庄市桥西区中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项的代码填在题后的括号内)1.(3分)比1小3的数是()A.﹣1B.﹣2C.﹣3D.2【分析】根据题意列出算式,再依据减法法则计算可得.【解答】解:比1小3的数是1﹣3=﹣2,故选:B.【点评】本题主要考查有理数的减法,解题的关键是掌握有理数的减法法则.2.(3分)下列图形具有两条对称轴的是()A.等边三角形B.平行四边形C.矩形D.正方形【分析】根据轴对称及对称轴的定义,结合所给图形即可作出判断.【解答】解:A、等边三角形由3条对称轴,故本选项错误;B、平行四边形无对称轴,故本选项错误;C、矩形有2条对称轴,故本选项正确;D、正方形有4条对称轴,故本选项错误;故选:C.【点评】本题考查了轴对称图形及对称轴的定义,常见的轴对称图形有:等腰三角形,矩形,正方形,等腰梯形,圆等等.3.(3分)近似数5.10精确到()A.个位B.十分位C.百分位D.十位【分析】根据近似数的精确度求解.【解答】解:近似数5.10精确到百分位.故选:C.【点评】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.4.(3分)如图所示的几何体是由4个相同的小正方体搭成的,它的左视图是()A.B.C.D.【分析】找到几何体从左面看所得到的图形即可.【解答】解:从左面可看到1列小正方形的个数为:2.故选:A.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.(3分)下列等式成立的是()A.x2+3x2=3x4B.0.00028=2.8×10﹣3C.(a3b2)3=a9b6D.(﹣a+b)(﹣a﹣b)=b2﹣a2【分析】直接利用平方差公式以及科学记数法、积的乘方运算法则分别计算得出答案.【解答】解:A、x2+3x2=4x2,故此选项错误;B、0.00028=2.8×10﹣4,故此选项错误;C、(a3b2)3=a9b6,正确;D、(﹣a+b)(﹣a﹣b)=a2﹣b2,故此选项错误;故选:C.【点评】此题主要考查了平方差公式以及科学记数法、积的乘方运算,正确掌握运算法则是解题关键.6.(3分)下列图形中,能确定∠1>∠2的是()A.B.C.D.【分析】分别根据对顶角相等、平行线的性质、三角形外角的性质对四个选项进行逐一判断即可.【解答】解:A、∵∠1与∠2是对顶角,∴∠1=∠2,故本选项错误;B、若两条直线平行,则∠1=∠2,若所截两条直线不平行,则∠1与∠2无法进行判断,故本选项正确;C、∵∠1是∠2所在三角形的一个外角,∴∠1>∠2,故本选项正确;D、∵已知三角形是直角三角形,∴由直角三角形两锐角互余可判断出∠1=∠2.故选:C.【点评】本题考查的是对顶角相等、平行线的性质、三角形外角的性质及直角三角形的性质,熟知以上知识是解答此题的关键.7.(3分)下列赋予4m实际意义的叙述中不正确的是()A.若葡萄的价格是4元/千克,则4m表示买m千克葡萄的金额B.若m表示一个正方形的边长,则4m表示这个正方形的周长C.将一个小木块放在水平桌面上,若4表示小木块与桌面的接触面积,m表示桌面受到的压强,则4m表示小木块对桌面的压力D.若4和m分别表示一个两位数中的十位数字和个位数字,则4m表示这个两位数【分析】分别判断每个选项即可得.【解答】解:A、若葡萄的价格是4元/千克,则4m表示买m千克葡萄的金额,正确;B、若m表示一个正方形的边长,则4m表示这个正方形的周长,正确;C、将一个小木块放在水平桌面上,若4表示小木块与桌面的接触面积,m表示桌面受到的压强,则4m表示小木块对桌面的压力,正确;D、若4和m分别表示一个两位数中的十位数字和个位数字,则(4×10+m)表示这个两位数,则此选项错误;故选:D.【点评】本题主要考查代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.8.(3分)下列说法中正确的个数是()①0的相反数是0;②(﹣1)2=2;③4的平方根是2;④是无理数;⑤(﹣2x)3•x=﹣8x4.A.1个B.2个C.3个D.4个【分析】直接利用相反数的定义以及有理数的定义和积的乘方运算法则分别判断得出答案.【解答】解:①0的相反数是0,正确;②(﹣1)2=1,故此选项错误;③4的平方根是±2,故此选项错误;④是有理数,故此选项错误;⑤(﹣2x)3•x=﹣8x4,正确.故选:B.【点评】此题主要考查了相反数的定义以及有理数的定义和积的乘方运算,正确掌握相关运算法则是解题关键.9.(3分)如图,将边长为3a的正方形沿虚线剪成两个正方形和两个长方形.若去掉边长为2b的小正方形后,再将剩余部分拼成一个矩形,则矩形的周长为()A.3a+2b B.6a+4b C.12a D.12a﹣4b【分析】根据题意,先将剩余部分拼成长方形,再根据图形的边长关系将新矩形的长和宽表示出来,就可以计算周长.【解答】解:如下图所示,可以将图①拼到到图②的位置,就构成了长方形:该长方形的长为:3a+2b,宽为:3a﹣2b,则周长为:(3a+2b+3a﹣2b)×2=12a,故选:C.【点评】本题考查了正方形的性质,矩形周长的计算,题目较简单,解题的关键是能够用剩余部分图形拼出矩形.10.(3分)下表是某学习小组一次数学测验的成绩统计表:分数70 80 90 100人数1 3 x 1已知该小组本次数学测验的平均分是85分,则测验成绩的众数是()A.80分B.85分C.90分D.80分和90分【分析】先通过平均数求出x的值,再根据众数的定义就可以求解.【解答】解:根据题意得:70+80+80+80+90x+100=85(1+3+x+1),x=3∴该组数据的众数是80分或90分.故选:D.【点评】通过列方程求出x是解答问题的关键.11.(2分)已知,则A=()A.B.C.D.x2﹣1【分析】根据已知得出A=•(1+),先算括号内的加法,再算乘法即可.【解答】解:∵,∴A=•(1+)=•=,故选:B.【点评】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解此题的关键.12.(2分)如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以大于的长为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.若∠B=34°,则∠BDC的度数是()A.68°B.112°C.124°D.146°【分析】根据题意可知DE是AC的垂直平分线,由此即可一一判断.【解答】解:∵∠ACB=90°,∠B=34°,∴∠A=56°,∵DE是AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=56°,∴∠BCD=90°﹣56°=34°,∴∠BDC=180°﹣34°﹣34°=112°,故选:B.【点评】本题考查作图﹣基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形中位线定理等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.13.(2分)如图,在平面直角坐标系中,函数y=kx与的图象交于A,B两点,过A 作y轴的垂线,交函数的图象于点C,连接BC,则△ABC的面积为()A.1B.2C.3D.4【分析】如图,连接OC设AC交y轴于E.根据反比例函数k的几何意义求出△AOC的面积,再利用反比例函数关于原点对称的性质,推出OA=OB即可解决问题.【解答】解:如图,连接OC设AC交y轴于E.∵AC⊥y轴于E,∴S△AOE=,S△OEC=1,∴S△AOC=,∵A,B关于原点对称,∴OA=OB,∴S△ABC=2S△AOC=3,故选:C.【点评】本题考查反比例函数与一次函数的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.14.(2分)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则cos∠BDE的值是()A.B.C.D.【分析】由矩形的性质可得AB=CD,AD=BC,AD∥BC,可得BE=CE=BC=AD,由全等三角形的性质可得AE=DE,由相似三角形的性质可得AF=2EF,由勾股定理可求DF的长,即可求cos∠BDE的值.【解答】解:∵四边形ABCD是矩形∴AB=CD,AD=BC,AD∥BC∵点E是边BC的中点,∴BE=CE=BC=AD,∵AB=CD,BE=CE,∠ABC=∠DCB=90°∴△ABE≌△DCE(SAS)∴AE=DE∵AD∥BC∴△ADF∽△EBF∴∴AF=2EF,∴AE=3EF=DE∴DF==2EF∴cos∠BDE=故选:A.【点评】本题考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解直角三角形的运用,熟练运用相似三角形的判定和性质是本题的关键.15.(2分)某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下()元.A.8B.16C.24D.32【分析】根据题意可以设出二元一次方程组,然后变形即可解答本题.【解答】解:设方形巧克力每块x元,圆形巧克力每块y元,小明带了a元钱,,①+②,得8x+8y=2a,∴x+y=a,∵5x+3y=a﹣8,∴2x+(3x+3y)=a﹣8,∴2x+3×a=a﹣8,∴2x=,∴8x=a﹣32,即他只购买8块方形巧克力,则他会剩下32元,故选:D.【点评】本题考查二元一次方程组的应用,解答本题的关键是明确题意,利用方程的知识解答.16.(2分)如图,抛物线y=ax2+bx+c的顶点坐标为(1,n),与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个【分析】根据二次函数的图象与性质即可求出答案.【解答】解:①由对称轴可知:=1,由开口方向可知:a<0,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,故①正确;②由于x=﹣1时,y=0,∴a﹣b+c=0,∴c=b﹣a=﹣2a﹣a=﹣3a,∵抛物线与y轴的交点在(0,2),(0,3)之间(包含端点),∴2≤c≤3,∴2≤﹣3a≤3,∴﹣1≤a≤,故②正确;③由于顶点坐标为(1,n),∴当x=1时,n=a+b+c,当x=m时,此时y=am2+bm+c,∴a+b+c≥am2+bm+c,即a+b≥am2+bm总成立,故③正确;④当y=n时,此时直线y=n与抛物线y=ax2+bx+c只有一交点,当y=n﹣1时,此时直线y=n﹣1与抛物线y=ax2+bx+c两个交点,∴关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根,故④正确;故选:D.【点评】本题考查二次函数,解题的关键熟练运用二次函数的图象与性质,本题属于中等题型.二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.(3分)比较大小:3>2.【分析】首先把两个数平方法,由于两数均为正数,所以该数的平方越大数越大.【解答】解:32=9,,∵9>8,∴3>2,故答案为:>.【点评】此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法等.18.(3分)若a,b互为相反数,则a2b+ab2=0.【分析】根据互为相反数的定义,得a+b=0,再将代数式提取公因式,将a+b=0代入即可.【解答】解:根据题意,得:a+b=0,∴原式=ab(a+b)=ab×0=0,故答案为:0.【点评】本题主要考查相反数的定义及代数式求值,解决此类问题时,不一定要求出a、b的值各是几,可以将a+b作为一个整体代入.19.(4分)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O 夹角为60°的方向运动到⊙O上的点A4处;A4A0间的距离是;…按此规律运动到点A2019处,则点A2019与点A0间的距离是2.【分析】据题意求得A0A1=4,A0A2=2,A0A3=2,A0A4=2,A0A5=2,A0A6=0,A0A7=4,…于是得到A2019与A3重合,即可得到结论.【解答】解:如图,∵⊙O的半径=2,由题意得,A0A1=4,A0A2=2,A0A3=2,A0A4=2,A0A5=2,A0A6=0,A0A7=4,…∵2019÷6=336…3,∴按此规律运动到点A2018处,A2019与A3重合,∴A0A2019=A0A3=2,故答案为:2,2.【点评】本题考查了图形的变化类,等边三角形的性质,解直角三角形,正确的作出图形是解题的关键.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(8分)小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:.(1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是x=2,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?【分析】(1)把?=5代入方程,进而利用解分式方程的方法解答即可;(2)设?为m,利用分式方程的增根解答即可.【解答】解:(1)方程两边同时乘以(x﹣2)得5+3(x﹣2)=﹣1解得x=0经检验,x=0是原分式方程的解.(2)设?为m,方程两边同时乘以(x﹣2)得m+3(x﹣2)=﹣1由于x=2是原分式方程的增根,所以把x=2代入上面的等式得m+3(2﹣2)=﹣1,m=﹣1所以,原分式方程中“?”代表的数是﹣1.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.(9分)修建隧道可以方便出行.如图:A,B两地被大山阻隔,由A地到B地需要爬坡到山顶C地,再下坡到B地.若打通穿山隧道,建成直达A,B两地的公路,可以缩短从A地到B地的路程.已知:从A到C坡面的坡度i=1:,从B到C坡面的坡角∠CBA=45°,BC=4公里.(1)求隧道打通后从A到B的总路程是多少公里?(结果保留根号)(2)求隧道打通后与打通前相比,从A地到B地的路程约缩短多少公里?(结果精确到0.01)(≈1.414,≈1.732)【分析】(1)作CD⊥AB于点D,分别求出AD,BD即可解决问题.(2)求出AC+BC与AB的差即可解决问题.【解答】解:(1)作CD⊥AB于点D,在Rt△BCD中,∵∠CBA=45°,,∴CD=BD=4.在Rt△ACD中,∵,∴,∴公里.答:隧道打通后从A到B的总路程是公里.(2)在Rt△ACD中,∵,∴∠A=30°,∴AC=2CD=2×4=8,∴.∵,∴(公里).答:隧道打通后与打通前相比,从A地到B地的路程约缩短2.73公里.【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是修改添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.(9分)我市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如下两幅统计图.请你根据图中所给信息解答下列问题:(1)一等奖所占的百分比是8%;三等奖的人数是16人;(2)据统计,在获得一等奖的学生中,男生与女生的人数比为1:1,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率;(3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?【分析】(1)根据题意列式计算即可;(2)根据题意画出树状图,然后由树状图求得所有等可能的结果与选取的两人中恰为1男生1女生的情况,再利用概率公式即可求得答案;(3)设需要选取x人进行集训,根据题意列不等式即可得到结论.【解答】解:(1)一等奖所占的百分比是1﹣40%﹣20%﹣32%=8%,三等奖的人数是20÷40%×32%=16人,故答案为:8%,16;(2)20÷40%=50,50×8%=4,,画树状图如图:∴一等奖有两位男生两位女生,一共有12种等可能结果,其中恰是一男一女的结果数是8,∴P(1名男生和1名女生)=.(3)设需要选取x人进行集训,根据题意得:4+x≥2(10﹣x),解得,因为x是整数,所以x取6.答:至少需要选取6人进行集训.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.(9分)如图1,菱形ABCD中,∠ABC=120°,P是对角线BD上的一点,点E在AD 的延长线上,且P A=PE,PE交CD于F,连接CE.(1)证明:△ADP≌△CDP;(2)判断△CEP的形状,并说明理由;(3)如图2,把菱形ABCD改为正方形ABCD,其他条件不变,直接写出线段AP与线段CE的数量关系.【分析】(1)由菱形性质可得AD=CD,∠ADP=∠CDP,即可证明△ABP≌△CBP(SAS).(2)由△ABP≌△CBP可得P A=PC,∠BAP=∠BCP,再证明∠CPF=∠EDF=180°﹣∠ADC=60°,即可证明△EPC是等边三角形,(3)同理可证△CPE是等腰直角三角形三角形,即可得CE==;【解答】解:(1)在菱形ABCD中,AD=CD,∠ADP=∠CDP,在△ABP和△CBP中,,∴△ADP≌△CDP(SAS),(2)由(1)得:△ADP≌△CDP∴P A=PC,∠DAP=∠DCP,∵P A=PE,∴PC=PE,∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD,∴∠CPF=∠CDF∵∠ABC=∠ADC=120°,∴∠CPF=∠EDF=180°﹣∠ADC=60°,∴△CPE是等边三角形,(3)CE=,证明如下:如前同理可证:PC=PE,∠EPC=∠CDE,∵在正方形ABCD中,∠ADC=90°,∴∠EPC=∠CDE=90°,∴△CPE是等腰直角三角形三角形,∴CE==【点评】本题是四边形综合题,考查了正方形、菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.24.(10分)如图1,在直角坐标系中,一次函数的图象l1与y轴交于点A(0,2),与一次函数y=x﹣3的图象l2交于点E(m,﹣5).(1)求m的值及l1的表达式;(2)直线l1与x轴交于点B,直线l2与y轴交于点C,求四边形OBEC的面积;(3)如图2,已知矩形MNPQ,PQ=2,NP=1,M(a,1),矩形MNPQ的边PQ在x 轴上平移,若矩形MNPQ与直线l1或l2有交点,直接写出a的取值范围.【分析】(1)根据点E在一次函数图象上,求出m的值,利用待定系数法即可求出直线l1的函数解析式;(2)由(1)求出点B、C的坐标,利用S四边形OBEC=S△OBE+S△OCE即可得解;(3)分别求出矩形MNPQ在平移过程中,当点Q在l1上、点N在l1上、点Q在l2上、点N在l2上时a的值,即可得解.【解答】解:(1)∵点E(m,﹣5)在一次函数y=x﹣3图象上,∴m﹣3=﹣5,∴m=﹣2;设直线l1的表达式为y=kx+b,∵直线l1过点A(0,2)和E(﹣2,﹣5),∴,解得.∴直线l1的表达式为.(2)由(1)可知:B点坐标为,C点坐标为(0,﹣3),∴S四边形OBEC=S△OBE+S△OCE=.(3)或3≤a≤6.当矩形MNPQ的顶点Q在l1上时,a的值为,矩形MNPQ向右平移,当点N在l1上时,,解得x=,即点N(,1),∴a的值为+2=,矩形MNPQ继续向右平移,当点Q在l2上时,a的值为3,矩形MNPQ继续向右平移,当点N在l2上时,x﹣3=1,解得x=4,即点N(4,1),∴a的值4+2=6,综上所述,当或3≤a≤6时,矩形MNPQ与直线l1或l2有交点.【点评】本题主要考查两条直线相交或平行、图形的平移等知识的综合应用,在解决第(3)小题时,只有求出各临界点时a的值,就可以得到a的取值范围.25.(11分)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.(1)当BP=时,△MBP~△DCP;(2)当⊙P与正方形ABCD的边相切时,求BP的长;(3)设⊙P的半径为x,请直接写出正方形ABCD中恰好有两个顶点在圆内的x的取值范围.【分析】(1)设BP=a,则PC=8﹣a,由△MBP~△DCP知=,代入计算可得;(2)分别求出⊙P与边CD相切时和⊙P与边AD相切时BP的长即可得;(3)①当PM=5时,⊙P经过点M,点C;②当⊙P经过点M、点D时,由PC2+DC2=BM2+PB2,可求得BP=7,继而知.据此可得答案.【解答】解:(1)设BP=a,则PC=8﹣a,∵AB=8,M是AB中点,∴AM=BM=4,∵△MBP~△DCP,∴=,即=,解得a=,故答案为:.(2)如图1,当⊙P与边CD相切时,设PC=PM=x,在Rt△PBM中,∵PM2=BM2+PB2,∴x2=42+(8﹣x)2,∴x=5,∴PC=5,BP=BC﹣PC=8﹣5=3.如图2,当⊙P与边AD相切时,设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形.∴PM=PK=CD=2BM,∴BM=4,PM=8,在Rt△PBM中,.综上所述,BP的长为3或.(3)如图1,当PM=5时,⊙P经过点M,点C;如图3,当⊙P经过点M、点D时,∵PC2+DC2=BM2+PB2,∴42+BP2=(8﹣BP)2+82,∴BP=7,∴.综上,.【点评】本题是圆的综合问题,主要考查切线的性质、正方形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.26.(12分)探究:已知二次函数y=ax2﹣2x+3经过点A(﹣3,0).(1)求该函数的表达式;(2)如图所示,点P是抛物线上在第二象限内的一个动点,且点P的横坐标为t,连接AC,P A,PC.①求△ACP的面积S关于t的函数关系式;②求△ACP的面积的最大值,并求出此时点P的坐标.拓展:在平面直角坐标系中,点M的坐标为(﹣1,3),N的坐标为(3,1),若抛物线y=ax2﹣2x+3(a<0)与线段MN有两个不同的交点,请直接写出a的取值范围.【分析】探究:(1)利用待定系数法求解可得;(2)①先求出直线AC解析式为y=x+3,设P(t,﹣t2﹣2t+3),Q(t,t+3),据此得=﹣t2﹣3t,根据可得答案;②根据二次函数的性质和①中所求代数式求解可得;拓展:先求出线段MN解析式,直线和抛物线有两个交点知﹣x+=ax2﹣2x+3有两个不相等实数根,利用根的判别式求得a的范围,再根据a<0时,抛物线与直线的交点在线段MN上得,解之可确定a的最终取值范围.【解答】解:探究:(1)∵抛物线y=ax2﹣2x+3经过点A(﹣3,0),∴0=a(﹣3)2﹣2×(﹣3)+3,解得a=﹣1.∴抛物线的表达式为y=﹣x2﹣2x+3.(2)①过点P作PN⊥AO于点N,交AC于点Q.设直线AC的解析式为y=kx+b(k≠0),将A(﹣3,0)、C(0,3)代入y=kx+b,,解得:,∴直线AC的解析式为y=x+3.∵点P在抛物线y=﹣x2﹣2x+3上,点Q在直线AC上,∴点P的坐标为(t,﹣t2﹣2t+3),点Q的坐标为(t,t+3),∴=﹣t2﹣3t,∴=.②∵,∴当时,,当时,.∴△ACP的面积的最大值是,此时点P的坐标为.拓展:设直线MN的解析式为y=kx+b,。
