光子晶体基本原理

合集下载

光子晶体的原理与应用

光子晶体的原理与应用

光子晶体的原理与应用概述光子晶体是一种由周期性改变介电常数分布而形成的结构,具有能带结构类似于电子在晶格中的运动。

光子晶体能够控制光的传播和波长选择性,因此在光学领域具有广泛的应用前景。

光子晶体的原理光子晶体的原理基于周期性调制介电常数分布。

通过改变材料的周期性结构,可以实现光子晶体的禁带带隙效应,即在一定频率范围内,光的传播被完全阻止。

光子晶体的禁带带隙可以通过调节结构的周期、材料的折射率以及填充材料来实现。

光子晶体的禁带带隙效应是由几何光学效应和电磁场的相互作用相结合而产生的。

在光子晶体中,光通过周期性结构时,会出现在特定频率范围内的相干散射。

这种相干散射会导致光的传播被阻挡,从而形成禁带。

禁带带隙的宽度取决于周期性结构的参数,包括晶格常数、材料折射率以及填充材料等。

光子晶体的应用光子晶体的光学波导光子晶体可以实现光的传输和波导效应。

在光子晶体中,通过调节光子晶体的周期性结构,可以实现光的导向和控制。

光子晶体光波导可以用于构建高效的光耦合器、分束器、滤波器、光放大器等光学元件。

光子晶体光波导具有低损耗、高效率等特点,被广泛应用于光通信、光子芯片等领域。

光子晶体的传感器光子晶体由于其禁带带隙效应,可以实现光的滤波和波长选择性。

这使得光子晶体成为理想的传感器材料。

通过改变光子晶体的结构和填充材料,可以实现对不同化学和生物分子的敏感度。

光子晶体传感器可以用于检测环境中的气体、液体、生物分子等,具有高灵敏度、高选择性和实时监测等特点。

光子晶体的光学器件光子晶体的禁带带隙效应还可以用于设计和制造光学器件。

通过选择合适的晶格参数和材料,可以实现对特定波长和频率的光的调控。

光子晶体光学器件包括滤光器、反射镜、全反射镜、衍射光栅等。

这些光学器件具有高效率、高分辨率和高准确性的特点,并在光学测量、光通信等领域得到广泛应用。

光子晶体的激光器利用光子晶体的禁带带隙效应,可以实现低阈值、窄带宽的激光器。

光子晶体激光器在光通信、光信息处理等领域具有重要应用前景。

光子晶体基本原理

光子晶体基本原理

光子晶体2.1光子晶体的基本原理大家都知道,许多研究都因类似的现象作出的假设。

这是因为宇宙具有相同的模式,其中有一个高度一致的内部规则,即使拥有千变万化的外观。

光子晶体也是这样,这是第一先假设光子也具有类似于电子的传输性质,不同的是电子是在普通晶体中传输,而光子是在光子晶体中传输,然后在半导体的基础上发展起来的。

另外,晶体的原子是周期性的,有序排列的,由于这个周期势场,电子的运动收到周期性布拉格散射效应,从而形成一个能带结构,带隙存在于带与带之间。

如果电子波带隙能量落到带隙中,就不能继续传播。

事实上,无论什么电磁波,只要受到周期性调制,就会产生一个能带结构,也有可能出现带隙。

简而言之,由于半导体中离子的周期性排列引起了能带结构的产生,而能带控制着载流子(半导体中的电子或者空穴)在半导体中运动。

同样的,在光子晶体由周期性变化所产生的光的光带隙结构,从而由光带隙结构控制着光在光子晶体中的移动。

2.2光子晶体的制备人们已广泛认识到光子晶体具有的巨大应用前景,这是光子晶体得以应用的必要条件-------- 光子晶体的制备工艺得到世界上众多研究人员的深入研究,在此后的时间里,关于光子晶体的理论研究和实际应用的探索得到突飞猛进的发展,已然成为国际信息科技领域的一个热点问题。