2019-2020学年山西省中考数学模拟试卷(有标准答案)(解析)

山西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.(2016·山西)61-的相反数是( ) A .61 B .-6 C .6 D .61-2.(2016·山西)不等式组⎩⎨⎧<>+6205x x 的解集是( )A .x >5B .x <3C .-5<x <3D .x <53.(2016·山西)以下问题不适合全面调查的是( )A .调查某班学生每周课前预习的时间B .调查某中学在职教师的身体健康状况C .调查全国中小学生课外阅读情况D .调查某篮球队员的身高4.(2016·山西)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的左视图是( )5.(2016·山西)我国计划在2020年左右发射火星探测卫星.据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法可表示为( )A .6105.5⨯B .7105.5⨯C .61055⨯D .81055.0⨯6.(2016·山西)下列运算正确的是 ( )A .49232-=⎪⎭⎫ ⎝⎛- B .63293a a =)( C .251555-3-=÷ D .23-50-8=7.(2016·山西)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少kg 货物.设甲每小时搬运xkg 货物,则可列方程为( )A .x x 80006005000=-B .60080005000+=x x C .x x 80006005000=+ D .60080005000-=x x8.(2016·山西)将抛物线442--=x x y 向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( )A .13)1(2-+=x yB .3)5(2--=x yC .13)5(2--=x yD .()312-+=x y9.(2016·山西)如图,在Y ABCD 中,AB 为O e 的直径,O e 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,︒=∠60C ,则»FE的长为( )A .3π B .2πC .πD .π2 10.(2016·山西)宽与长的比是21-5(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作AD GH ⊥,交AD 的延长线于点H .则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGH D .矩形DCGH二、填空题(本大题共5个小题,每小题3分,共15分)11.(2016·山西)如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图.若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是 .12.(2016·山西)已知点(m -1,1y ),(m -3,2y )是反比例函数)0(<=m xmy 图象上的两点,则1y 2y (填“>”或“=”或“<”) 13.(2016·山西)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有 个涂有阴影的小正方形(用含有n 的代数式表示).14.(2016·山西)如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动.让转盘自动转动两次,当指针指向的数都是奇数的概率为15.(2016·山西)如图,已知点C 为线段AB 的中点,CD ⊥AB 且CD =AB =4,连接AD ,BE ⊥AB ,AE 是DAB ∠的平分线,与DC 相交于点F ,EH ⊥DC 于点G ,交AD 于点H ,则HG 的长为三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(2016·山西)(本题共2个小题,每小题5分,共10分) (1)计算:()01222851)3(-+⨯-⎪⎭⎫ ⎝⎛---(2)先化简,在求值:112222+---x xx x x ,其中x =-2.17.(2016·山西)(本题7分)解方程:93222-=-x x )(18.(2016·山西)(本题8分)每年5月的第二周为:“职业教育活动周”,今年我省展开了以“弘扬工匠精神,打造技能强国”为主题的系列活动,活动期间某职业中学组织全校师生并邀请学生家长和社区居民参加“职教体验观摩”活动,相关职业技术人员进行了现场演示,活动后该校随机抽取了部分学生进行调查:“你最感兴趣的一种职业技能是什么?”并对此进行了统计,绘制了统计图(均不完整). (1)补全条形统计图和 扇形统计图; (2)若该校共有1800名学生,请估计该校对“工业设计”最感兴趣的学生有多少人?(3)要从这些被调查的学生中随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是19.(2016·山西)(本题7分)请阅读下列材料,并完成相应的任务:阿基米德折弦定理阿基米德(Archimedes,公元前287~公元212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al-Biruni(973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Biruni译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图1,AB和BC是Oe的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是¼ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M是¼ABC的中点,∴MA=MC...任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图(3),已知等边△ABC内接于Oe,AB=2,D为Oe上一点, ︒ABD,AE⊥BD与点E,则△BDC的长是.=∠4520.(2016·山西)(本题7分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg~5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货.方案B:每千克5元,客户需支付运费2000元.(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)求购买量x 在什么范围时,选用方案A 比方案B 付款少;(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.21.(2016·山西)(本题10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB 的长度相同,均为300cm ,AB 的倾斜角为︒30,BE =CA =50cm ,支撑角钢CD ,EF 与底座地基台面接触点分别为D ,F ,CD 垂直于地面,AB FE ⊥于点E .两个底座地基高度相同(即点D ,F 到地面的垂直距离相同),均为30cm ,点A 到地面的垂直距离为50cm ,求支撑角钢CD 和EF 的长度各是多少cm (结果保留根号)22.(2016·山西)(本题12分)综合与实践 问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD (︒>∠90BAD )沿对角线AC 剪开,得到ABC ∆和ACD ∆. 操作发现(1)将图1中的ACD ∆以A 为旋转中心, 逆时针方向旋转角α,使 BAC ∠=α, 得到如图2所示的D C A '∆,分别延长BC和C D '交于点E ,则四边形C ACE '的状是 ;……………(2分) (2)创新小组将图1中的ACD ∆以A 为旋转中心,按逆时针方向旋转角α,使BAC ∠=2α,得到如图3所示的D C A '∆,连接DB ,C C ',得到四边形D C BC ',发现它是矩形.请你证明这个论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图3中BC =13cm ,AC =10cm ,然后提出一个问题:将D C A '∆沿着射线DB 方向平移acm ,得到D C A ''''∆,连接D B ',C C '',使四边形D C BC '''恰好为正方形,求a 的值.请你解答此问题;(4)请你参照以上操作,将图1中的ACD ∆在同一平面内进行一次平移,得到D C A '''∆,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.23.如图,在平面直角坐标系中,已知抛物线8y 2-+=bx ax 与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为(-2,0),(6,-8).(1) 求抛物线的函数表达式,并分别求出点B 和点E 的坐标; (2) 试探究抛物线上是否存在点F ,使FOE ∆≌FCE ∆,若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3) 若点P 是y 轴负半轴上的一个动点,设其坐标为(0,m ),直线PB 与直线l 交于点Q .试探究:当m 为何值时,OPQ ∆是等腰三角形.山西省中考数学试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.(2016·山西)61-的相反数是( A ) A .61 B .-6 C .6 D .61-考点:相反数解析:利用相反数和为0计算 解答:因为a +(-a )=0 ∴61-的相反数是612.(2016·山西)不等式组⎩⎨⎧<>+6205x x 的解集是( C )A .x >5B .x <3C .-5<x <3D .x <5考点: 解一元一次不等式组分析: 先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.解答: 解⎩⎨⎧<>+②①6205x x由①得x >-5 由②得x <3所以不等式组的解集是-5<x<33.(2016·山西)以下问题不适合全面调查的是(C)A.调查某班学生每周课前预习的时间B.调查某中学在职教师的身体健康状况C.调查全国中小学生课外阅读情况D.调查某篮球队员的身高考点:全面调查与抽样调查.分析:一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.解答:A.调查某班学生每周课前预习的时间,班级容量小,且要求精准度高,用全面调查B.调查某中学在职教师的身体健康状况,人数不多,容易调查,适合普查;C.调查全国中小学生课外阅读情况,中学生的人数比较多,适合采取抽样调查;D.调查某篮球队员的身高,此种情况数量不是很大,故必须普查;4.(2016·山西)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的左视图是(A)考点:三视图分析:根据俯视图上的数字确定,每一列上的个数由该方向上的最大数决定.解答:从左面看第一列可看到3个小正方形,第二列有1个小正方形故选A.5.(2016·山西)我国计划在2020年左右发射火星探测卫星.据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法可表示为(B)A.65.5⨯C.655⨯D.810105.5⨯B.710.0⨯1055考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数.确定n 的值时, 要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当 原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解答:将55 000 000用科学记数法表示为:7105.5⨯.6.(2016·山西)下列运算正确的是 ( D ) A .49232-=⎪⎭⎫ ⎝⎛-B .63293a a =)( C .251555-3-=÷ D .23-50-8= 考点:实数的运算,幂的乘方,同底数幂的除法, 分析:根据实数的运算可判断A . 根据幂的乘方可判断B . 根据同底数幂的除法可判断C . 根据实数的运算可判断D 解答:A .49232=⎪⎭⎫ ⎝⎛-,故A 错误 B .632273a a =)(,故B 错误 C .255551515155253535-3-==⨯=÷=÷,故C 错误. D .23252250-8-=-=,故选D .7.(2016·山西)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少kg 货物.设甲每小时搬运xkg 货物,则可列方程为( B )A .x x 80006005000=-B .60080005000+=x x C .x x 80006005000=+ D .60080005000-=x x 考点:分式方程的应用分析:设甲每小时搬运xkg 货物,则甲搬运5000kg 所用的时间是:x5000, 根据题意乙每小时搬运的货物为x +600,乙搬运8000kg 所用的时间为6008000+x再根据甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等列方程 解答:甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,所以60080005000+=x x 故选B .8.(2016·山西)将抛物线442--=x x y 向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( D )A .13)1(2-+=x yB .3)5(2--=x yC .13)5(2--=x yD .()312-+=x y考点:抛物线的平移分析:先将一般式化为顶点式,根据左加右减,上加下减来平移解答:将抛物线化为顶点式为:8)2(2--=x y ,左平移3个单位,再向上平移5个单位得到抛物线的表达式为()312-+=x y故选D .9.(2016·山西)如图,在Y ABCD 中,AB 为O e 的直径,O e 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,︒=∠60C ,则»FE的长为( C )A .3π B .2πC .πD .π2 考点:切线的性质,求弧长 分析:如图连接OF ,OE由切线可知︒=∠904,故由平行可知︒=∠903由OF =OA ,且︒=∠60C ,所以︒=∠=∠601C 所以△OFA 为等 边三角形∴︒=∠602,从而可以得出»FE所对的圆心角然后根据弧长公式即可求出 解答:︒=︒︒︒=∠∠︒=∠3090-60-1803-2-180EOF r =12÷2=6∴»FE=πππ=⋅⋅=180630180r n 故选C10.(2016·山西)宽与长的比是21-5(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作AD GH ⊥,交AD的延长线于点H .则图中下列矩形是黄金矩形的是( D )A .矩形ABFEB .矩形EFCDC .矩形EFGH D .矩形DCGH考点:黄金分割的识别分析:由作图方法可知DF =5CF ,所以CG =CF )15(-,且GH =CD =2CF 从而得出黄金矩形 解答:CG =CF )15(-,GH =2CF ∴2152)15(-=-=CF CF GH CG ∴矩形DCGH 是黄金矩形 选D .二、填空题(本大题共5个小题,每小题3分,共15分) 11.(2016·山西)如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图.若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是 (3,0) .考点:坐标的确定分析:根据双塔西街点的坐标为(0,-1),可知大南 门为坐标原点,从而求出太原火车站的点(正 好在网格点上)的坐标解答:太原火车站的点(正好在网格点上)的坐标 (3,0)12.(2016·山西)已知点(m -1,1y ),(m -3,2y )是反比例函数)0(<=m xmy 图象上的两点,则1y > 2y (填“>”或“=”或“<”)考点:反比函数的增减性分析:由反比函数m <0,则图象在第二四象限分别都是y 随着x 的增大而增大 ∵m <0,∴m -1<0,m -3<0,且m -1>m -3,从而比较y 的大小 解答:在反比函数xmy =中,m <0,m -1<0,m -3<0,在第四象限y 随着x 的增大而增大 且m -1>m -3,所以1y > 2y13.(2016·山西)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n个图案中有(4n +1)个涂有阴影的小正方形(用含有n 的代数式表示).考点:找规律分析:由图可知,涂有阴影的正方形有5+4(n -1)=4n +1个 解答:(4n +1)14.(2016·山西)如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动.让转盘自动转动两次,当指针指向的数都是奇数的概率为 94 考点:树状图或列表求概率 分析:列表如图:可知指针指向的数都是奇数的概率为94 解答:由表15.(2016·山西)如图,已知点C 为线段AB 的中点,CD ⊥AB 且CD =AB =4,连接AD ,BE ⊥AB ,AE 是DAB ∠的平分线,与DC 相交于点F ,EH ⊥DC 于点G ,交AD 于点H ,则HG 的长为)(或152525-3+-考点:勾股定理,相似,平行线的性质,角平分线; 分析:由勾股定理求出DA ,由平行得出21∠=∠,由角平分得出32∠=∠ 从而得出31∠=∠,所以HE =HA . 再利用△DGH ∽△DCA 即可求出HE , 从而求出HG解答:如图(1)由勾股定理可得1231 (1,1) (1,2) (1,3)2 (2,1) (2,2) (2,3) 3(3,1) (3,2) (3,3)DA =52422222=+=+CD AC 由 AE 是DAB ∠的平分线可知21∠=∠由CD ⊥AB ,BE ⊥AB ,EH ⊥DC 可知四边形GEBC 为矩 形,∴HE ∥AB ,∴32∠=∠ ∴31∠=∠ 故EH =HA 设EH =HA =x则GH =x -2,DH =x -52 ∵HE ∥AC ∴△DGH ∽△DCA ∴AC HG DA DH =即2252-52-=x x 解得x =5-5 故HG =EH -EG =5-5-2=53-三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(2016·山西)(本题共2个小题,每小题5分,共10分) (1)计算:()01222851)3(-+⨯-⎪⎭⎫⎝⎛---考点:实数的运算,负指数幂,零次幂分析:根据实数的运算,负指数幂,零次幂三个考点.针对每个考点分别进行计算,然后根 据实数的运算法则求得计算结果.解答:原=9-5-4+1 ……………………………(4分) =1. ……………………………(5分) (2)先化简,在求值:112222+---x xx x x ,其中x =-2. 考点:分式的化简求值分析:先把分子分母因式分解,化简后进行减法运算 解答:原式=1)1)(1()1(2+-+--x xx x x x ……………………………(2分)=112+-+x xx x ……………………………(3分) =1+x x……………………………(4分)当x =-2时,原式=21221=+--=+x x ……………………(5分)17.(2016·山西)(本题7分)解方程:93222-=-x x )(考点:解一元二次方程分析:方法一:观察方程,可先分解因式,然后提取x -3,利用公式法求解 方法二:将方程化为一般式,利用公式法求解 解答:解法一:原方程可化为)3)(3(322-+=-x x x )(……………………………(1分) 0)3)(3()3(22=-+--x x x . ……………………………(2分) 0)]3()3(2)[3(=+---x x x . ……………………………(3分) 0)9-)(3(=-x x . ……………………………(4分) ∴ x -3=0或x -9=0. ……………………………(5分) ∴ 31=x ,92=x . ……………………………(7分) 解法二: 原方程可化为027122=+-x x ……………………………(3分)这里a =1,b =-12,c =27. ∵0362714)12(422>=⨯⨯--=-ac b ∴2612123612±=⨯±=x . ……………………………(5分) 因此原方程的根为 31=x ,92=x . ……………………………(7分)18.(2016·山西)(本题8分)每年5月的第二周为:“职业教育活动周”,今年我省展开了以“弘扬工匠精神,打造技能强国”为主题的系列活动,活动期间某职业中学组织全校师生并邀请学生家长和社区居民参加“职教体验观摩”活动,相关职业技术人员进行了现场演示,活动后该校随机抽取了部分学生进行调查:“你最感兴趣的一种职业技能是什么?”并对此进行了统计,绘制了统计图(均不完整). (1)补全条形统计图和 扇形统计图;(2)若该校共有1800名学生,请估计该校对“工业设计”最感兴趣的学生有多少人? (3)要从这些被调查的 学生中随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是 考点:条形统计图,扇形统计图,用样本估计总体,简单概率分析:(1)利用条形和扇形统计图相互对应求出总体,再分别计算即可(2)由扇形统计图可知对“工业设计”最感兴趣的学生有30%,再用整体1800乘以 30%(3)由扇形统计图可知解答:(1)补全的扇形统计图和条形统计图如图所示(2)1800×30%=540(人)∴估计该校对“工业设计”最感兴趣的学生是540人(3)要从这些被调查的学生中随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是 0.13(或13%或10013)19.(2016·山西)(本题7分)请阅读下列材料,并完成相应的任务: 阿基米德折弦定理阿基米德(Archimedes ,公元前287~公元212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al -Biruni (973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al -Biruni 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图1,AB 和BC 是O e 的两条弦(即折线ABC 是圆的一条折弦),BC >AB ,M 是¼ABC 的中点,则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD =AB +BD . 下面是运用“截长法”证明CD =AB +BD 的部分证明过程. 证明:如图2,在CB 上截取CG =AB ,连接MA ,MB ,MC 和MG .∵M 是¼ABC 的中点, ∴MA =MC ...任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图(3),已知等边△ABC 内接于O e ,AB =2,D 为O e 上一点, ︒=∠45ABD ,AE ⊥BD 与点E ,则△BDC 的长是 222+ . 考点:圆的证明分析:(1)已截取CG =AB ∴只需证明BD =DG 且MD ⊥BC ,所以需证明MB =MG 故证明△MBA ≌△MGC 即可 (2)AB =2,利用三角函数可得BE =2 由阿基米德折弦定理可得BE =DE +DC 则△BDC 周长=BC +CD +BD =BC +DC +DE +BE =BC +(DC +DE )+BE =BC +BE +BE =BC +2BE 然后代入计算可得答案解答:(1)证明:又∵C A ∠=∠, …………………(1分) ∴ △MBA ≌△MGC . …………………(2分) ∴MB =MG . …………………(3分) 又∵MD ⊥BC ,∵BD =GD . …………………(4分)∴CD =CG +GD =AB +BD . …………………(5分) (2)填空:如图(3),已知等边△ABC 内接于O e ,AB =2, D 为O e 上 一点, ︒=∠45ABD ,AE ⊥BD 与点E ,则△BDC的长是 222+ .20.(2016·山西)(本题7分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg ~5000kg (含2000kg 和5000kg )的客户有两种 销售方案(客户只能选择其中一种方案): 方案A :每千克5.8元,由基地免费送货. 方案B :每千克5元,客户需支付运费2000元.(1)请分别写出按方案A ,方案B 购买这种苹果的应付款y (元)与购买量x(kg )之间的函数表达式;(2)求购买量x 在什么范围时,选用方案A 比方案B 付款少;(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.考点: 一次函数的应用分析:(1)根据数量关系列出函数表达式即可(2)先求出方案A 应付款y 与购买量x 的函数关系为x y 8.5= 方案B 应付款y 与购买量x 的函数关系为20005+=x y 然后分段求出哪种方案付款少即可(3)令y =20000,分别代入A 方案和B 方案的函数关系式中,求出x ,比大小. 解答:(1)方案A :函数表达式为x y 8.5=. ………………………(1分)方案B :函数表达式为20005+=x y ………………………(2分) (2)由题意,得200058.5+<x x . ………………………(3分)解不等式,得x <2500 ………………………(4分) ∴当购买量x 的取值范围为25002000<≤x 时,选用方案A比方案B 付款少. ………………………(5分) (3)他应选择方案B . ………………………(7分)21.(2016·山西)(本题10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB 的长度相同,均为300cm ,AB 的倾斜角为︒30,BE =CA =50cm ,支撑角钢CD ,EF 与底座地基台面接触点分别为D ,F ,CD 垂直于地面,AB FE ⊥于点E .两个底座地基高度相同(即点D ,F 到地面的垂直距离相同),均为30cm ,点A 到地面的垂直距离为50cm ,求支撑角钢CD 和EF 的长度各是多少cm (结果保留根号)考点:三角函数的应用分析:过点A 作CD AG ⊥,垂足为G ,利用三角函数求出CG ,从 而求出GD ,继而求出CD .连接FD 并延长与BA 的延长线交于点H ,利用三角函数求出 CH ,由图得出EH ,再利用三角函数值求出EF 解答:过点A 作CD AG ⊥,垂足为G .…………(1分)则︒=∠30CAG ,在Rt ACG ∆中,25215030sin =⨯=︒⋅=AC CG .…………(2分) 由题意,得203050=-=GD .…………(3分) 452025=+=+=∴GD CG CD (cm ).…(4分)连接FD 并延长与BA 的延长线交于点H .…(5分) 由题意,得︒=∠30H .在Rt CDH ∆中,90230sin ==︒=CD CDCH .……………………(6分) 290905050300=+--=+--=+=∴CH AC BE AB CH EC EH .………(7分)在Rt EFH ∆中,332903329030tan =⨯=︒⋅=EH EF (cm ).……………(9分) 答:支撑角钢CD 的长为45cm ,EF 的长为33290cm .……………………(10分) 22.(2016·山西)(本题12分)综合与实践 问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD (︒>∠90BAD )沿对角线AC 剪开,得到ABC ∆和ACD ∆. 操作发现(1)将图1中的ACD ∆以A 为旋转中心, 逆时针方向旋转角α,使 BAC ∠=α, 得到如图2所示的D C A '∆,分别延长BC和C D '交于点E ,则四边形C ACE '的状是 菱形 ;……………(2分)(2)创新小组将图1中的ACD ∆以A 为旋转中心,按逆时针方向旋转角α,使BAC ∠=2α,得到如图3所示的D C A '∆,连接DB ,C C ',得到四边形D C BC ',发现它是矩形.请你证明这个论;(3)缜密小组在创新小组发现结论的基础上,量得图3中BC =13cm ,AC =10cm ,然后提出一个问题:将DC A '∆沿着射线DB 方向平移acm ,得到D C A ''''∆,连接D B ',C C '',使四边形D C BC '''恰好为正方形,求a 的值.请你解答此问题;(4)请你参照以上操作,将图1中的ACD ∆在同一平面内进行一次平移,得到D C A '''∆,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明. 考点:几何综合,旋转实际应用,平移的实际应用,旋转的性质,平移的性质,菱形的判定, 矩形的判定正方形的判定分析:(1)利用旋转的性质和菱形的判定证明 (2)利用旋转的性质以及矩形的判定证明(3)利用平移行性质和正方形的判定证明,需注意射线这个条件,所以需要分两种情 况当点C ''在边C C '上和点C ''在边C C '的延长线上时. (4)开放型题目,答对即可 解答:(1)菱形(2)证明:作C C AE '⊥于点E .…………………………………………(3分)由旋转得AC C A =',BAC AE C CAE ∠=='∠=∠∴α21.Θ四边形ABCD 是菱形,BC BA =∴,BAC BCA ∠=∠∴,BCA CAE ∠=∠∴,BC AE //∴,同理C D AE '//,C D BC '∴//,又C D BC '=Θ,∴ 四边形D C BC '是平行四边形,…………………(4分)又BC AE //Θ,︒=∠90CEA ,︒=∠-='∠∴90180CEA C BC ,∴四边形D C BC '是矩形…………………………………………(5分) (3)过点B 作AC BF ⊥,垂足为F ,BC BA =Θ, 5102121=⨯===∴AC AF CF . 在Rt BCF ∆ 中,125132222=-=-=CF BC BF ,在ACE ∆和CBF ∆中,BCF CAE ∠=∠Θ, ︒=∠=∠90BFC CEA . ACE ∆∴∽CBF ∆,BC AC BF CB =∴,即131012=CE ,解得13120=CE , C A AC '=Θ,C C AE '⊥,132401312022=⨯=='∴CE C C .…………………(7分) 当四边形D C BC '''恰好为正方形时,分两种情况:①点C ''在边C C '上.1371131324013a =-=-'=C C .…………………(8分) ②点C ''在边C C '的延长线上,13409131324013a =+=+'=C C .……………(9分) 综上所述,a 的值为1371或13409. (4):答案不唯一.例:画出正确图形.……………………………………(10分)AC 21的长平移及构图方法:将ACD ∆沿着射线CA 方向平移,平移距离为度,得到D C A ''∆,连接DC B A ,'.………………………(11分) 结论:四边形是平行四边形……(12分) 23.(2016·山西)(本题14分)综合与探究如图,在平面直角坐标系中,已知抛物线8y 2-+=bx ax 与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为(-2,0),(6,-8).(1)求抛物线的函数表达式,并分别求出点B 和点E 的坐标; (2)试探究抛物线上是否存在点F ,使FOE ∆≌FCE ∆,若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3)若点P 是y 轴负半轴上的一个动点,设其坐标为(0,m ),直线PB 与直线l 交于点Q .试探究:当m 为何值时,OPQ ∆是等腰三角形.考点:求抛物线的解析式,求点坐标,全等构成,等腰三角形的构 成分析:(1)将A ,D 的坐标代入函数解析式,解二元一次方程即可求出函数表达式 点B 坐标:利用抛物线对称性,求出对称轴结合A 点坐标即可求出B 点坐标 点E 坐标:E 为直线l 和抛物线对称轴的交点,利用D 点坐标求出l 表达式,令 其横坐标为3=x ,即可求出点E 的坐标(2)利用全等对应边相等,可知FO =FC ,所以点F 肯定在OC 的垂直平分线上,所 以点F 的纵坐标为-4,带入抛物线表达式,即可求出横坐标 (3)根据点P 在y 轴负半轴上运动,∴分两种情况讨论,再结合相似求解解答:(1)Θ抛物线8y 2-+=bx ax 经过点A (-2,0),D (6,-8),。
北京四中2019-2020学年九年级中考综合练习二数学试题(含答案及解析)

北京四中2019-2020学年九年级中考综合练习二数学试题一、选择题1.若式子2x x +有意义,则x 的取值范围是( ) A. 0x ≠B. 2x ≥-且0x ≠C. 2x ≥-D. 0x ≥且2x ≠ 【答案】B【解析】【分析】根据二次根式有意义的条件和分式有意义的条件得到x+2≥0且x≠0,然后求出两个不等式的公共部分即可.【详解】解:根据题意得x+2≥0且x≠0,所以x 的取值范围为x≥-2且x≠0.故选:B .【点睛】本题考查了二次根式有意义的条件:式子a 有意义的条件为a≥0.也考查了分式有意义的条件. 2.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总 人口为4400000000人,这个数用科学记数法表示为( )A. 4.4×108B. 4.40×108C. 4.4×109D. 4.4×1010 【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:4 400 000 000=4.4×109,故选C .3.实数a b 、在数轴上对应点的位置如图所示,化简()2a a b --的结果是( )A. 2a b -+B. 2a b -C. b -D. b【解析】【分析】根据实数在数轴上对应点的位置,判断a ,a-b 的正负,再根据绝对值的意义、二次根式的性质进行化简即可得.【详解】由数轴上点的位置知,a<0<b ,则a-b <0,∴原式=-a+a-b=-b .故选C .【点睛】本题考查了实数与数轴,二次根式的化简等,准确识图,熟练掌握和灵活运用相关性质是解题的关键.4.下列各式中,从左边到右边的变形是因式分解的是( )A. ()ax ay a a x y ++=+B. 221()1x y xy xy x y --=--C. 22244(2)a ab b a b -+=-D. 22(2)(2)4x y x y x y +-=- 【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A 、∵(1)ax ay a a x y ++=++,故A 错误;B 、应把一个多项式转化成几个整式积的形式,故B 错误;C 、把一个多项式转化成几个整式积的形式,故C 正确;D 、是整式的乘法,故D 错误;故选:C .【点睛】本题考查了因式分解的定义,因式分解是将一个多项式化为几个整式积的形式,而整式乘法是将几个整式的积展开成一个多项式,它们是互逆的恒等变形.5.已知11m n -=1,则代数式222m mn n m mn n --+-的值为( ) A. 3B. 1C. ﹣1D. ﹣3【答案】D【解析】由11m n -=1利用分式的加减运算法则得出m-n=-mn ,代入原式=222m mn n m mn n--+-计算可得. 【详解】∵11m n-=1, ∴n m mn mn-=1, 则n m mn -=1, ∴mn=n-m ,即m-n=-mn ,则原式=()22m n mnm n mn ---+=22mn mn mn mn ---+=3mn mn-=-3, 故选D .【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和整体代入思想的运用. 6.已知二次函数2y ax bx c =++中,函数y 与自变量x 的部分对应值如表:则当1x ≥时,y 的最小值是( )A. 2B. 1C. 12D. 0【答案】B【解析】【分析】先用待定系数法求出二次函数的解析式,得出其对称轴的直线方程,进而可得出结论.【详解】解:∵由表可知,当x=-1时,y=10,当x=0时,y=5,当x=1时,y=2, ∵1052a b c c a b c -+=⎧⎪=⎨⎪++=⎩,解得145a b c =⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为y=x 2-4x+5,∴其对称轴为直线x=42 22ba--=-=.∵x≥1,∴当x=2时,y最小=2420161 44ac ba--==.故选择:B.【点睛】本题考查的是二次函数的最值,熟知用待定系数法求二次函数的解析式是解答此题的关键.7.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN=3,则AC的长是()A. 12B. 14C. 16D. 18【答案】C【解析】延长线段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN.在△ABN与△AEN中,∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90∘,∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.又∵M是△ABC的边BC的中点,∴CE=2MN=2×3=6,∴AC=AE+CE=10+6=16.故选C.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②2a+b=0;③若m为任意实数,则a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中,正确结论的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】 由抛物线的开口方向、对称轴位置、与y 轴的交点位置判断出a 、b 、c 与0的关系,进而判断①;根据抛物线对称轴为x =2b a-=1判断②;根据函数的最大值为:a+b+c 判断③;求出x =﹣1时,y <0,进而判断④;对ax 12+bx 1=ax 22+bx 2进行变形,求出a (x 1+x 2)+b =0,进而判断⑤.【详解】解:①抛物线开口方向向下,则a <0,抛物线对称轴位于y 轴右侧,则a 、b 异号,即b >0,抛物线与y 轴交于正半轴,则c >0,∴abc <0,故①错误;②∵抛物线对称轴为直线x =2b a-=1, ∴b =﹣2a ,即2a+b =0,故②正确;③∵抛物线对称轴为直线x =1,∴函数的最大值为:a+b+c ,∴当m≠1时,a+b+c >am 2+bm+c ,即a+b >am 2+bm ,故③错误;④∵抛物线与x 轴的一个交点在(3,0)的左侧,而对称轴为直线x =1,∴抛物线与x 轴的另一个交点在(﹣1,0)的右侧,∴当x =﹣1时,y <0,∴a ﹣b+c <0,故④错误;⑤∵ax 12+bx 1=ax 22+bx 2,∴ax 12+bx 1﹣ax 22﹣bx 2=0,∴a (x 1+x 2)(x 1﹣x 2)+b (x 1﹣x 2)=0,∴(x 1﹣x 2)[a (x 1+x 2)+b]=0,而x 1≠x 2,∴a (x 1+x 2)+b =0,即x 1+x 2=﹣b a,∵b=﹣2a,∴x1+x2=2,故⑤正确.综上所述,正确的是②⑤,有2个.故选:B.【点睛】本题主要考查二次函数图象与系数之间的关系,解题的关键是会利用对称轴求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题9.当m= 时,方程133x mx x-=--无解.【答案】2.【解析】【分析】按照一般步骤解方程,用含有m的式子表示x,因为无解,所以x只能使最简公分母为0 的值,从而求出m.【详解】解:原方程化为整式方程得:x-1=m因为方程无解所以:x-3=0∴x=3当x=3时,m=3-1=2.考点:分式方程的解.10.如图,已知矩形ABCD的顶点A、D分别落在x轴、y轴,OD=2OA=6,AD:AB=3:1.则点B的坐标是_____.【答案】(5,1)【解析】【分析】过B作BE⊥x轴于E,根据矩形的性质得到∠DAB=90°,根据余角的性质得到∠ADO=∠BAE,根据相似三角形的性质得到AE=13OD=2,DE=13OA=1,于是得到结论.【详解】解:过B作BE⊥x轴于E,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADO+∠OAD=∠OAD+∠BAE=90°,∴∠ADO=∠BAE,∴△OAD∽△EBA,∴OD:AE=OA:BE=AD:AB∵OD=2OA=6,∴OA=3∵AD:AB=3:1,∴AE=13OD=2,BE=13OA=1,∴OE=3+2=5,∴B(5,1)故答案为:(5,1)【点睛】本题考查了矩形的性质,相似三角形的判定和性质,坐标与图形性质,正确的作出辅助线并证明△OAD∽△EBA是解题的关键.11.