从光子晶体的维数上看,光子晶体可以分为一维光子晶体,二维光子晶体和三维光子晶体。

一维光子晶体,顾名思义,就是在一个维度上周期性排布的光子晶体,它是由两种介质块构成的,而且这两种介质块须具有不同的介电常数,并在空间上交替排列。

二维光子晶体是不同介电常数的介质柱(或其他规则介质)在二维空间上周期性排列的结构,如石墨结构,在某一平面上具有周期性,而在垂直这个平面的方向上是连续不变的。

三维光子晶体是在三个方向上均具有周期性结构因此与一维、二维光子晶体在某一个或两个方向上具有光子带隙不同,它在三个方向也都具有光子禁带,也被称为全方位光子带隙。

1-D 2-D 3-D图1三种光子晶体示意图2.2.1 一维光子晶体的制备一维光子晶体的制备可以用非常成熟的各种镀膜工艺来实现222二位光子晶体的制备本文主要讨论的是二维光子晶体中的多米诺等离子体。

光子晶体原理

光子晶体原理

光子晶体原理光子晶体是一种具有周期性结构的光学材料,其结构中的周期性排列使得光子在晶格中的传播受到了限制,从而产生了许多独特的光学性质。

光子晶体的原理和应用在光学领域中具有重要的意义,对于光子学、光子晶体器件以及光子晶体材料的研究和应用具有重要的意义。

光子晶体的原理主要基于周期性结构对光子的布拉格散射效应。

在光子晶体中,周期性的结构使得光子在晶格中的传播受到了限制,光子的波长与晶格常数之间存在着特定的关系,这种关系使得光子在晶格中发生布拉格散射,从而形成光子带隙。

这种光子带隙使得光子在特定频率范围内无法传播,从而产生了光子晶体的光学禁带结构。

光子晶体的原理还包括了光子晶体的周期性结构对光子的色散关系的影响。

由于光子晶体的周期性结构,光子在晶格中的传播受到了限制,从而使得光子的色散关系发生了变化。

在光子晶体中,光子的色散关系不再遵循自由空间中的抛物线形式,而是在布里渊区中出现了新的色散关系。

这种新的色散关系使得光子在晶格中的传播具有了独特的性质,从而产生了许多新的光学现象。

光子晶体的原理还包括了光子晶体的周期性结构对光子的能带结构的影响。

在光子晶体中,光子的能带结构受到了晶格周期性结构的影响,从而产生了光子带隙。

这种光子带隙使得光子在特定频率范围内无法传播,从而产生了光子晶体的光学禁带结构。

光子晶体的光学禁带结构对于光子在晶格中的传播具有了重要的影响,从而产生了许多新的光学性质。

综上所述,光子晶体的原理主要包括了周期性结构对光子的布拉格散射效应、色散关系的影响以及能带结构的形成。

光子晶体的原理不仅具有重要的理论意义,还具有重要的应用价值。

光子晶体的研究和应用在光学领域中具有重要的意义,对于光子学、光子晶体器件以及光子晶体材料的研究和应用具有重要的意义。

相信随着光子晶体原理的深入研究,光子晶体在光学领域中的应用将会得到进一步的发展和拓展。

光子晶体原理及应用

光子晶体原理及应用

一、绪论1.1光子晶体的基本概念光子晶体是由不同介电常数的介质材料在空间呈周期排布的结构,当电磁波受到调制而形成类似于电子的能带结构,这种能带结构称为光子能带。

在合适的晶格常数和介电常数比的条件下,类似于电子能带隙,在光子晶体的光子能带间可出现使某些频率的电磁波完全不能透过的频率区域,将此频率区域称为光子带隙或光子禁带。

人们又将光子晶体称为光子带隙材料。

与一般的电子晶体类似,光子晶体也有一维、二维、三维之分。

一维光子晶体是介电常数不同的两种介质块交替堆积形成的结构。

实际上,一维光子晶体已经被广泛应用,如法布里-珀罗腔光学多层的增反/透膜等。

二维光子晶体是介电常数在二维空间呈周期性排列的结构。

光子晶体中存在光子禁带的物理机理是基于固体物理的布洛赫理论。

1.2光子带隙光子在光子晶体中的行为类似于电子在半导体晶体中的行为,通过独特的光子禁带可改变光的行为。

研究表明,光子带隙有完全光子带隙与不完全光子带隙的区分。

所谓完全光子带隙,是指在一定频率范围内,无论其偏振方向及传播方向如何,光都禁止传播,或者说光在整个空间的所有传播方向上都有能隙,且每个方向上的能隙能互相重叠。

所谓不完全光子带隙,则是相应于空间各方向上的能隙并不能完全重叠,或只在特定的方向上有能低折射率的介质在晶格中所占比率以及它们在空间的排列结构。

总的来说,折射率差别越大带隙越大,能够达到的效率也就越高。

二、光子晶体的晶体结构和能带结构特性研究2.1一维光子晶体的传输矩阵法设一维光子晶体由两种材料周期性交替排列构成,通常称一维二元光子晶体,类似固体能带理论中的Kroning-penney模型,在空气中由A、B薄层交替构成一维人工周期性结构材料,其中A材料的折射率是na,厚度为ha,B材料的折射率是nb,厚度为hb,那么周期d=a+b,A、B总层数为N。