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.【答案】y=﹣2x+5【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】把函数y=﹣2x﹣1沿x轴向右平移3个单位长度,可得到的图象的函数解析式是:y=﹣2(x﹣3)﹣1=﹣2x+5.故答案为y=﹣2x+5.【点睛】本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.12.如图,在平面直角坐标系中,菱形ABCD的顶点A、B在反比例函数y=kx(k>0,x>0)的图象上,横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为452,则k的值为_____.【答案】5 【解析】【分析】连接AC分别交BD、x轴于点E、F.由菱形ABCD的面积为452,可求出AE的长,设点B的坐标为(4,y),则A点坐标为(1,y+154),由反比例函数图像上点的坐标特征可列方程求出y的值,从而可求出点B的坐标,进而可求出k的值.【详解】连接AC分别交BD、x轴于点E、F.由已知,A、B横坐标分别为1,4,∴BE=3,∵四边形ABCD为菱形,AC、BD为对角线∴S菱形ABCD =4×12AE•BE=452,∴AE=154,设点B的坐标为(4,y),则A点坐标为(1,y+154)∵点A、B同在y=kx图象上∴4y=1•(y+154)∴y=54,∴B 点坐标为(4,54) ∴k =5故答案为5. 【点睛】本题考查了菱形的性质,反比例函数的图像与性质. 反比例函数k y x=(k 为常数,k ≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .13.根据下列表格中2y ax bx c =++的自变量x 与函数值y 的对应值, x6.17 6.18 6.19 6.20 2y ax bx c =++0.03- 0.01- 0.02 0.04判断方程20ax bx c ++=(0a ≠,a ,b ,c 为常数)的一个解x 的范围是________.【答案】6.18<x <6.19.【解析】【分析】利用二次函数和一元二次方程的性质.【详解】解:由表格中的数据看出-0.01和0.02更接近于0,故x 应取对应的范围.故答案为:6.18<x <6.19.【点睛】本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y 由正变为负时,自变量的取值即可.14.如图,MN 是⊙O 的直径,MN=4,∠AMN=40°,点B 为弧AN 的中点,点P 是直径MN 上的一个动点,则PA+PB 的最小值为_____.【答案】3【解析】【分析】过A 作关于直线MN 的对称点A ′,连接A′B ,由轴对称的性质可知A′B 即为PA+PB 的最小值,【详解】解:连接OB ,OA′,AA′,∵AA ′关于直线MN 对称,∴''AN A N =∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O 作OQ ⊥A′B 于Q ,Rt △A′OQ 中,OA′=2,∴A′B=2A′Q=即PA+PB 的最小值【点睛】本题考查轴对称求最小值问题及解直角三角形,根据轴对称的性质准确作图是本题的解题关键. 15.某鱼塘里养了1600条鲤鱼、若干条草鱼和800条罗非鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率约为_________. 【答案】13【解析】【分析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率.【详解】解:∵捕捞到草鱼的频率稳定在0.5左右,设草鱼的条数为x ,可得:0.51600800x x =++ ; 解得:x=2400,经检验:x=2400是原方程的解且符合实际意义∴由题意可得,捞到鲤鱼的概率为16001160024008003=++, 故答案为:13. 【点睛】本题考查了应用频率估计的概率应用,解题的关键是明确题意,由草鱼的数量和出现的频率可以计算出鱼的数量.16.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:a .男生人数多于女生人数;b .女生人数多于教师人数;c .教师人数的2倍多于男生人数.①若教师人数为4,则女生人数的最大值为________ ②该小组人数的最小值为_______ 【答案】 (1). 6 (2). 12 【解析】 【分析】首先根据题意,设男生数,女生数,教师数分别为a b c 、、,然后根据条件列出a b c 、、的大小关系式,即可推断取值.【详解】设男生数,女生数,教师数分别为a b c 、、,则2,,,c a b c a b c N ∈>>> ①max 846a b b ⇒=>>>②min 3,635,412c a b a b a b c =⇒==⇒++=>>> 故答案为:6;12.【点睛】本题主要考查了命题的逻辑分析、简单的合情推理, 题目设计巧妙,解题时要抓住关键,逐步推断.三、解答题17.计算:02021|3(4)2tan60(1)π-+--+-︒. 【答案】3- 【解析】 【分析】根据负指数幂、零指数幂、绝对值、特殊角的三角函数值及二次根式的性质进行化简,然后根据实数的运算法则求得计算结果.【详解】解:原式=3121+- =3-【点睛】本题主要考查了负指数幂、零指数幂、绝对值、特殊角的三角函数值及二次根式的性质在实数混合计算中的综合运,难度适中.属于中考常考的基础题.18.解不等式组:2+1-1{1+2x-13x x ≥>,并把不等式组的解集在数轴上表示出来.【答案】﹣1≤x<4 【解析】【分析】求出两个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可. 【详解】解:解不等式①得:x≥-1; 解不等式②得:x <4.则不等式组的解集是:-1≤x <4.19.如图,正方形 ABCD 中, G 为 BC 边上一点, BE ⊥ AG 于 E , DF ⊥ AG 于 F ,连接 DE.(1)求证: ∆ABE ≅ ∆DAF ;(2)若 AF = 1,四边形 ABED 的面积为6 ,求 EF 的长. 【答案】(1)证明见详解;(2)2 【解析】 【分析】(1)由∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,推出∠BAE=∠ADF ,即可根据AAS 证明△ABE ≌△DAF ; (2)设EF=x ,则AE=DF=x+1,根据四边形ABED 的面积为6,列出方程即可解决问题. 【详解】证明:(1)∵四边形ABCD 是正方形, ∴AB=AD ,∵DF ⊥AG ,BE ⊥AG ,∴∠BAE+∠DAF=90°,∠DAF+∠ADF=90°, ∴∠BAE=∠ADF , 在△ABE 和△DAF 中BAE ADF AEB DFA AB AD ∠∠∠∠⎧⎪⎨⎪⎩=== ,∴△ABE≌△DAF(AAS).(2)设EF=x,则AE=DF=x+1,∵S四边形ABED=2S△ABE+S△DEF=6∴2×12×(x+1)×1+12×x×(x+1)=6,整理得:x2+3x-10=0,解得x=2或-5(舍弃),∴EF=2.【点睛】本题考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程,属于中考常考题型.20.已知关于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为非负整数,且该方程的根都是无理数,求m的值.【答案】(1)m<2;(2)m=1.【解析】【分析】(1)利用方程有两个不相等的实数根,得△=[2(m-1)]2-4(m2-3)=-8m+16>0,然后解不等式即可;(2)先利用m的范围得到m=0或m=1,再分别求出m=0和m=1时方程的根,然后根据根的情况确定满足条件的m的值.【详解】(1)△=[2(m﹣1)]2﹣4(m2﹣3)=﹣8m+16.∵方程有两个不相等的实数根,∴△>0.即﹣8m+16>0.解得m<2;(2)∵m<2,且m 为非负整数,∴m=0 或m=1,当m=0 时,原方程为x2-2x-3=0,解得x1=3,x2=﹣1(不符合题意舍去),当m=1 时,原方程为x2﹣2=0,解得 x 1=x 2=, 综上所述,m=1.【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根. 21.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:(1)求y 与x 之间的函数表达式;(2)设商品每天的总利润为W (元),则当售价x 定为多少元时,厂商每天能获得最大利润?最大利润是多少?(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.【答案】(1)y =﹣2x +200 (40≤x ≤80);(2)售价为70元时获得最大利润,最大利润是1800元;(3)55≤x ≤80,理由见解析 【解析】 【分析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况. (3)求得W =1350时x 的值,再根据二次函数的性质求得W ≥1350时x 的取值范围,继而根据“每千克售价不低于成本且不高于80元”得出答案. 【详解】(1)设y =kx +b ,将(50,100)、(60,80)代入,得:501006080k b k b +=⎧⎨+=⎩, 解得:k 2b 200=-⎧⎨=⎩,∴y=﹣2x+200 (40≤x≤80);(2)W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,∴当x=70时,W取得最大值为1800,答:售价为70元时获得最大利润,最大利润是1800元.(3)当W=1350时,得:﹣2x2+280x﹣8000=1350,解得:x=55或x=85,∵该抛物线的开口向下,所以当55≤x≤85时,W≥1350,又∵每千克售价不低于成本,且不高于80元,即40≤x≤80,∴该商品每千克售价的取值范围是55≤x≤80.【点睛】考查二次函数的应用,解题关键是明确题意,列出相应的函数解析式,再利用二次函数的性质和二次函数的顶点式解答.22.某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:转动转盘的次数n 100 150 200 500 800 1000落在“铅笔”的次数m 68 111 136 345 546 701落在“铅笔”的频率m n(结果保留小数点后两位)0.68 0.74 0.68 0.69 0.68 0.70(1)转动该转盘一次,获得铅笔的概率约为_______;(结果保留小数点后一位)(2)铅笔每只0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天需要支出的奖品费用;(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.【答案】(1)0.7;(2)该商场每天大致需要支出的奖品费用为5000元;(3)36 【解析】 【分析】(1)利用频率估计概率求解;(2)利用(1)得到获得铅笔的概率为0.7和获得饮料的概率为0.3,然后计算4000×0.5×0.7+4000×3×0.3即可;(3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度,则4000×3×360n +4000×0.5(1-360n)=3000,然后解方程即可.【详解】(1)转动该转盘一次,获得铅笔的概率约为0.7; 故答案为 0.7(2)4000×0.5×0.7+4000×3×0.3=5000,所以该商场每天大致需要支出的奖品费用为5000元; (3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度, 则4000×3×360n +4000×0.5(1﹣360n)=3000,解得n =36, 所以转盘上“一瓶饮料”区域的圆心角应调整为36度. 故答案为36.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了扇形统计图.23.如图,在平面直角坐标系xOy 中,直线y kx k =+与双曲线4=y x(x >0)交于点1)(,Aa .(1)求a ,k 的值;(2)已知直线l 过点(2,0)D 且平行于直线y kx k =+,点P (m ,n )(m >3)是直线l 上一动点,过点P 分别作x 轴、y 轴的平行线,交双曲线4=y x(x >0)于点M 、N ,双曲线在点M 、N 之间的部分与线段PM 、PN 所围成的区域(不含边界)记为W .横、纵坐标都是整数的点叫做整点.①当4m =时,直接写出区域W 内的整点个数;②若区域W 内的整点个数不超过8个,结合图象,求m 的取值范围.【答案】(1)4a =,=2k ;(2)① 3,② 3 4.5m <≤. 【解析】 【分析】(1)将1)(,Aa 代入4=y x可求出a ,将A 点坐标代入y kx k =+可求出k ; (2)①根据题意画出函数图像,可直接写出区域W 内的整点个数;②求出直线l 的表达式为24y x =-,根据图像可得到两种极限情况,求出对应的m 的取值范围即可.【详解】解:(1)将1)(,A a 代入4=y x得a=4 将14)(,A代入=4+k k ,得=2k (2)①区域W 内的整点个数是3②∵直线l 是过点(2,0)D 且平行于直线22y x =+ ∴直线l 的表达式为24y x =-当24=5-x 时,即=4.5x 线段PM 上有整点 ∴3 4.5m <≤【点睛】本题考查了待定系数法求函数解析式以及函数图像的交点问题,正确理解整点的定义并画出函数图像,运用数形结合的思想是解题关键.24.如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,与AC平行的圆O的一条切线交CD的延长线于点M,交AB的延长线于点E,切点为F,连接AF交CD于点N.(1)求证:CA=CN;(2)连接DF,若cos∠DFA=45,AN=210,求圆O的直径的长度.【答案】(1)证明见解析;(2)503.【解析】【分析】(1)连接OF,根据切线的性质结合四边形内角和为360°,即可得出∠M+∠FOH=180°,由三角形外角结合平行线的性质即可得出∠M=∠C=2∠OAF,再通过互余利用角的计算即可得出∠CAN=90°﹣∠OAF=∠ANC,由此即可证出CA=CN;(2)连接OC,由圆周角定理结合cos∠DFA=45,AN=210,即可求出CH、AH的长度,设圆的半径为r,则OH=r﹣6,根据勾股定理即可得出关于r的一元一次方程,解之即可得出r,再乘以2即可求出圆O 直径的长度.【详解】解:(1)连接OF,则∠OAF=∠OFA,如图所示.∵ME与⊙O相切,∴OF⊥ME.∵CD⊥AB,∴∠M+∠FOH=180°.∵∠BOF=∠OAF+∠OFA=2∠OAF,∠FOH+∠BOF=180°,∴∠M=2∠OAF.∵ME ∥AC ,∴∠M=∠C=2∠OAF .∵CD ⊥AB ,∴∠ANC+∠OAF=∠BAC+∠C=90°,∴∠ANC=90°﹣∠OAF ,∠BAC=90°﹣∠C=90°﹣2∠OAF ,∴∠CAN=∠OAF+∠BAC=90°﹣∠OAF=∠ANC ,∴CA=CN . (2)连接OC ,如图2所示. ∵cos ∠DFA=45,∠DFA=∠ACH ,∴CH AC =45.设CH=4a ,则AC=5a ,AH=3a ,∵CA=CN ,∴NH=a ,∴AN=2222=(3)=10210AH NH a a a ++=,∴a=2,AH=3a=6,CH=4a=8.设圆的半径为r ,则OH=r ﹣6,在Rt △OCH 中,OC=r ,CH=8,OH=r ﹣6,∴OC 2=CH 2+OH 2,r 2=82+(r ﹣6)2,解得:r=253,∴圆O 的直径的长度为2r=503.【点睛】本题考查切线的性质;勾股定理;圆周角定理;解直角三角形.25.如图,在Rt ABC 中ACB 90∠=,BC 4=,AC 3.=点P 从点B 出发,沿折线B C A --运动,当它到达点A 时停止,设点P 运动的路程为x.点Q 是射线CA 上一点,6CQ x=,连接BQ.设1CBQ y S =,2ABP y S=.()1求出1y ,2y 与x 的函数关系式,并注明x 的取值范围; ()2补全表格中1y 的值;x1 2 3 4 6 1y______________________________以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点,并在x 的取值范围内画出1y 的函数图象:()3在直角坐标系内直接画出2y 函数图象,结合1y 和2y 的函数图象,求出当12y y <时,x 的取值范围.【答案】(1)112y (0x 7)x =<≤,23x(0x 4)y 22x 14(4x 7)⎧<≤⎪=⎨⎪-+<≤⎩;(2)12,6,4,3,2,(3)22x 6<<,见解析. 【解析】 【分析】()1根据题意可以分别求得1y ,2y 与x 的函数关系式,并注明x 的取值范围; ()2根据()1中的函数解析式,可以将表格补充完整,并画出相应的函数图象;()3根据()1中2y 的函数解析式,可以画出2y 的函数图象,然后结合图象可以得到当12y y <时,x 的取值范围,注意可以先求出12y y =时x 的值. 【详解】()1由题意可得,164BC CQ 12x y 22x⨯⋅===, 当0x 4<≤时,2x 33xy 22⋅==, 当4x 7<≤时,()27x 4y 2x 142-⨯==-+,即112y (0x 7)x =<≤,23x(0x 4)y 22x 14(4x 7)⎧<≤⎪=⎨⎪-+<≤⎩;()1122y (0x 7)x=<≤,∴当x 1=时,y 12=;当x 2=时,y 6=;当x 3=时,y 4=;当x 4=时,y 3=;当x 6=时,y 2=; 故答案为12,6,4,3,2;在x 的取值范围内画出1y 的函数图象如图所示;()23x (0x 4)3y 22x 14(4x 7)⎧<≤⎪=⎨⎪-+<≤⎩, 则2y 函数图象如图所示, 当123x x 2=时,得x 22=122x 14x=-+时,x 6=; 则由图象可得,当12y y <时,x 的取值范围是22x 6<<.【点睛】本题考查一次函数的图象、反比例函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.26.平面直角坐标系xOy 中,直线44y x =+与轴,y 轴分别交于点A ,B .抛物线23y ax bx a =+-经过点A ,将点B 向右平移5个单位长度,得到点C .(1)求点C 的坐标和抛物线的对称轴;(2)若抛物线与线段BC 恰有一个公共点,结合函数图象,求a 的取值范围.【答案】(1)C (5,4);对称轴x=1;(2)a≥13或a <43-或a=-1. 【解析】【分析】(1)根据坐标轴上点的坐标特征可求点B 的坐标,根据平移的性质可求点C 的坐标;根据坐标轴上点的坐标特征可求点A 的坐标,进一步求得抛物线的对称轴;(2)结合图形,分三种情况:①a>0;②a<0,③抛物线的顶点在线段BC上;进行讨论即可求解【详解】解:(1)与y轴交点:令x=0代入直线y=4x+4得y=4,∴B(0,4),∵点B向右平移5个单位长度,得到点C,∴C(5,4);又∵与x轴交点:令y=0代入直线y=4x+4得x=-1,∴A(-1,0),∵点B向右平移5个单位长度,得到点C,将点A(-1,0)代入抛物线y=ax2+bx-3a中得0=a-b-3a,即b=-2a,∴抛物线的对称轴x=21 22b aa a--=-=;(2)∵抛物线y=ax2+bx-3a经过点A(-1,0)且对称轴x=1,由抛物线的对称性可知抛物线也一定过A的对称点(3,0),①a>0时,如图1,将x=0代入抛物线得y=-3a,∵抛物线与线段BC恰有一个公共点,∴-3a<4,a>43 -,将x=5代入抛物线得y=12a,∴12a≥4,a≥13,∴a≥13;②a<0时,如图2,将x=0代入抛物线得y=-3a,∵抛物线与线段BC恰有一个公共点,∴-3a>4,a<43 -,将x=5代入抛物线得y=12a,∴12a<4∴a<13,∴a<43 -;③当抛物线的顶点在线段BC上时,则顶点为(1,4),如图3,将点(1,4)代入抛物线得4=a-2a-3a,解得a=-1.综上所述::a≥13或a<43-或a=-1.【点睛】本题考查了待定系数法求函数解析式、二次函数的性质以及解一元一次不等式,解题的关键是熟练掌握解一元一次方程,待定系数法求抛物线解析式.本题属于中档题,难度不大,但涉及知识点较多,需要对二次函数足够了解才能快捷的解决问题.27.在菱形ABCD 中,60BAD ∠=︒.(1)如图1,点E 为线段AB 的中点,连接DE ,CE .若4AB =,求线段EC 的长.(2)如图2,M 为线段AC 上一点(不与A ,C 重合),以AM 为边向上构造等边三角形AMN ∆,线段AN 与AD 交于点G ,连接NC ,DM ,Q 为线段NC 的中点.连接DQ ,MQ 判断DM 与DQ 的数量关系,并证明你的结论.(3)在(2)的条件下,若3AC =DM CN +的最小值.【答案】(1)EC=27(2)DM=2DQ ;(3)DM+CN 的最小值为2.【解析】【分析】(1)如图1,连接对角线BD ,先证明△ABD 是等边三角形,根据E 是AB 的中点,由等腰三角形三线合一得:DE ⊥AB ,利用勾股定理依次求DE 和EC 的长;(2)如图2,作辅助线,构建全等三角形,先证明△ADH 是等边三角形,再由△AMN 是等边三角形,得条件证明△ANH ≌△AMD (SAS ),则HN=DM ,根据DQ 是△CHN 的中位线,得HN=2DQ ,由等量代换可得结论.(3)先判断出点N 在CD 的延长线上时,CN+DM 最小,最小为CH ,再判断出∠ACD=30°,即可用三角函数求出结论.【详解】解:(1)如图1,连接BD,则BD平分∠ABC,∵四边形ABCD 是菱形,∴AD∥BC,∴∠A+∠ABC=180°,∵∠A=60°,∴∠ABC=120°,∴∠ABD=12∠ABC=60°,∴△ABD是等边三角形,∴BD=AD=4,∵E是AB的中点,∴DE⊥AB,由勾股定理得:DE=224223-=,∵DC∥AB,∴∠EDC=∠DEA=90°,在Rt△DEC中,DC=4,EC=22224(23)27DC DE+=+=;(2)如图2,延长CD至H,使DH=CD,连接NH、AH,∵AD=CD ,∴AD=DH ,∵CD ∥AB ,∴∠HDA=∠BAD=60°,∴△ADH 是等边三角形,∴AH=AD ,∠HAD=60°,∵△AMN 是等边三角形,∴AM=AN ,∠NAM=60°,∴∠HAN+∠NAG=∠NAG+∠DAM ,∴∠HAN=∠DAM ,在△ANH 和△AMD 中,AH AD HAN DAM AN AM =⎧⎪∠=∠⎨⎪=⎩∴△ANH ≌△AMD (SAS ),∴HN=DM ,∵D 是CH 的中点,Q 是NC 的中点,∴DQ 是△CHN 的中位线,∴HN=2DQ ,∴DM=2DQ .(3)如图2,由(2)知,HN=DM ,∴要CN+DM 最小,便是CN+HN 最小,即:点C ,H ,N 在同一条线上时,CN+DM 最小,此时,点D 和点Q 重合,即:CN+DM 的最小值为CH ,如图3,由(2)知,△ADH 是等边三角形,∴∠H=60°.∵AC 是菱形ABCD 的对角线,∴∠ACD=12∠BCD=12∠BAD=30°, ∴∠CAH=180°-30°-60°=90°,在Rt △ACH 中,CH=cos30AC =2, ∴DM+CN 的最小值为2.【点睛】此题是四边形综合题,主要考查了菱形的性质、三角形的中位线、三角形全等的性质和判定、等边三角形的性质和判定,本题证明△ANH ≌△AMD 是关键,并与三角形中位线相结合,解决问题;第二问有难度,注意辅助线的构建.28.定义:点Q 到图形W 上每一个点的距离的最小值称为点Q 到图形W 的距离.例如,如图1,正方形ABCD 满足1,0A ,()2,0B ,()2,1C ,()1,1D ,那么点()0,0O 到正方形ABCD 的距离为1.(1)如果点()0,G b ()0b <到抛物线2yx 的距离为3,请直接写出b 的值________. (2)求点()3,0M 到直线3y x 的距离.(3)如果点N 在直线2x =上运动,并且到直线4y x =+的距离为4,求N 的坐标.【答案】(1)b=-3;(2)()3,0M 到直线3y x 的距离为32;(3)(2, 6-42)或(2, 6+42)【解析】【分析】 (1)作草图可知,当G 在原点下方时,b=-3;(2)过点M 作直线y=x+3的垂线,与直线y=x+3相交于点H ,则线段MH 的长即为点M 到直线y=x+3的距离.由等腰直角三角形MH=22ME 求解即可;(3)分N 在直线y=x+4的上方和下方求解即可.【详解】解:(1)由图可知线段GO 长即为点G 到抛物线2y x 的距离,故GO=3,所以b=-3(2)如图,直线y=x+3与x ,y 轴分别交于点E(-3,0),F(0,3),直线y=x+3与x 轴所成的角为45°,过点M 作MH ⊥EF ,交EF 与H ,线段MH 的长度即为点M 到直线y=x+3的距离,且易知H 点与F 点重合.∵FEM ∆为等腰直角三角形,∴EM=2FM , 又∵EF=3-(-3)=6,∴MF=22EM=22×6=32 ∴MH=32即点()3,0M 到直线3yx 的距离为32;(3)如图K 为直线x=2与x 轴的交点,故K(2,0),F 为直线x=2和直线y=x+4的交点,故F(2,6)①当点N 在直线y=x+4的下方N 1处时,过点N 1作N 1S 垂直直线y=x+4,∵点N 到直线4y x =+距离为4,∴SN 1=4,点E 是直线y=x+4与x 轴的交点,∴E(-4,0),且∠FEK=45°,∴1,EFK SFN ∆∆为等腰直角三角形∴EK=FK=2-(-4)=6,F N 1=21S=42∴KN 1=FK- F N 1=6-42∴N 1(2, 6-42②当点N 在直线y=x+4的上方N 2处时,过点N 2作N 2T 垂直直线y=x+4,同理可得:N 2T=4,N 2F=2T=∴N 2K=KF+FN 2=6+∴N 2(2, 6+故点N 在直线2x =上运动,并且到直线4y x =+的距离为4,N 的坐标为(2, 6-或(2, 6+【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
2019年湖北省武汉市武昌区中考模拟数学试卷(二) (解析版)

2019年湖北省武汉市武昌区中考模拟数学试卷(二)一.选择题(共10小题)1.有理数3的相反数是()A.﹣3B.﹣C.3D.2.式子在实数范围内有意义,则x的取值范围是()A.x>﹣2B.x≥﹣2C.x<﹣2D.x≤﹣23.不透明的袋子中装有形状、大小、质地完全相同的5个球,其中3个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是2个白球、1个黑球B.摸出的是3个黑球C.摸出的是3个白球D.摸出的是2个黑球、1个白球4.若点A(1,2),B(﹣1,2),则点A与点B的关系是()A.关于x轴对称B.关于y轴对称C.关于直线x=1对称D.关于直线y=1对称5.如图所示的几何体的俯视图是()A.B.C.D.6.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x张甲种票,y张乙种票,则所列方程组正确的是()A.B.C.D.7.把八个完全相同的小球平分为两组,每组中每个分别写上1,2,3,4四个数字,然后分别装入不透明的口袋内搅匀,从第一个口袋内取出一个数记下数字后作为点P的横坐标x,然后再从第二个口袋中取出一个球记下数字后作为点P的纵坐标,则点P(x,y)落在直线y=﹣x+5上的概率是()A.B.C.D.8.如图,甲处表示2街6巷的十字路口,乙处表示6街1巷的十字路口.如果用(2,6)表示甲处的位置,那么“(2,6)→(3,6)→(4,6)→(5,6)→(6,6)→(6,5)→(6,4)→(6,3)→(6,2)→(6,1)”表示从甲处到乙处的一种路线(规定:只能沿线向下和向右运动),则从甲处到乙处的路线中经过丙处的走法共有()A.38种B.39种C.40种D.41种9.已知a,b,c满足a+b+c=0,4a+c=2b,则二次函数y=ax2+bx+c(a≠0)的图象的对称轴为()A.直线x=1B.直线x=﹣1C.直线x=D.直线x=﹣10.如图,在等腰三角形△ABC中,O为底边BC的中点,以O为圆心作半圆与AB,AC 相切,切点分别为D,E.过半圆上一点F作半圆的切线,分别交AB,AC于M,N.那么的值等于()A.B.C.D.1二.填空题(共6小题)11.化简的结果是.12.某校举行“中国诗词大会”的比赛每班限报一名选手,九(1)班甲、乙、丙、丁四位选手在班级选拔赛时的数据如表:甲乙丙丁平均分9.89.39.29.8方差 1.5 3.2 3.3 6.8根据表中数据,要从四个同学中选择一个成绩好且发挥稳定的参加比赛,应该选择是(填“甲”或“乙”或“丙”或“丁”)13.化简的结果是.14.如图,在矩形ABCD中,边AD沿DF折叠,点A恰好落在矩形的对称中心E处,则cos∠ADF=.15.如图,一次函数y=3x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣3,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为2,则k的值为.16.如图,在△ABC中,点D,E分别为AB,AC边上一点,且BE=CD,CD⊥BE.若∠A=30°,BD=1,CE=2,则四边形CEDB的面积为.三.解答题(共8小题)17.计算:(2a2)2﹣a•3a3+a5÷a.18.如图,AB∥CD,∠ADC=∠ABC.求证:∠E=∠F.19.“长跑”是中考体育考试项目之一,某中学为了解九年级学生“长跑”的情况,随机抽取部分九年级学生,测试其长跑成绩(男子1000米,女子800米),按长跑的时间的长短依次分为A,B,C,D四个等级进行统计,并绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)在这次调查中共抽取了名学生,扇形统计图中,D类所对应的扇形圆心角大小为;(2)补全条形统计图,所抽取学生“长跑”测试成绩的中位数会落在等级;(3)若该校九年级共有900名学生,请你估计该校C等级的学生约在多少人?20.如图,在下列10×10的网格中,横、纵坐标均为整数的点叫做格点,例如A(3,0),B(4,3)都是格点.将△AOB绕点O顺时针旋转90°得到△COD(点A,B的对应点分别为点C,D).(1)作出△COD;(2)下面仅用无刻度的直尺画△AOD的内心I,操作如下:第一步:在x轴上找一格点E,连接DE,使OE=OD;第二步:在DE上找一点F,连接OF,使OF平分∠AOD;第三步:找格点G,得到正方形OAGC,连接AC,则AC与OF的交点I是△OAD的内心.请你按步骤完成作图,并直接写出E,F,I三点的坐标.21.如图,AB是⊙O的直径,过圆外一点E作EF与⊙O相切于G,交AB的延长线于F,EC⊥AB于H,交⊙O于D,C两点,连接AG交DC于K.(1)求证:EG=EK;(2)连接AC,若AC∥EF,cos C=,AK=,求BF的长.22.随着《流浪地球》的热播,其同名科幻小说的销量也急剧上升.为应对这种变化,某网店分别花20000元和30000元先后两次增购该小说,第二次的数量比第一次多500套,且两次进价相同.(1)该科幻小说第一次购进多少套?(2)根据以往经验:当销售单价是25元时,每天的销售量是250套;销售单价每上涨1元,每天的销售量就减少10套.网店要求每套书的利润不低于10元且不高于18元.①直接写出网店销售该科幻小说每天的销售量y(套)与销售单价x(元)之间的函数关系式及自变量x的取值范围;②网店决定每销售1套该科幻小说,就捐赠a(0<a<7)元给困难职工,每天扣除捐赠后可获得的最大利润为1960元,求a的值.23.在△ABC中,∠ACB=90°,CD为高,BC=nAC(1)如图1,当n=时,则的值为;(直接写出结果)(2)如图2,点P是BC的中点,过点P作PF⊥AP交AB于F,求的值;(用含n 的代数式表示)(3)在(2)的条件下,若PF=BF,则n=.(直接写出结果)24.在平面直角坐标系xOy中,抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,0),B两点,与y轴交于C(0,3),对称轴为直线x=2.(1)请直接写出该抛物线的解析式;(2)设直线l与抛物线的对称轴的交点为F,在对称轴右侧的抛物线上有一点G,若=,且S△BAG=6,求点G的坐标;(3)若在直线y=上有且只有一点P,使∠APB=90°,求k的值.参考答案与试题解析一.选择题(共10小题)1.有理数3的相反数是()A.﹣3B.﹣C.3D.【分析】依据相反数的定义求解即可.【解答】解:3的相反数是﹣3.故选:A.2.式子在实数范围内有意义,则x的取值范围是()A.x>﹣2B.x≥﹣2C.x<﹣2D.x≤﹣2【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x+2≥0,解得x≥﹣2.故选:B.3.不透明的袋子中装有形状、大小、质地完全相同的5个球,其中3个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是2个白球、1个黑球B.摸出的是3个黑球C.摸出的是3个白球D.摸出的是2个黑球、1个白球【分析】根据白色的只有两个,不可能摸出三个进行解答.【解答】解:A.摸出的是2个白球、1个黑球是随机事件;B.摸出的是3个黑球是随机事件;C.摸出的是3个白球是不可能事件;D.摸出的是2个黑球、1个白球是随机事件,故选:C.4.若点A(1,2),B(﹣1,2),则点A与点B的关系是()A.关于x轴对称B.关于y轴对称C.关于直线x=1对称D.关于直线y=1对称【分析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【解答】解:∵点A(1,2),B(﹣1,2),∴点A与点B关于y轴对称,故选:B.5.如图所示的几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上往下看,易得一个长方形,且其正中有一条纵向实线,故选:B.6.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x张甲种票,y张乙种票,则所列方程组正确的是()A.B.C.D.【分析】分别利用有35名学生以及购票恰好用去750元,得出等式求出答案.【解答】解:设买了x张甲种票,y张乙种票,根据题意可得:.故选:B.7.把八个完全相同的小球平分为两组,每组中每个分别写上1,2,3,4四个数字,然后分别装入不透明的口袋内搅匀,从第一个口袋内取出一个数记下数字后作为点P的横坐标x,然后再从第二个口袋中取出一个球记下数字后作为点P的纵坐标,则点P(x,y)落在直线y=﹣x+5上的概率是()A.B.C.D.【分析】首先根据题意画出表格,然后由表格求得所有等可能的结果与数字x、y满足y =﹣x+5的情况,再利用概率公式求解即可求得答案.【解答】解:列表得:12341(1,1)(1,2)(1,3)(1,4)2(2,1)(2,2)(2,3)(2,4)3(3,1)(3,2)(3,3)(3,4)4(4,1)(4,2)(4,3)(4,4)∵共有16种等可能的结果,数字x、y满足y=﹣x+5的有(1,4),(2,3),(3,2),(4,1),∴数字x、y满足y=﹣x+5的概率为:.故选:B.8.如图,甲处表示2街6巷的十字路口,乙处表示6街1巷的十字路口.如果用(2,6)表示甲处的位置,那么“(2,6)→(3,6)→(4,6)→(5,6)→(6,6)→(6,5)→(6,4)→(6,3)→(6,2)→(6,1)”表示从甲处到乙处的一种路线(规定:只能沿线向下和向右运动),则从甲处到乙处的路线中经过丙处的走法共有()A.38种B.39种C.40种D.41种【分析】先确定从甲到丙的路线,再确定从丙到乙的路线,两种路线的乘积即为所求;【解答】解:从甲到丙有4条路线,从丙到乙有10条路线,∴从甲处到乙处经过丙处的走法共有4×10=40种,故选:C.9.已知a,b,c满足a+b+c=0,4a+c=2b,则二次函数y=ax2+bx+c(a≠0)的图象的对称轴为()A.直线x=1B.直线x=﹣1C.直线x=D.直线x=﹣【分析】根据a+b+c=0,4a+c=2b,可以求得a、b、c之间的关系,从而可以求得该函数的对称轴,本题得以解决.【解答】解:∵a+b+c=0,4a+c=2b,∴c=﹣2a,a=b,∵二次函数y=ax2+bx+c(a≠0),∴对称轴是直线x==,故选:D.10.如图,在等腰三角形△ABC中,O为底边BC的中点,以O为圆心作半圆与AB,AC 相切,切点分别为D,E.过半圆上一点F作半圆的切线,分别交AB,AC于M,N.那么的值等于()A.B.C.D.1【分析】连OM,ON,利用切线长定理知OM,ON分别平分角BMN,角CNM,再利用三角形和四边形的内角和可求得△OBM与△NOC还有一组角相等,由此得到它们相似,通过相似比可解决问题.【解答】解:连OM,ON,如图∵MD,MF与⊙O相切,∴∠1=∠2,同理得∠3=∠4,而∠1+∠2+∠3+∠4+∠B+∠C=360°,AB=AC∴∠2+∠3+∠B=180°;而∠1+∠MOB+∠B=180°,∴∠3=∠MOB,即有∠4=∠MOB,∴△OMB∽△NOC,∴=,∴BM•CN=BC2,∴=.故选:B.二.填空题(共6小题)11.化简的结果是.【分析】根据二次根式的性质解答.【解答】解:==.12.某校举行“中国诗词大会”的比赛每班限报一名选手,九(1)班甲、乙、丙、丁四位选手在班级选拔赛时的数据如表:甲乙丙丁平均分9.89.39.29.8方差 1.5 3.2 3.3 6.8根据表中数据,要从四个同学中选择一个成绩好且发挥稳定的参加比赛,应该选择是甲(填“甲”或“乙”或“丙”或“丁”)【分析】首先比较平均数,平均数相同时选择方差较小的参加比赛即可.【解答】解:∵=>>,∴从甲和丁中选择一人参加比赛,∵S甲2<S乙2<S丙2<S丁2,∴选择甲参赛;故答案为:甲.13.化简的结果是.【分析】首先通分,然后根据分式加减法的运算方法,求出算式的值是多少即可.【解答】解:,=+,=,=.14.如图,在矩形ABCD中,边AD沿DF折叠,点A恰好落在矩形的对称中心E处,则cos∠ADF=.【分析】根据折叠的性质得到AD=ED=AE,∠ADF=∠EDF=∠ADE,推出△DAE 的等边三角形,根据等边三角形的性质得到∠ADE=60°,求得∠ADF=30°,于是得到结论.【解答】解:如图,连接AE,∵把∠A沿DF折叠,点A恰好落在矩形的对称中心E处,∴AD=ED=AE,∠ADF=∠EDF=ADE,∴△DAE的等边三角形,∴∠ADE=60°,∴∠ADF=30°,∴cos∠ADF=,故答案为:.15.如图,一次函数y=3x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣3,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为2,则k的值为.【分析】作辅助线,先确定OQ长的最大时,点P的位置,当BP过圆心C时,BP最长,设B(t,3t),则CD=t﹣(﹣3)=t+3,BD=﹣3t,根据勾股定理计算t的值,可得k 的值.【解答】解:如图,连接BP,由对称性得:OA=OB,∵Q是AP的中点,∴OQ=BP,∵OQ长的最大值为2,∴BP长的最大值为2×2=4,如图,当BP过圆心C时,BP最长,过B作BD⊥x轴于D,∵CP=1,∴BC=3,∵B在直线y=3x上,设B(t,3t),则CD=t﹣(﹣3)=t+3,BD=﹣3t,在Rt△BCD中,由勾股定理得:BC2=CD2+BD2,∴32=(t+3)2+(﹣3t)2,解得t=0(舍)或﹣,∴B(﹣,﹣),∵点B在反比例函数y=(k>0)的图象上,∴k=(﹣)×(﹣)=.故答案为:.16.如图,在△ABC中,点D,E分别为AB,AC边上一点,且BE=CD,CD⊥BE.若∠A=30°,BD=1,CE=2,则四边形CEDB的面积为.【分析】作辅助线CK⊥AB,EH⊥AB,由两直线垂直得∠BMD=∠CKD=∠BHE=90°,角角边证明△CKD≌△BHE,其性质得DK=EH;设CK=x,根据直角三角的性质,线段的和差得AK=,EH=DK=x﹣,BH=4+﹣x;建立等量关系4+﹣x=x,求得CK=,DK═,最后由勾股定理,面积公式求得四边形CEDB的面积为.【解答】解:分别过点C、E两点作CK⊥AB,EH⊥AB交AB于点K和点H,设CK=x,如图所示:∵CD⊥BE,∴∠BMD=90°,∴∠EBH+∠CDB=90°,同理可得:∠EBH+∠BEH=90°,∴∠CDB=∠BEH,又∵CK⊥AB,EH⊥AB,∴∠CKD=∠BHE=90°,在△CKD和△BHE中,,∴△CKD≌△BHE(AAS),∴DK=EH,又∵Rt△AKC中,∠A=30°,∴AC=2x,AK=,又∵AC=AE+EC,CE=2,∴AE=2x﹣2,∴EH=DK=x﹣,又∵DK=DB+BK,BD=1,∴BK=x﹣﹣1,又∵AK=AH+BH+BK,∴BH=4+﹣x,又∵BH=CK,∴4+﹣x=x,解得:x=,∴DK=x﹣=,在Rt△CDK中,由勾股定理得:CD2=CK2+DK2==,∴===.故答案为.三.解答题(共8小题)17.计算:(2a2)2﹣a•3a3+a5÷a.【分析】分别求出每(2a2)2a=4a4;a•3a3=3a4;a5÷a=a4;再运算即可;【解答】解:(2a2)2﹣a•3a3+a5÷a=4a4﹣3a4+a4=2a4;18.如图,AB∥CD,∠ADC=∠ABC.求证:∠E=∠F.【分析】直接利用平行线的性质得出∠ABC=∠DCF,再利用已知得出∠E=∠F.【解答】证明:∵AB∥CD,∴∠ABC=∠DCF.又∵∠ADC=∠ABC∴∠ADC=∠DCF.∴DE∥BF.∴∠E=∠F.19.“长跑”是中考体育考试项目之一,某中学为了解九年级学生“长跑”的情况,随机抽取部分九年级学生,测试其长跑成绩(男子1000米,女子800米),按长跑的时间的长短依次分为A,B,C,D四个等级进行统计,并绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)在这次调查中共抽取了45名学生,扇形统计图中,D类所对应的扇形圆心角大小为104°;(2)补全条形统计图,所抽取学生“长跑”测试成绩的中位数会落在C等级;(3)若该校九年级共有900名学生,请你估计该校C等级的学生约在多少人?【分析】(1)这次调查中共抽取学生:8÷=45(名),D类所对应的扇形圆心角360°×=104(度);(2)B等级学生:45﹣8﹣20﹣13=4,据此补全条形统计图;(3)该校九年级900名学生中估计C等级的学生约有:900×=400(名).【解答】解:(1)这次调查中共抽取学生:8÷=45(名),D类所对应的扇形圆心角360°×=104(度),故答案为45,104°;(2)B等级学生:45﹣8﹣20﹣13=4补全条形统计图如下共有45名学生,因此中位数为第23,落在C等级.故答案为C;(3)该校九年级900名学生中估计C等级的学生约有:900×=400(名).答:该校九年级900名学生中估计C等级的学生约有400人.20.如图,在下列10×10的网格中,横、纵坐标均为整数的点叫做格点,例如A(3,0),B(4,3)都是格点.将△AOB绕点O顺时针旋转90°得到△COD(点A,B的对应点分别为点C,D).(1)作出△COD;(2)下面仅用无刻度的直尺画△AOD的内心I,操作如下:第一步:在x轴上找一格点E,连接DE,使OE=OD;第二步:在DE上找一点F,连接OF,使OF平分∠AOD;第三步:找格点G,得到正方形OAGC,连接AC,则AC与OF的交点I是△OAD的内心.请你按步骤完成作图,并直接写出E,F,I三点的坐标.【分析】(1)根据要求作图即可(2)根据要求作图即可【解答】解:(1)如图所示(2)如图所示,每格单位长度都为1,即可得E(5,0),F(4,﹣2),I(2,﹣1)21.如图,AB是⊙O的直径,过圆外一点E作EF与⊙O相切于G,交AB的延长线于F,EC⊥AB于H,交⊙O于D,C两点,连接AG交DC于K.(1)求证:EG=EK;(2)连接AC,若AC∥EF,cos C=,AK=,求BF的长.【分析】(1)连接OG.根据切线的性质得到∠OGE=90°,证明∠EKG=∠AGE,根据等腰三角形的判定定理证明结论;(2)连接OC,设CH=4k,根据余弦的定义、勾股定理用k表示出AC、AH,根据勾股定理列式求出k,设⊙O半径为R,根据勾股定理列式求出R,根据余弦的定义求出OF,计算即可.【解答】(1)证明:连接OG.∵EF是⊙O的切线,∴∠OGE=90°,即∠OGA+∠AGE=90°.∵OA=OG,∴∠OGA=∠OAG,∴∠OAG+∠AGE=90°.∵CD⊥AB,∴∠AHK=90°,则∠OAG+∠AKH=90°.∴∠AKH=∠AGE.∵∠AKH=∠EKG,∴∠EKG=∠AGE,∴EG=EK;(2)如图,连接OC,设CH=4k,∵cos∠ACH==,∴AC=5k,由勾股定理得,AH==3k,∵AC∥EF,∴∠CAK=∠EGA,又∠AKC=∠EKG,而由(1)知∠EKG=∠EGA,∴∠CAK=∠CKA,∴CK=AC=5k,HK=CK﹣CH=k.在Rt△AHK中,AH2+HK2=AK2,即(3k)2+k2=()2,解得,k=1,则CH=4,AC=5,AH=3,设⊙O半径为R,在Rt△OCH中,OH2+CH2=OC2,即(R﹣3)2+42=R2,解得,R=,由AC∥EF知,∠CAH=∠F,则∠ACH=∠GOF,在Rt△OGF中,cos∠ACH=cos∠GOF==,解得,OF=,∴BF=OF﹣OB=.22.随着《流浪地球》的热播,其同名科幻小说的销量也急剧上升.为应对这种变化,某网店分别花20000元和30000元先后两次增购该小说,第二次的数量比第一次多500套,且两次进价相同.(1)该科幻小说第一次购进多少套?(2)根据以往经验:当销售单价是25元时,每天的销售量是250套;销售单价每上涨1元,每天的销售量就减少10套.网店要求每套书的利润不低于10元且不高于18元.①直接写出网店销售该科幻小说每天的销售量y(套)与销售单价x(元)之间的函数关系式及自变量x的取值范围;②网店决定每销售1套该科幻小说,就捐赠a(0<a<7)元给困难职工,每天扣除捐赠后可获得的最大利润为1960元,求a的值.【分析】(1)设该科幻小说第一次购进m套,根据题意列方程即可得到结论;(2)根据题意列函数关系式即可;(3)设每天扣除捐赠后可获得利润为w元.根据题意得到w=(x﹣20﹣a)(﹣10x+500)=﹣10x2+(10a+700)x﹣500a﹣10000(30≤x≤38)求得对称轴为x=35+a,①若0<a<6,则30,则当x=35+a时,w取得最大值,解方程得到a1=2,a2=58,于是得到a=2;②若6<a<7,则38<35a,则当30≤x≤38时,w随x的增大而增大;解方程得到a=,但6<a<7,故舍去.于是得到结论.【解答】解:(1)设该科幻小说第一次购进m套,则=,∴m=1000,经检验,当m=1000时,m(m+500)≠0,则m=1000是原方程的解,答:该科幻小说第一次购进1000套;(2)根据题意得,y=250﹣10(x﹣25)=﹣10x+500(30≤x≤38);(3)设每天扣除捐赠后可获得利润为w元.w=(x﹣20﹣a)(﹣10x+500)=﹣10x2+(10a+700)x﹣500a﹣10000(30≤x≤38)对称轴为x=35+a,①若0<a<6,则30,则当x=35+a时,w取得最大值,∴(35+a﹣20﹣a)[﹣10x(35+a)+500]=1960∴a1=2,a2=58,又0<a≤6,则a=2;②若6<a<7,则38<35a,则当30≤x≤38时,w随x的增大而增大;∴当x=38时,w取得最大值,则(38﹣20﹣a)(﹣10×38+500)=1960,∴a=,但6<a<7,故舍去.综上所述,a=2.23.在△ABC中,∠ACB=90°,CD为高,BC=nAC(1)如图1,当n=时,则的值为;(直接写出结果)(2)如图2,点P是BC的中点,过点P作PF⊥AP交AB于F,求的值;(用含n 的代数式表示)(3)在(2)的条件下,若PF=BF,则n=.(直接写出结果)【分析】(1)设AC=2k,BC=3k,求出AD,BD即可解决问题.(2)过点P作PG∥AC交AB于点G.证明△PCE∽△PGF,即可解决问题.(3)设PF=x,AP=2nx,利用勾股定理构建方程求出n即可.【解答】解:(1)如图1中,∵BC=AC,∴可以假设AC=2k,BC=3k,∵∠ACB=∠ADC=90°,∴AB=k,∵•AC•BC=•AB•CD,∴CD=k,∴AD==k,BD=k,∴=,故答案为.(2)过点P作PG∥AC交AB于点G.∴∠PGF=∠CAD,∠GPC=90°,∵CD⊥AB,∠ACB=90°,∴∠CAD+∠ACD=90°,∠ACD+∠PCE=90°,∴∠PCE=∠CAD,∴∠PCE=∠PGF,又∵PF⊥AP,∴∠CPE+∠APG=∠FPG+∠APG=90°,∴∠CPE=∠GPF,∴△PCE∽△PGF,∴=,又∵点P是BC的中点,∴AC=2PG,∴==n.(3)由(2)可知=n,则可以假设PF=x,PE=nx,∵∠GPB=90°,PF=BF,则PF=BF=GF=x,则AG=2x,∵△PCE∽△PGF,∴==n,则CE=nGF=nx,又∵∠ACB=90°,则AE=PE=nx,在Rt△APF中,AP2+PF2=AF2,则x2+(2nx)2=(3x)2,∴n=,故答案为.24.在平面直角坐标系xOy中,抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,0),B两点,与y轴交于C(0,3),对称轴为直线x=2.(1)请直接写出该抛物线的解析式;(2)设直线l与抛物线的对称轴的交点为F,在对称轴右侧的抛物线上有一点G,若=,且S△BAG=6,求点G的坐标;(3)若在直线y=上有且只有一点P,使∠APB=90°,求k的值.【分析】(1)抛物线与x轴另外一个交点坐标为(3,0),则函数的表达式为:y=a(x ﹣1)(x﹣3)=a(x2﹣4x+3),即:3a=3,即可求解;(2)分点G在点B下方、点G在点B上方两种情况,分别求解即可;(3)由△P AS∽△BPT,则,即可求解.【解答】解:(1)∵抛物线过点A(1,0),且对成轴为直线x=2,则抛物线与x轴另外一个交点坐标为(3,0),则函数的表达式为:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),令x=0则3a=3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3…①;(2)过点B作BM∥x轴交对称轴于点M,设对称轴与x轴交于点N.∴,又AN=1,则BM=2,点B的坐标为(4,3),∵直线AB的解析式为y=kx+m,则,则,则y=x﹣1,①若点G在点B下方,则过点G作GQ∥y轴交AB于Q,则设点G(t,t2﹣4t+3),Q (t,t﹣1),∴S△BAG=6=S△AQG+S△BGQ=GQ×3=(t﹣1﹣t2+4t﹣3),即:t2﹣5t+8=0,△<0,无解;②若点G在点B上方,则过点G作GH∥AB交x轴于H,则S△BAG=6=S△ABH,即:AH×3=6,则AH=4,则H(﹣3,0),则可设直线GH的解析式为:y=x+t,将H(﹣3,0)代入得,t=3.∴直线GH的解析式为y=x+3…②,联立①②并解得:x=0或5(舍去0),∴G(5,8);(3)分别过点A,B作直线y=﹣的垂线,垂足分别为S,T,则△P AS∽△BPT,则,直线l的解析式为y=kx﹣k…③,联立①③并解得:x=1或k+3,则点B(k+3,k2+2k),设:PS=x,则x(k+2﹣x)=(k2+2k+)有两个相等实数根,△=(k+2)2﹣2k2﹣4k﹣1=0,解得:k=(舍去负值),故:k=.。
2020数学中考试题江西省模拟样卷(二)

2019年江西省中考数学模拟样卷(二)一、选择题(共6小题,每小题3分,满分18分)1.﹣2,0,0.5,﹣这四个数中,属于无理数的是()A.﹣2 B.0 C.0.5 D.﹣2.如图是由一水桶抽象而成的几何图形,其俯视图是()A.B.C.D.3.下列运算中正确的是()A.2x+3y=5xy B.a3﹣a2=aC.(a﹣1)(a﹣2)=a2+a﹣2 D.(a﹣ab)÷a=1﹣b4.如图,在△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转后,得到△ADF,此时点D落在边BC的中点处,则图中与∠C相等的角(除∠C外)有()A.5个B.4个C.3个D.2个5.第六届世界数学团体锦标赛于2019年11月25日至11月29日在北京举行,其会徽如图所示,它的内围与外围分别是由七个与四边形ABCD全等的四边形和七个与四边形BEFC全等的四边形依次环绕而成的正七边形.设AD=a,AB=b,CF=c,EF=d,则该会徽内外两个正七边形的周长之和为()A.7(a+b+c﹣d)B.7(a+b﹣c+d)C.7(a﹣b+c+d)D.7(b+c+d﹣a)6.已知二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,0),(5,0),图象上有三个点(x1,y1),(x2,y2),(x3,y3).若当x1<﹣1<x2<5<x3时,均有y1y2<0,y2y3<0,则下列说法中正确的是()A.a<0 B.x=2时,y有最大值C.y1y2y3<0 D.5b=4c二、填空题(本大题共有6小题,每小题3分,共18分)7.人体最小的细胞是淋巴细胞,直径约为0.0000061m,用科学记数法可将0.0000061表示为.8.化简:÷=.9.在某次学校安全知识抢答赛中,九年级参赛的10名学生的成绩统计图如图所示.这10名学生的参赛成绩的中位数是分.10.若方程x2﹣4x﹣5=0的两根为x1,x2,则x12+x22的值为.11.如图,D、E分别是AC和AB上的点,AD=DC=4,DE=3,DE∥BC,∠C=90°,将△ADE沿着AB边向右平移,当点D落在BC上时,平移的距离为.12.在同一平面内,已知点P在等边△ABC外部,且与等边△ABC三个顶点中的任意两个顶点形成的三角形都是等腰三角形,则∠APC的度数为.三、(本大题共有6小题,共30分)13.计算:﹣2cos45°+||.14.求不等式组的最小整数解.15.为了增强居民的节电意识,某城区电价执“阶梯式”计费,每月应交电费y(元)与用电量x(度)之间的函数关系如图所示,请写出每月应交电费与用电量的函数关系式;若某用户12月份交电费68元,求该用户12月份的用电量.16.某校食堂的中餐与晚餐的资费标准如下:种类单价米饭0.5元/份A类套餐菜 3.5元/份B类套餐菜 2.5元/份小杰同学某星期从周一到周五每天的中餐与晚餐均在学校选用A类或B类中的一份套餐菜与一份米饭用餐,这五天共消费36元.请问小杰在这五天内,A,B类套餐菜各选用了多少次?17.如图,线段AB是⊙O的直径,BC⊥CD于点C,AD⊥CD于点D,请仅用无刻度的直尺按下列要求作图.(1)在图1中,当线段CD与⊙O相切时,请在CD上确定一点E,连接BE,使BE平分∠ABC;(2)在图2中,当线段CD与⊙O相离时,请过点O作OF⊥CD,垂足为F.18.手机微信推出了抢红包游戏,它有多种玩法,其中一种为“拼手气红包”:用户设定好总金额以及红包个数后,可以生成不等金额的红包.现有一用户发了三个“拼手气红包”,随机被甲、乙、丙三人抢到.(1)以下说法中正确的是A.甲、乙两人抢到的红包金额之和一定比丙抢到的红包金额多B.甲一定抢到金额最多的红包C.乙一定抢到金额居中的红包D.丙不一定抢到金额最少的红包(2)记金额最多、居中、最少的红包分别为A,B,C,试求出甲抢到红包A的概率P(A).四、(共大题4小题,每小题8分,满分32分)19.某地区在一次九年级数学做了检测中,有一道满分8分的解答题,按评分标准,所有考生的得分只有四种:0分,3分,5分,8分.老师为了了解学生的得分情况与题目的难易情况,从全区4500名考生的试卷中随机抽取一部分,通过分析与整理,绘制了如下两幅图不完整的统计图.请根据以上信息解答下列问题:(1)填空:a=,b=,并把条形统计图不全;(2)请估计该地区此题得满分(即8分)的学生人数;(3)已知难度系数的计算公式为L=,其中L为难度系数,X为样本平均得分,W为试题满分值.一般来说,根据试题的难度系数可将试题分为以下三类:当0<L≤0.4时,此题为难题;当0.4<L≤0.7时,此题为中等难度试题;当0.7<L<1时,此题为容易题.试问此题对于该地区的九年级学生来说属于哪一类?20.如图,已知反比例函数y=的图象经过点A(2,1),点M(m,n)(0<m<2)是该函数图象上一动点,过点M作直线MB∥x轴,交y轴于点B,过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.(1)求反比例函数的解析式;(2)当∠OAM=90°时,求点M的坐标.21.图1是一种可折叠台灯,它放置在水平桌面上,将其抽象成图2,其中点B,E,D均为可转动点.现测得AB=BE=ED=CD=15cm,经多次调试发现当点B,E所在直线垂直经过CD的中点F时(如图3所示)放置较平稳.(1)求平稳放置时灯座DC与灯杆DE的夹角的大小;(2)为保护视力,写字时眼睛离桌面的距离应保持在30cm,为防止台灯刺眼,点A离桌面的距离应不超过30cm,求台灯平稳放置时∠ABE的最大值.(结果精确到0.01°,参考数据:≈1.732,sin7.70°≈0.134,cos82.30°≈0.134,可使用科学计算器)22.已知一个零刻度落在点A的量角器(半圆O)的直径为AB,等腰直角△BCD绕点B旋转.(1)如图1,当等腰直角△BCD运动至斜边BD交量角器边缘于点G,直角边CD交量角器边缘于点E,F,第三边交量角器边缘于点H时,点G在量角器上的读数为20°,求此时点H在量角器上的读数.(2)如图2,当点G,E在量角器上的读数α,β满足什么关系时,等腰直角△BCD的直角边CD 会与半圆O相切于点E?请说明理由.五、(本大题共10分)23.如图,已知四边形ABCD为正方形,AB=2,点E为对角线AC上一动点,连接DE,过点E 作EF⊥DE,交射线BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由;(3)设AE=x,四边形DEFG的面积为S,求出S与x的函数关系式.六、(本大题共12分)24.如图1,抛物线C:y=x2经过变化可得到抛物线C1:y1=a1x(x﹣b1),C1与x轴的正半轴交与点A1,且其对称轴分别交抛物线C,C1于点B1,D1,此时四边形OB1A1D1恰为正方形;按上述类似方法,如图2,抛物线C1:y1=a1x(x﹣b1)经过变换可得到抛物线C2:y2=a2x(x﹣b2),C2与x 轴的正半轴交与点A2,且其对称轴分别交抛物线C1,C2于点B2,D2,此时四边形OB2A2D2也恰为正方形;按上述类似方法,如图3,可得到抛物线C3:y3=a3x(x﹣b3)与正方形OB3A3D3.请探究以下问题:(1)填空:a1=,b1=;(2)求出C2与C3的解析式;(3)按上述类似方法,可得到抛物线C n:y n=a n x(x﹣b n)与正方形OB n A n D n(n≥1).①请用含n的代数式直接表示出C n的解析式;②当x取任意不为0的实数时,试比较y2019与y2019的函数值的大小并说明理由.2019年江西省中考数学模拟样卷(二)参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.﹣2,0,0.5,﹣这四个数中,属于无理数的是()A.﹣2 B.0 C.0.5 D.﹣【考点】无理数.【分析】无理数就是无限不循环小数,根据定义即可作出判断.【解答】解:﹣2和0是整数,是有理数;0.5是有限小数,是有理数;﹣是无理数.故选D.2.如图是由一水桶抽象而成的几何图形,其俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看是一个有直径的圆环,故选:D.3.下列运算中正确的是()A.2x+3y=5xy B.a3﹣a2=aC.(a﹣1)(a﹣2)=a2+a﹣2 D.(a﹣ab)÷a=1﹣b【考点】整式的除法;合并同类项;多项式乘多项式.【分析】根据合并同类项、多项式的乘法、除法进行计算即可.【解答】解:A、2x与3y不能合并,错误;B、a3与a2不能合并,错误;C、(a﹣1)(a﹣2)=a2﹣3a+2,错误;D、(a﹣ab)÷a=1﹣b,正确;故选D4.如图,在△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转后,得到△ADF,此时点D落在边BC的中点处,则图中与∠C相等的角(除∠C外)有()A.5个B.4个C.3个D.2个【考点】旋转的性质.【分析】根据旋转得出∠C=∠FDA,AC=AD,根据直角三角形性质得出AD=DC,求出△ADC是等边三角形,即可求出∠ADC=∠DAC=∠FDB=∠FDA=∠FAB=60°,即可得出选项.【解答】解:∵将△ABC绕点A顺时针旋转后,得到△ADF,∴∠C=∠FDA,AC=AD,∵∠BAC=90°,D为BC的中点,∴AD=DC,∴∠C=∠DAC,AD=AC=CD,∴△ADC是等边三角形,∴∠DAC=∠C=∠ADC=60°,∴∠FDA=∠C=60°,∴∠B=30°,∠FDB=180°﹣60°﹣60°=60°,∴∠F=∠B=30°,∠AEF=∠BED=90°,∴∠FAB=180°﹣90°﹣30°=60°,即∠C=∠ADC=∠DAC=∠FDB=∠FDA=∠FAB=60°,即和∠C相等的角有5个,故选A.5.第六届世界数学团体锦标赛于2019年11月25日至11月29日在北京举行,其会徽如图所示,它的内围与外围分别是由七个与四边形ABCD全等的四边形和七个与四边形BEFC全等的四边形依次环绕而成的正七边形.设AD=a,AB=b,CF=c,EF=d,则该会徽内外两个正七边形的周长之和为()A.7(a+b+c﹣d)B.7(a+b﹣c+d)C.7(a﹣b+c+d)D.7(b+c+d﹣a)【考点】正多边形和圆.【分析】根据全等形的性质得到BM=AD,EN=CF,然后根据正七边形的周长公式计算即可.【解答】解:如图,∵它的内围与外围分别是由七个与四边形ABCD全等的四边形和七个与四边形BEFC全等的四边形依次环绕而成的正七边形,∴AM=BM﹣AB=AD﹣AB=a﹣b,FN=EF+EN=EF+CF=c+d,∴内外两个正七边形的周长之和为7(a﹣b)+7(c+d)=7(a﹣b+c+d),故选C.6.已知二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,0),(5,0),图象上有三个点(x1,y1),(x2,y2),(x3,y3).若当x1<﹣1<x2<5<x3时,均有y1y2<0,y2y3<0,则下列说法中正确的是()A.a<0 B.x=2时,y有最大值C.y1y2y3<0 D.5b=4c【考点】二次函数的性质.【分析】根据抛物线的性质即可判定A、B、C错误,由交点坐标,求得对称轴,得出a和b的关系,根据x=﹣1时,y=0,得出a﹣b+c=0,根据a、b的关系即可求得5b=4c.【解答】解:∵二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,0),(5,0),∴对称轴为x==2,∵当x1<﹣1<x2<5<x3时,均有y1y2<0,y2y3<0,∴当a>0,y有最小值,y1,>0,y2<0,y3>0,当a<0,y有最大值,y1,<0,y2>0,y3<0,∴y1y2y3>0,故A、B、C错误,∵﹣=2,∴a=﹣b,∵图象经过点(﹣1,0),∴a﹣b+c=0,∵﹣b﹣b+c=0,∴5b=4c,故D正确;故选D.二、填空题(本大题共有6小题,每小题3分,共18分)7.人体最小的细胞是淋巴细胞,直径约为0.0000061m,用科学记数法可将0.0000061表示为 6.1×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:用科学记数法可将0.0000061表示为6.1×10﹣6.故答案为:6.1×10﹣6.8.化简:÷=a+1.【考点】分式的乘除法.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=•(a﹣1)=a+1,故答案为:a+19.在某次学校安全知识抢答赛中,九年级参赛的10名学生的成绩统计图如图所示.这10名学生的参赛成绩的中位数是90分.【考点】中位数.【分析】根据图形可以得到这10名学生的成绩,从而可以得到这10名学生的参赛成绩的中位数.【解答】解:由图可得,这10名学生的成绩分别是:80、85、85、90、90、90、90、90、95、95,故这10名学生的参赛成绩的中位数是:分,故答案为:90.10.若方程x2﹣4x﹣5=0的两根为x1,x2,则x12+x22的值为26.【考点】解一元二次方程-因式分解法;代数式求值.【分析】先利用因式分解法解方程得到x1,x2,然后利用代入法计算x12+x22的值.【解答】解:x2﹣4x﹣5=0,(x﹣5)(x+1)=0,x﹣5=0或x+1=0,所以x1=5,x2=﹣1,所以x12+x22=52+(﹣1)2=26.故答案为26.11.如图,D、E分别是AC和AB上的点,AD=DC=4,DE=3,DE∥BC,∠C=90°,将△ADE沿着AB边向右平移,当点D落在BC上时,平移的距离为5.【考点】平移的性质.【分析】根据勾股定理得到AE==5,由平行线等分线段定理得到AE=BE=5,根据平移的性质即可得到结论.【解答】解:∵∠C=90°,AD=DC=4,DE=3,∴AE==5,∵DE∥BC,∴AE=BE=5,∴当点D落在BC上时,平移的距离为BE=5.故答案为:5.12.在同一平面内,已知点P在等边△ABC外部,且与等边△ABC三个顶点中的任意两个顶点形成的三角形都是等腰三角形,则∠APC的度数为15°或30°或60°或75°或150°.【考点】等边三角形的性质;等腰三角形的性质.【分析】根据点P在等边△ABC外部,且与等边△ABC三个顶点中的任意两个顶点形成的三角形都是等腰三角形,找出点P的位置,求得∠APC的度数即可.【解答】解:根据点P在等边△ABC外部,且与等边△ABC三个顶点中的任意两个顶点形成的三角形都是等腰三角形,作出如下图形:由图可得:∠AP1C=15°,∠AP2C=30°,∠AP3C=60°,∠AP4C=75°,∠AP5C=150°.故答案为:15°或30°或60°或75°或150°三、(本大题共有6小题,共30分)13.计算:﹣2cos45°+||.【考点】特殊角的三角函数值;实数的运算.【分析】分别利用特殊角的三角函数值以及二次根式的性质、绝对值的性质分别化简求出答案.【解答】解:﹣2cos45°+||=2﹣2×+2﹣=2.14.求不等式组的最小整数解.【考点】一元一次不等式的整数解.【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集,结合解集即可得最小整数解.【解答】解:解不等式x﹣1≥0,得:x≥1,解不等式1﹣x>0,得:x<2,∴不等式组的解集为:1≤x<2,则该不等式组的最小整数解为x=1.15.为了增强居民的节电意识,某城区电价执“阶梯式”计费,每月应交电费y(元)与用电量x(度)之间的函数关系如图所示,请写出每月应交电费与用电量的函数关系式;若某用户12月份交电费68元,求该用户12月份的用电量.【考点】一次函数的应用.【分析】根据函数图象,利用待定系数法分别求出当0≤x≤50和x>50时,每月应交电费与用电量的函数关系式;根据函数图象可知,当y=68时,x>50,将y=68代入对应的函数解析式,即可求解.【解答】解:每月应交电费y(元)与用电量x(度)之间的函数关系式分两种情况:①当0≤x≤50时,设y=kx,∵图象过点,∴100k=50,解得k=,∴y=x;②当x>50时,设y=mx+n,∵图象过点,,∴,解得,∴y=x﹣10;综上所述,每月应交电费与用电量的函数关系式为y=.将y=68代入y=x﹣10,得x﹣10=68,解得x=130.故若某用户12月份交电费68元,则该用户12月份的用电量是130度.16.某校食堂的中餐与晚餐的资费标准如下:种类单价米饭0.5元/份A类套餐菜 3.5元/份B类套餐菜 2.5元/份小杰同学某星期从周一到周五每天的中餐与晚餐均在学校选用A类或B类中的一份套餐菜与一份米饭用餐,这五天共消费36元.请问小杰在这五天内,A,B类套餐菜各选用了多少次?【考点】二元一次方程组的应用.【分析】设小杰在这五天内,A类套餐菜选用了x次,B类套餐菜选用了y次,根据:A套餐次数+B套餐次数=10、A套餐费用+B套餐费用+米饭费用=36,列方程组求解即可得.【解答】解:设小杰在这五天内,A类套餐菜选用了x次,B类套餐菜选用了y次,根据题意,得:,解得:,答:小杰在这五天内,A类套餐菜选用了6次,B类套餐菜选用了4次.17.如图,线段AB是⊙O的直径,BC⊥CD于点C,AD⊥CD于点D,请仅用无刻度的直尺按下列要求作图.(1)在图1中,当线段CD与⊙O相切时,请在CD上确定一点E,连接BE,使BE平分∠ABC;(2)在图2中,当线段CD与⊙O相离时,请过点O作OF⊥CD,垂足为F.【考点】切线的性质;垂径定理.【分析】(1)构造矩形ADCM,对角相等交点为H,连接OH,延长OH交CD于E,连接BE,射线BE即为所求作.(2)方法类似(1).【解答】解:(1)如图1中,设BC交⊙O于M,连接AM、AC、DM,AC与DM交于点H,连接OH,延长OH交CD于点E,连接BE,BE即为所求作.(2)如图2中,设BC交⊙O于M,连接AM、AC、DM,AC与DM交于点H,连接OH,延长OH交CD于点F,则OF⊥CD于F.18.手机微信推出了抢红包游戏,它有多种玩法,其中一种为“拼手气红包”:用户设定好总金额以及红包个数后,可以生成不等金额的红包.现有一用户发了三个“拼手气红包”,随机被甲、乙、丙三人抢到.(1)以下说法中正确的是DA.甲、乙两人抢到的红包金额之和一定比丙抢到的红包金额多B.甲一定抢到金额最多的红包C.乙一定抢到金额居中的红包D.丙不一定抢到金额最少的红包(2)记金额最多、居中、最少的红包分别为A,B,C,试求出甲抢到红包A的概率P(A).【考点】随机事件.【分析】(1)根据题意和随机事件的概念解答;(2)根据概率公式进行计算即可.【解答】解:(1)甲、乙两人抢到的红包金额之和不一定比丙抢到的红包金额多,A错误;甲不一定抢到金额最多的红包,B错误;乙不一定抢到金额居中的红包,C错误;丙不一定抢到金额最少的红包,D正确,故选:D.(2)P(A)=.四、(共大题4小题,每小题8分,满分32分)19.某地区在一次九年级数学做了检测中,有一道满分8分的解答题,按评分标准,所有考生的得分只有四种:0分,3分,5分,8分.老师为了了解学生的得分情况与题目的难易情况,从全区4500名考生的试卷中随机抽取一部分,通过分析与整理,绘制了如下两幅图不完整的统计图.请根据以上信息解答下列问题:(1)填空:a=25,b=20,并把条形统计图不全;(2)请估计该地区此题得满分(即8分)的学生人数;(3)已知难度系数的计算公式为L=,其中L为难度系数,X为样本平均得分,W为试题满分值.一般来说,根据试题的难度系数可将试题分为以下三类:当0<L≤0.4时,此题为难题;当0.4<L≤0.7时,此题为中等难度试题;当0.7<L<1时,此题为容易题.试问此题对于该地区的九年级学生来说属于哪一类?【考点】加权平均数;用样本估计总体;条形统计图.【分析】(1)根据条形统计图和扇形统计图可以得到a和b的值,从而可以得到得3分的人数将条形统计图补充完整;(2)根据第(1)问可以估计该地区此题得满分(即8分)的学生人数;(3)根据题意可以算出L的值,从而可以判断试题的难度系数.【解答】解:(1)由条形统计图可知0分的同学有24人,由扇形统计图可知,0分的同学占10%,∴抽取的总人数是:24÷10%=240,故得3分的学生数是;240﹣24﹣108﹣48=60,∴a%=,b%=,故答案为:25,20;补全的条形统计图如右图所示,(2)由(1)可得,得满分的占20%,∴该地区此题得满分(即8分)的学生人数是:4500×20%=900人,即该地区此题得满分(即8分)的学生数900人;(3)由题意可得,L===0.575,∵0.575处于0.4<L≤0.7之间,∴题对于该地区的九年级学生来说属于中等难度试题.20.如图,已知反比例函数y=的图象经过点A(2,1),点M(m,n)(0<m<2)是该函数图象上一动点,过点M作直线MB∥x轴,交y轴于点B,过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.(1)求反比例函数的解析式;(2)当∠OAM=90°时,求点M的坐标.【考点】待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征.【分析】(1)把A点坐标代入y=中求出k的值即可;(2)先证明Rt△AMD∽Rt△OAC得到(n﹣1):2=(2﹣m):1,再利用点M(m,n)在y=的图象上得到n=,然后解关于m的方程求出m,从而可得到M点的坐标.【解答】解:(1)把A(2,1)代入y=得k=2×1=2,所以反比例函数解析式为y=;(2)∵∠OAM=90°,∴∠MAD+∠CAO=90°,而∠CAO+∠AOC=90°,∴∠AOC=∠MAD,∴Rt△AMD∽Rt△OAC,∴AD:OC=MD:AC,即(n﹣1):2=(2﹣m):1,∴n﹣1=4﹣2m,∵点M(m,n)在y=的图象上,∴n=,∴﹣1=4﹣2m,整理得2m2﹣5m+2=0,解得m1=,m2=2(舍去),∴n=4,∴点M的坐标为(,4).21.图1是一种可折叠台灯,它放置在水平桌面上,将其抽象成图2,其中点B,E,D均为可转动点.现测得AB=BE=ED=CD=15cm,经多次调试发现当点B,E所在直线垂直经过CD的中点F时(如图3所示)放置较平稳.(1)求平稳放置时灯座DC与灯杆DE的夹角的大小;(2)为保护视力,写字时眼睛离桌面的距离应保持在30cm,为防止台灯刺眼,点A离桌面的距离应不超过30cm,求台灯平稳放置时∠ABE的最大值.(结果精确到0.01°,参考数据:≈1.732,sin7.70°≈0.134,cos82.30°≈0.134,可使用科学计算器)【考点】解直角三角形的应用.【分析】(1)由题意得:DF=CD=cm,EF⊥CD,根据三角函数的定义即可得到结论;(2)如图3,过A作AH⊥BE交EB的延长线于H,求得EF=15×=,根据cos∠ABH=≈0.134,根据得到结论.【解答】解:(1)由题意得:DF=CD=cm,EF⊥CD,∴cosD=,∴∠D=60°;答:平稳放置时灯座DC与灯杆DE的夹角是60°;(2)如图3,过A作AH⊥BE交EB的延长线于H,∴HF=30,∵EF=15×=,∴BH=30﹣BE﹣EF=15﹣,∴cos∠ABH=≈0.134,∴∠ABH≈82.26°,∴∠ABE=97.34°.答:台灯平稳放置时∠ABE的最大值是97.34°.22.已知一个零刻度落在点A的量角器(半圆O)的直径为AB,等腰直角△BCD绕点B旋转.(1)如图1,当等腰直角△BCD运动至斜边BD交量角器边缘于点G,直角边CD交量角器边缘于点E,F,第三边交量角器边缘于点H时,点G在量角器上的读数为20°,求此时点H在量角器上的读数.(2)如图2,当点G,E在量角器上的读数α,β满足什么关系时,等腰直角△BCD的直角边CD 会与半圆O相切于点E?请说明理由.【考点】切线的性质.【分析】(1)连接OG、OH.由题意可知:∠AOG=20°,由等腰直角三角形的性质可求得∠CBD=45°,接下来,依据圆周角定理可求得∠HOG=90°,最后依据∠AOH=∠AOG+∠GOH求解即可;(2)连接OG、OE.先由切线的性质证明OE⊥DC,然后依据平行线的判定定理可证明EO∥CB,接下来依据平行线的性质和可得到∠EOA=∠CBA,最后结合圆周角定理以及∠ABC、∠ABG、∠DBC的关系可得到α、β的关系.【解答】解:(1)如图1所示:连接OG、OH.∵点G在量角器上的读数为20°,∴∠AOG=20°.∵△BCD为等腰直角三角形,∴∠CBD=45°.∴∠HOG=90°.∴∠AOH=∠AOG+∠GOH=20°+90°=110°.(2)如图2所示:连接OG、OE.∵DC为圆O的切线,E为切点,∴∠OED=90°.∴∠OED=∠C.∴EO∥CB.∴∠EOA=∠CBA=β.又∵∠GBA=∠GOA=α,∠ABC=∠ABG+∠DBC,∴β=+45°.五、(本大题共10分)23.如图,已知四边形ABCD为正方形,AB=2,点E为对角线AC上一动点,连接DE,过点E 作EF⊥DE,交射线BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由;(3)设AE=x,四边形DEFG的面积为S,求出S与x的函数关系式.【考点】四边形综合题.【分析】(1)作出辅助线,得到EN=EM,然后判断∠DEN=∠FEM,得到△DEM≌△FEM,则有DE=EF即可;(2)同(1)的方法判断出△ADE≌△CDG得到CG=AE,即:CE+CG=CE+AE=AC=4;(3)由正方形的性质得到∠DAE=45°,表示出AM=EM,再表示出DM,再用勾股定理求出DE2.【解答】解:(1)如图,作EM⊥BC,EN⊥CD∴∠MEN=90°,∵点E是正方形ABCD对角线上的点,∴EM=EN,∵∠DEF=90°,∴∠DEN=∠MEF,在△DEM和△FEM中,,∴△DEM≌△FEM,∴EF=DE,∵四边形DEFG是矩形,∴矩形DEFG是正方形;(2)CE+CG的值是定值,定值为4,∵正方形DEFG和正方形ABCD,∴DE=DG,AD=DC,∵∠CDG+∠CDE=∠ADE+∠CDE=90°,∴∠CDG=∠ADE,∴△ADE≌△CDG,∴AE=CE.∴CE+CG=CE+AE=AC=AB=×2=4,(3)如图,∵正方形ABCD中,AB=2,∴AC=4,过点E作EM⊥AD,∴∠DAE=45°,∵AE=x,∴AM=EM=x,在Rt△DME中,DM=AD﹣AM=2﹣x,EM=x,根据勾股定理得,DE2=DM2+EM2=(2﹣x)2+(x)2=x2﹣4x+8,∵四边形DEFG为正方形,=DE2=x2﹣4x+8.∴S=S正方形DEFG六、(本大题共12分)24.如图1,抛物线C:y=x2经过变化可得到抛物线C1:y1=a1x(x﹣b1),C1与x轴的正半轴交与点A1,且其对称轴分别交抛物线C,C1于点B1,D1,此时四边形OB1A1D1恰为正方形;按上述类似方法,如图2,抛物线C1:y1=a1x(x﹣b1)经过变换可得到抛物线C2:y2=a2x(x﹣b2),C2与x 轴的正半轴交与点A2,且其对称轴分别交抛物线C1,C2于点B2,D2,此时四边形OB2A2D2也恰为正方形;按上述类似方法,如图3,可得到抛物线C3:y3=a3x(x﹣b3)与正方形OB3A3D3.请探究以下问题:(1)填空:a1=1,b1=2;(2)求出C2与C3的解析式;(3)按上述类似方法,可得到抛物线C n:y n=a n x(x﹣b n)与正方形OB n A n D n(n≥1).①请用含n的代数式直接表示出C n的解析式;②当x取任意不为0的实数时,试比较y2019与y2019的函数值的大小并说明理由.【考点】二次函数综合题.【分析】(1)根据图形变换后二次项系数不变得出a1=1,代入抛物线C1解析式后,求与x轴交点A1坐标,根据正方形对角线性质表示出B1的坐标,代入对应的解析式即可求出对应的b1的值;(2)根据图形变换后二次项系数不变得出a2=a1=1,代入抛物线C2解析式后,求与x轴交点A2坐标,根据正方形对角线性质表示出B2的坐标,代入对应的解析式即可求出对应的b2的值,写出抛物线C2的解析式;再利用相同的方法求抛物线C3的解析式;(3)①根据图形变换后二次项系数不变得出a n=a1=1,由B1坐标(1,1)、B2坐标(3,3)、B3坐标(7,7)得B n坐标(2n﹣1,2n﹣1),则b n=2(2n﹣1)=2n+1﹣2(n≥1),写出抛物线C n解析式.②先求抛物线C2019和抛物线C2019的交点为(0,0),在交点的两侧观察图形得出y2019与y2019的函数值的大小.【解答】解:(1)由抛物线C经过变换得到抛物线C1,则a1=1,代入C1得:y1=x(x﹣b1),y1=0时,x(x﹣b1)=0x1=0,x2=b1∴A1(b1,0)由正方形OB1A1D1得:OA1=B1D1=b1∴B1(,)∵B1在抛物线c上,则=b1(b1﹣2)=0b1=0(不符合题意),b1=2故答案为:1,2;(2)由a2=a1=1得,y2=x(x﹣b2),y2=0时,x(x﹣b2)=0x1=0,x2=b2∴A2(b2,0)由正方形OB2A2D2得:OA2=B2D2=b2∴B2(,)∵B2在抛物线c1上,则=()2﹣2×,b2(b2﹣6)=0b2=0(不符合题意),b2=6∴C2的解析式:y2=x(x﹣6)=x2﹣6x,由a3=a2=1得,y3=x(x﹣b3),y3=0时,x(x﹣b3)=0x1=0,x2=b3∴A3(b3,0)由正方形OB3A3D3得:OA3=B3D3=b3∴B3(,)∵B3在抛物线c2上,则=()2﹣6×,b3(b3﹣14)=0b3=0(不符合题意),b3=14∴C3的解析式:y3=x(x﹣14)=x2﹣14x,(3)①C n的解析式:y n=x2﹣(2n+1﹣2)x(n≥1).②由上题可得抛物线C2019的解析式为:y2019=x2﹣x=x2﹣x 抛物线C2019的解析式为:y2019=x2﹣x=x2﹣x∴两抛物线的交点为(0,0);∴当x<0时,y2019<y2019;当x>0时,y2019>y2019.2019年10月20日。
精品人教版2019-2020学年九年级数学上册期中模拟试卷(二)解析版

人教版2019-2020学年九年级数学上册期中模拟试卷(二)一.选择题(共8小题,满分6分)1.一元二次方程x2=3x的解为()A.x=0B.x=3C.x=0或x=3D.x=0 且x=32.方程2x2+5=7x根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根3.将抛物线y=﹣3x2先向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式是()A.y=﹣3(x﹣1)2﹣2B.y=﹣3(x﹣1)2+2C.y=﹣3(x+1)2﹣2D.y=﹣3(x+1)2+24.(3分)如图,∠CAB=25°,CA、CB是等腰△ABC的两腰,将△ABC绕点A顺时针进行旋转,得到△ADE.当点B恰好在DE的延长线时,则∠EAB的度数为()A.155°B.130°C.105°D.75°5.在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°后得到点P′,则点P′的坐标是()A.(﹣2,3)B.(3,﹣2)C.(﹣3,2)D.(2,﹣3)6.如图,∠AOB=100°,点C在⊙O上,且点C不与A、B重合,则∠ACB的度数为()A.50°B.80°或50°C.130°D.50°或130°7.如图,A,B,C三点在⊙O上,且∠BOC=100°,则∠A的度数为()A.40°B.50°C.80°D.100°8.(3分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个二.填空题(共8小题,满分18分)9.(3分)当a=时,(a﹣3)x|a|﹣1﹣x=5是关于x的一元二次方程.10.(3分)平面直角坐标系中,一点P(﹣2,3)关于原点的对称点P′的坐标是.11.(3分)二次函数y=﹣x2﹣2x+3的最大值是.12.(3分)已知抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,则a+c=.13.(3分)已知关于x的方程x2+kx﹣3=0的一个根是x=﹣1,则另一根为.14.(3分)如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD,若点B的坐标为(2,0),则点C的坐标为.15.如图,P是⊙O的直径AB延长线上的一点,PC切⊙O于点C,∠APC的平分线交AC于点D.若∠APC=40°,则∠CDP=.16.如图,已知点C是的一点,圆周角∠ACB为125°,则圆心角∠AOB=度.三.解答题(共2小题,满分16分,每小题8分)17.(8分)解方程与不等式:(1)(x﹣3)(x﹣2)+33=(x+9)(x+1)(2)(2x+3)(2x﹣3)<4(x﹣2)(x+3)18.(8分)已知关于x的一元二次方程x2+3x﹣m=0有实数根.(1)求m的取值范围(2)若两实数根分别为x1和x2,且x12+x22=11,求m的值.四.解答题(共2小题)19.如图,在正方形网格中,△ABC的三个顶点都在格点上,点O也在格点上.(1)画△A'B'C',使△A'B'C'与△ABC关于直线OP成轴对称,点A的对应点是A';(2)画△A''B''C'',使△A''B''C''与△A'B'C'关于点O成中心对称,点A'的对应点是A''.20.在平面直角坐标系中,O为原点,点A(2,0),点B(0,),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.如图,若α=90°,求AA′的长.五.解答题(共2小题,满分20分,每小题10分)21.(10分)已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△OA′B′的面积.22.(10分)如图,在⊙O中,直径AB经过弦CD的中点E,点M在OD上,AM的延长线交⊙O于点G,交过D 的直线于F,且∠BDF=∠CDB,BD与CG交于点N.(1)求证:DF是⊙O的切线;(2)连结MN,猜想MN与AB的位置有关系,并给出证明.六.解答题(共2小题,满分20分,每小题10分)23.(10分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?24.(10分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?七.解答题(共1小题)25.在矩形ABCD中,AB=6,AD=8,点E是对角线BD上一动点.(1)如图1,当CE⊥BD时,求DE的长;(2)如图2,作EM⊥EN分别交边BC于M,交边CD于N,连MN.①若,求tan∠ENM;②若E运动到矩形中心O,连CO.当CO将△OMN分成两部分面积比为1:2时,直接写出CN的长.八.解答题(共1小题)26.如图,已知关于x的二次函数y=﹣x2+bx+c(c>0)的图象与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求出二次函数的关系式;(2)点P为线段MB上的一个动点,过点P作x轴的垂线PD,垂足为D.若OD=m,△PCD的面积为S,求S关于m的函数关系式,并写出m的取值范围;(3)探索线段MB上是否存在点P,使得△PCD为直角三角形?如果存在,求出P的坐标;如果不存在,请说明理由.参考答案与试题解析一.选择题(共8小题,满分6分)1.【解答】解:方程移项得:x2﹣3x=0,分解因式得:x(x﹣3)=0,解得:x=0或x=3,故选:C.2.【解答】解:方程化为2x2﹣7x+5=0,因为△=(﹣7)2﹣4×2×5=9>0,所以方程有两个不相等的实数根.故选:A.3.【解答】解:将抛物线y=﹣3x2向左平移1个单位所得直线解析式为:y=﹣3(x+1)2;再向下平移2个单位为:y=﹣3(x+1)2﹣2,即y=﹣3(x+1)2﹣2.故选:C.4.【解答】解:∵CA=CB,∴∠CBA=∠CAB=25°,∵△ABC绕点A顺时针进行旋转,得到△ADE.点B恰好在DE的延长线上,∴∠D=∠ABC=25°,∠DAE=∠BAC=25°,AD=AB,∴∠ABD=25°,∴∠ABD=∠CAB,∴AC∥BD,∴∠D+∠DAC=180°,∴∠EAB=180°﹣25°﹣25°﹣25°=105°.故选:C.5.【解答】解:如图,过P、P′两点分别作x轴,y轴的垂线,垂足为A、B,∵线段OP绕点O顺时针旋转90°,∴∠POP′=∠AOB=90°,∴∠AOP=∠P′OB,且OP=OP′,∠P AO=∠P′BO=90°,∴△OAP≌△OBP′,即P′B=P A=3,BO=OA=2,∴P′(3,﹣2).故选:B.6.【解答】解:当点C在优弧上时,∠AC′B=∠AOB=×100°=50°,当点C在劣弧上时,∠ACB=(360°﹣∠AOB)=×(360°﹣100°)=130°.故选:D.7.【解答】解:由题意得∠A=∠BOC=×100°=50°.故选:B.8.【解答】解:①由图象开口可知:a>0,c<0,∵>0,∴b<0,∴abc>0,故①正确;②由图象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故②正确;③抛物线与x轴交于点A(﹣1,0),B(2,0),∴抛物线的对称轴为:x=,∴<1,∴2a+b>0,故③正确;④由图象可知顶点坐标的纵坐标小于﹣2,故④错误;⑤由③可知抛物线的对称轴为x=,∴由图象可知:x<时,y随着x的增大而减小,故⑤正确;⑥由图象可知:x=1时,y<0,∴a+b+c<0,故⑥错误;故选:B.二.填空题(共8小题,满分18分)9.【解答】解:∵(a﹣3)x|a|﹣1﹣x=5是关于x的一元二次方程,∴a﹣3≠0,|a|﹣1=2,解得:a=﹣3,即当a=﹣3时,(a﹣3)x|a|﹣1﹣x=5是关于x的一元二次方程,故答案为:﹣3.10.【解答】解:根据中心对称的性质,得点P(﹣2,﹣3)关于原点对称点P′的坐标是(2,﹣3).故答案为:(2,﹣3).11.【解答】解:∵y=﹣x2﹣2x+3=y=﹣(x2+2x+1﹣1)+3=﹣(x+1)2+4,∴当x=﹣1时,y取得最大值4,故答案为:4.12.【解答】解:∵抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,∴抛物线y=ax2+x+c经过(﹣1,0),∴a﹣1+c=0,∴a+c=1,故答案为1.13.【解答】解:设方程的另一个根为x2,则﹣1×x2=﹣3,解得:x2=3,故答案为:3.14.【解答】解:过点C作CE⊥x轴于点E,∵OB=2,AB⊥x轴,点A在直线y=x上,∴AB=2,OA==4,∴RT△ABO中,tan∠AOB==,∴∠AOB=60°,又∵△CBD是由△ABO绕点B逆时针旋转60°得到,∴∠D=∠AOB=∠OBD=60°,AO=CD=4,∴△OBD是等边三角形,∴DO=OB=2,∠DOB=∠COE=60°,∴CO=CD﹣DO=2,在RT△COE中,OE=CO•cos∠COE=2×=1,CE=CO•sin∠COE=2×=,∴点C的坐标为(﹣1,),故答案为:(﹣1,).15.【解答】解:如图,连接OC,∵PC为圆O的切线,∴PC⊥OC,即∠PCO=90°,∴∠CPO+∠COP=90°,∵OA=OC,∴∠A=∠ACO=∠COP,∵PD为∠APC的平分线,∴∠APD=∠CPD=∠CPO,∴∠CDP=∠APD+∠A=(∠CPO+∠COP)=45°.故答案为:45°.16.【解答】解:在优弧AB上取点D,连接AD,BD,∵∠ACB=125°,∴∠ADB=180°﹣125°=55°,∴∠AOB=110°,故答案为:110.三.解答题(共2小题,满分16分,每小题8分)17.【解答】解:(1)x2﹣5x+6+33=x2+10x+9,x2﹣5x﹣x2﹣10x=9﹣6﹣33,﹣15x=﹣30,x=2;(2)4x2﹣9<4(x2+x﹣6),4x2﹣9<4x2+4x﹣24,4x2﹣4x2﹣4x<﹣24+9,﹣4x<﹣15,x>.18.【解答】解:(1)∵关于x的一元二次方程x2+3x﹣m=0有实数根,∴△=b2﹣4ac=32+4m≥0,解得:m≥﹣;(2)∵x1+x2=﹣3、x1x2=﹣m,∴x12+x22=(x1+x2)2﹣2x1•x2=11,∴(﹣3)2+2m=11,解得:m=1.四.解答题(共2小题)19.【解答】解:(1)如图所示,△A'B'C'为所求三角形;(2)如图所示,△A''B''C''为所求三角形.20.【解答】解:∵点A(2,0),点B(0,),∴OA=2,OB=.在Rt△ABO中,由勾股定理得AB=.根据题意,△A′BO′是△ABO绕点B逆时针旋转900得到的,由旋转是性质可得:∠A′BA=90°,A′B=AB=,∴AA′==.五.解答题(共2小题,满分20分,每小题10分)21.【解答】解:(1)设抛物线顶点式y=a(x+1)2+4将B(2,﹣5)代入得:a=﹣1∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3)令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0)(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0)当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位故A'(2,4),B'(5,﹣5)∴S△OA′B′=×(2+5)×9﹣×2×4﹣×5×5=15.22.【解答】(1)证明:∵直径AB经过弦CD的中点E,∴AB⊥CD,.∴∠BOD=2∠CDB.∵∠BDF=∠CDB,∴∠BOD=∠CDF,∵∠BOD+∠ODE=90°,∴∠ODE+∠CDF=90°,即∠ODF=90°,∴DF是⊙O的切线;(2)猜想:MN∥AB.证明:连结CB.∵直径AB经过弦CD的中点E,∴,.∴∠CBA=∠DBA,CB=BD.∵OB=OD,∴∠DBA=∠ODB.∴∠AOD=∠DBA+∠ODB=2∠DBA=∠CBD,∵∠BCG=∠BAG,∴△CBN∽△AOM,∴.∵AO=OD,CB=BD,∴,∴,∵∠ODB=∠MDN,∴△MDN∽△ODB,∴∠DMN=∠DOB,∴MN∥AB.六.解答题(共2小题,满分20分,每小题10分)23.【解答】解:(1)设每次降价的百分率为x.40×(1﹣x)2=32.4x=10%或190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件32.4元,两次下降的百分率啊10%;(2)设每天要想获得510元的利润,且更有利于减少库存,则每件商品应降价y元,由题意,得(40﹣30﹣y)(4×+48)=510,解得:y1=1.5,y2=2.5,∵有利于减少库存,∴y=2.5.答:要使商场每月销售这种商品的利润达到510元,且更有利于减少库存,则每件商品应降价2.5元.24.【解答】解:(1)根据题意得y=(70﹣x﹣50)(300+20x)=﹣20x2+100x+6000,∵70﹣x﹣50>0,且x≥0,∴0≤x<20;(2)∵y=﹣20x2+100x+6000=﹣20(x﹣)2+6125,∴当x=时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.七.解答题(共1小题)25.【解答】解:(1)∵矩形ABCD中,AB=6,AD=8∴∠BCD=90°,BC=AD=8,CD=AB=6∴BD==10∵CE⊥BD∴∠CED=∠BCD=90°∵∠CDE=∠BDC∴△CDE∽△BDC∴∴DE=(2)①如图1,过点M作MF⊥BD于点F,过点N作NG⊥BD于点G∵,BD=10∴BD=BE+DE=3DE+DE=4DE=10∴DE=,BE=设MF=a,NG=b∵∠BFM=∠C=90°,∠FBM=∠CBD∴△FBM∽△CBD∴∴BF==a∴EF=BE﹣BF=a同理可证:△GDN∽△CDB∴∴DG==b∴EG=DE﹣DG=b∵EM⊥EN∴∠MEN=∠MFE=∠NGE=90°∴∠MEF+∠NEG=∠MEF+∠EMF=90°∴∠EMF=∠NEG∴△EMF∽△NEG∴∴EF•EG=NG•MF∴(a)(b)=ba整理得:16a=90﹣27b∴在Rt△MEN中,tan∠ENM==②如图2,过点M作MF⊥BD于点F,MP⊥OC于点P,过点N作NG⊥BD于点G,NQ⊥OC于点Q,设OC 与MN交点为H∵点O为矩形中心,BD=10∴OB=OD=OC=BD=5由①可得,设MF=a,NG=b,则BF==a,DG==b,OF•OG=NG•MF∴OF=OB﹣BF=5﹣a,OG=OD﹣DG=5﹣b∴(5﹣a)(5﹣b)=ab整理得:16a=60﹣9b∴=设CN=5x∵∠NCQ=∠BDC,∠NQC=∠BCD=90°∴△NCQ∽△BDC∴=∴CQ=CN=3x,NQ=CN=4x∴OQ=OC﹣CQ=5﹣3x∵∠MPO=∠MON=∠OQN=90°∴∠MOP+∠NOQ=∠NOQ+∠ONQ=90°∴∠MOP=∠ONQ∴△MOP∽△ONQ∴i)若S△OMH=2S△ONH,且两三角形都以OH为底∴MP=2NQ=8x∴解得:x=∴CN=ii)若2S△OMH=S△ONH,则MP=NQ=2x∴解得:x=∴CN=综上所述,CN的长为或.八.解答题(共1小题)26.【解答】解:(1)∵OB=OC=3,∴B(3,0),C(0,3)∴,解得1分∴二次函数的解析式为y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴M(1,4)设直线MB的解析式为y=kx+n,则有解得:,∴直线MB的解析式为y=﹣2x+6∵PD⊥x轴,OD=m,∴点P的坐标为(m,﹣2m+6)S三角形PCD=×(﹣2m+6)•m=﹣m2+3m(1≤m<3);(3)∵若∠PDC是直角,则点C在x轴上,由函数图象可知点C在y轴的正半轴上,∴∠PDC≠90°,在△PCD中,当∠DPC=90°时,当CP∥AB时,∵PD⊥AB,∴CP⊥PD,∴PD=OC=3,∴P点纵坐标为:3,代入y=﹣2x+6,∴x=,此时P(,3).∴线段BM上存在点P(,3)使△PCD为直角三角形.当∠P′CD′=90°时,△COD′∽△D′CP′,此时CD′2=CO•P′D′,即9+m2=3(﹣2m+6),∴m2+6m﹣9=0,解得:m=﹣3±3,∵1≤m<3,∴m=3(﹣1),∴P′(3﹣3,12﹣6)综上所述:P点坐标为:(,3),(3﹣3,12﹣6).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年中考模拟测试卷(二) 数学一、填空题(本大题共12小题,每小题3分,共36分) 1.3的平方根是_________.2.国家游泳中心“水立方”是北京奥运会场馆之一,它的外层膜的展开面积约为26万m 2将26万m 2用科学记数法表示应为________________. 3.函数y =中自变量x 的取值范围是__________. 4.分解因式:x 3-4x=__________________.5.已知圆锥的底面直径为4cm ,其母线长为3cm ,则它的侧面积为________cm 2. 6.如图,已知在⊙O 中,半径OC 垂直于弦AB 垂足为D ,若CD=2,OA=5,则AB=________. 7.2009年,江苏省实施初中英语听力口语自动化考试.为更好地适应自动化考试,某校组织了一次模拟考试,某小组12名学生成绩如下:28,21,26,30,28,27,30,30,18,28,30,25.这组数据的中位数为________.8.将一副学生用三角板按如图所示的方式放置.若AE ∥BC ,则∠AFD 的度数是_________.9.已知二次函数y=2x+b 的图像如图所示,当x <0时,y 的取值范围是_________. 10.按如图所示的程序计算,若开始输入的x 的值为48,我们发现第一次得到的结果为24,第2次得到的结果为12,……,请你探索第2009次得到的结果为________.11.已知△ABC 为等腰三角形,由点A 作BC 边的高恰好等于BC 边长的一半,则∠BAC 的度数为_____________.12.如图,Rt △ABC 的直角边BC 在x 轴正半轴上,斜边AC 边上 的中线BD 反向延长线交y 轴负半轴于E ,双曲线ky x=(x >0)的图像经过点A , 若S △BEC =8,则k 等于________.二、选择题(本大题共6小题,每小题3分,共18分.每题的四个选项中,只有一个选项第17题是符合要求的.) 13.已知⊙O 1与⊙O 2的半径分别为3cm 和4cm ,O 1O 2=6cm ,则两圆的位置关系为 ( ) A .内切 B .相交 C .外切 D .外离14.下列运算正确的是 ( ) A .x 2+x 2=x 4 B .(a -1) 2=a 2-1 C .a 2·a 3=a 5 D .3x+2y=5xy 15.不等式组112x x ≤⎧⎨+>-⎩,的解集在数轴上可表示为 ()16.下列方程中,有实数根的是 ( )A .x 2-x+2=0B .x 4-1=0C1=- D .111x x x =-- 17.如图,在矩形ABCD 中,由8个面积均为1的小正方形组成的 L 型模板如图放置,则矩形ABCD 的周长为 ( ) A. B. C. D.182③抛物线一定经过点(3,0); ④在对称轴左侧,y 随x 增大而减小.从表可知,下列说法正确的个数有( ) A .1个 B .2个 C .3个 D .4个三、解答题(本大题共11小题,共76分.解答时应写出必要的计算过程、推演步骤或文字说明.) 19.(本题5分)()20092sin 601-︒--.20.(本题5分)先化简,再求值:2111211a a a a a a +⎛⎫+÷ ⎪--+-⎝⎭,其中112a a -=.21.(本题5分)解方程:2212313x x x x--=-.22.(本题6分)如图,在平面直角坐标系中,点A ,B ,C ,P的坐标分别为(0,2),(3,2),(2,3),(1,1). (1)请在图中画出△A ′B ′C ′,使得△A ′B ′C ′与△ABC关于点P 成中心对称;(2)若一个二次函数的图像经过(1)中△A ′B ′C ′的三个 顶点,求此二次函数的关系式;(3)请求出△ABC 外接圆的半径.23.(本题6分)某中学准备举行一次球类运动会,在举行运动会之前,同学们就该校学 生最喜欢哪种球类运动问题进行了一次调查,并将调查结果制成了表格、条形图和 扇形统计图,请你根据图表信息完成下列各题: (1)此次共调查了_________位学生? (2)24.(本题6分)已知:关于x 的一元二次方程x 2-(2m+1)x+m 2 +m -2=0. (1)求证:不论m 取何值,方程总有两个不相等的实数根;(2)若方程的两个实数根x 1,x 2满足12211m x x m +-=+-,求m 的值.25.(本题8分)周六下午,小刚到小强家玩.休息之余,两人进入校园网,研究起了本校 各班的课程表……现已知初一(1)班周四下午共安排数学、生物、体育这三节课.(1)请你通过画树状图列出初一(I)班周四下午的课程表的所有可能性; (2)小刚与小强通过研究发现,学校在安排课务时遵循了这样的一个原则——在每天的课表中,语文、数学、英语这三门学科一定是安排在体育课之前的.请问你列出的初一(1)班周四下午的课程表中符合学校课务安排原则的概率是多少? (3)在小刚与小担两人得出学校课务安排原则之后,小强告诉小刚:初二(2)班周五下午共安排有体育、英语、历史这三节课,然后请小刚猜想这三节课的安排顺序,则小刚猜对的概率为________(直接写出答案).26.(本题8分)点D 是⊙O 的直径CA 延长线上一点,点B 在⊙O 上,BD 是⊙O 的切线,且AB=AD .(1)求证:点A 是DO 的中点;(2)若点E 是劣弧BC 上一点,AE 与BC 相交于点F ,且△BEF 的面积为8,2cos 3BFA ∠=,求△ACF 的面积.27.(本题9分)一列火车由A 市途经B 、C 两市到达D 市.如图,其中A 、B 、C 三市在同一直线上,D 市在A 市的北偏东45°方向,在B 市的正北方向,在C 市的北偏西60°方向,C 市在A 市的北偏东75°方向.已知B 、D 两市相距100km .问该火车从A 市到D 市共行驶了多少路程?( 1.4≈ 1.7≈)28.(本题9分)已知抛物线y=ax 2+bx(a ≠0)的顶点在直线112y x =--上,且过点A(4,0).(1)求这个抛物线的解析式;(2)设抛物线的顶点为P ,是否在抛物线上存在一点B ,使四边形OPAB 为梯形?若存在,求出点B 的坐标;若不存在,请说明理由. (3)设点C(1,-3),请在抛物线的对称轴上确定一点D ,使AD CD -的值最大,请直接写出点D 的坐标.29.(本题9分)如图1,小明将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得AB=5,AD=4.在进行如下操作时遇到了下面的几个问题,请你帮助解决.(1)将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E点落在CD边上,此时,EF恰好经过点A(如图2),请你求出AE和FG的长度.(2)在(1)的条件下,小明先将三角形的边EG和矩形边AB重合,然后将△EFG沿直线BC向右平移,至F点与B重合时停止.在平移过程中,设G点平移的距离为x,两纸片重叠部分面积为.y,求在平移的整个过程中,y与-x的函数关系式,并求当重叠部分面积为10时,平移距离x的值(如图3).(3)在(2)的操作中,小明发现在平移过程中,虽然有时平移的距离不等,但两纸片重叠的面积却是相等的;而有时候平移的距离不等,两纸片重叠部分的面积也不可能相等.请探索这两种情况下重叠部分面积y的范围(直接写出结果).参考答案一、1.2.2.6×105m23.x>2 4.x(x+2)(x-2) 5.6π6.8 7.288.75° 9.y <-2 10.8 11.90°或75°或15° 12.16 二、13.B 14.C 15.A 16.B 17.B 18.C三、19.1 20.1a a -;1221.x=4或x=-1 22.(1)图略 (2)()()1212y x x =-+(3)外接圆圆心O ′坐标为3322⎛⎫ ⎪⎝⎭,,'AO ==半径 23.(1)24.(1)△=[-(2m+1)] 2-4(m 2+m -2)=4m 2+4m+1-4m 2-4m+8=9>0 ∴不论m 取何值,方程总有两个不相等实数根(2)由原方程可得x 1,2=()()2121322m m +±+±=,∴x 1=m+2.x 2=m -1 ∴123x x -=又∵12211m x x m +-=+-, ∴2311m m +=+-, ∴m=4 经检验:m=4符合题意. ∴m 的值为4.25.(1)(2)三门功课共有6种排法,其中符合课务安排原则的有3种 ∴P(符合学校要求)=3162= (3)P(小刚猜对)=1326.(1)连接OB ,∵BD 是O ⊙的切线,∴∠OBD=90°,∵AB=AD ,∴∠D=∠ABD , ∴∠AOB=∠ABO ,∴AB=AO ,∴AO=AD . (2) ∵AC 是直径,∴∠ABF=90°,2cos 3FB BFA FA ∠==, ∵∠E=∠C ,∠FAC=∠FBE ,∴△FA C ∽△FBE ,∴△FAC 的面积为18. 27.过点B 分别作B E ⊥CD 于E ,B F ⊥AD 于F .由题,∠BDE=60°,∠BCE=45°,∠BDF=45°,∠BAF=30°.∴DE=50,BE =,CE =.∴BC =∵BF =∴AB =∴50394AB BC CD km ++==. ∴该火车从A 市到D 市共行驶了394km .28.(1) ∵抛物线过点(0,0)、(4,0),∴抛物线的对称轴为直线x=2∵顶点在直线112y x =--上,∴顶点坐标为(2,-2).故设抛物线解析式为y=a(x -2) 2-2.∵过点(0,0).∴12a =.∴抛物线解析式为2122y x x =-.(2)当A P ∥O B 时,如图(图略),∠BOA=∠OAP=45°,过点B 作B H ⊥x 轴于H ,则OH=BH .设点B(x ,x),故2122x x x =-,解得x=6或x=0(舍去). ∴B(6,6). 当OP ∥AB 时,同理设点B(4-y ,y) 故()()214242x y y =---,解得y=6或y=0(舍去).∴B(-2,6) (3)D(2,-6).29.(1)过B 作BM ⊥AE 于M .由AB=BE=5,BC=40.∴CE=3.∴DE=2.∴AE =由AB=BE ,B M ⊥AE ,∴EM =BM =BE M ∽△FEB ,FG BMBE EM=,∴FG=10. (2)当0≤x ≤4时,2154y x x =-+;当4<x ≤10时,y=-2x+24,当y=10时,x=7或10x =-(3)当0≤x ≤4时,()22115102544y x x x =-+=--+,顶点为(10,25),∴当0≤x ≤4时,0≤y ≤16.当4<x ≤10时,y=-2x+24,4≤y <16.∴当4≤y<16时,平移的距离不等,两纸片重叠的面积y 可能相等.当0≤y <4或y=16时,平移的距离不等,两纸片重叠部分的面积也不可能相等.。