以AB材料进行仿真计算。

仿真程序clear allna=2.35;nb=1.38;ha=63.8e-9;hb=108.7e-9;yeta1=na;yeta2=nb;yeta0=1;bo=400:1:900;derta1=(2*pi*na*ha)./(bo*1e-9);derta2=(2*pi*nb*hb)./(bo*1e-9);num=length(bo);for j=1:num;Ma=[cos(derta1(j)),-i*sin(derta1(j))./yeta1;-i*yeta1*sin(derta1(j)),cos(derta1(j))]; Mb=[cos(derta2(j)),-i*sin(derta2(j))./yeta2;-i*yeta2*sin(derta2(j)),cos(derta2(j))]; Mab=Ma*Mb;N=10;M=Mab^N;Rfan(j)=abs((M(1,1)*(yeta0)+M(1,2)*(yeta0)*(yeta0)-M(2,1)-M(2,2)*(yeta0))./(M(1, 1) *(yeta0)+M(1,2)*(yeta0)*sqrt(yeta0)+M(2,1)+M(2,2)*(yeta0)))^2;endfigure(1);plot(bo,Rfan,'k');box on;首先,我们A材料的折射率为2.35,B材料的折射率为1.38,AB材料组成的光子晶体的介质层数为10层,进行了matlab仿真,得到如下的图形然后我们更改介质层数为20层:最后我们更改介质层数为30层:对比以上三个图我们可以看出,一维二元光子晶体的投射特性与组成光子晶体的介质层数有关,介质层周期越大,越有利于形成禁带。

光子晶体原理及应用

光子晶体原理及应用

光子晶体原理及应用光子晶体是一种具有周期性分布的介质结构,其周期与光的波长相当,并且通过光子晶体的介质结构可以控制光的传播和与物质的相互作用。

光子晶体的原理是通过改变晶体的周期性结构来改变入射光波的传播特性,从而实现对光的控制。

光子晶体的制备方法有很多种,常见的包括自组装法、光阻法、多光束干涉法等。

其中最常用的方法就是利用自组装原理,通过改变介质的化学成分和控制成核条件,使得光子晶体在一些特定的波长范围内具有周期性结构。

光子晶体的应用十分广泛,下面就几个典型的应用领域进行介绍。

1.光子晶体光纤光子晶体光纤是通过将光子晶体材料制备成光纤的结构,并利用光子晶体的禁带特性来实现对光波的传播控制。

与传统光纤相比,光子晶体光纤具有更小的损耗和更宽的通信带宽,可以大大提高信息传输的能力。

光子晶体光纤已经广泛应用于通信、传感和激光器等领域。

2.光子晶体传感器光子晶体的禁带结构对入射光波的敏感性很高,可以通过改变光子晶体结构或调节入射光波的频率来实现对光波的敏感探测。

光子晶体传感器可以用于气体、液体、化学品等环境的探测。

例如,在环境监测中,可以利用光子晶体传感器来监测大气中的有害气体浓度,实现对环境的实时监测。

3.光子晶体光子集成电路光子晶体材料可以通过微细加工技术制备成光子集成电路的结构,将不同功能的光子晶体结构集成在一个芯片上,实现对光波的控制和处理。

光子晶体光子集成电路具有体积小、功耗低和传输速率高等优点,可以应用于光通信、光计算和光存储等领域。

4.光子晶体激光器光子晶体结构可以用来实现激光器的工作原理,通过调节光子晶体的结构参数和控制激发条件,可以实现对激光的频率、相干性和发射方向的控制。

光子晶体激光器具有窄线宽、高亮度和高稳定性等特点,可以应用于激光雷达、光学通信和光学显微镜等领域。

综上所述,光子晶体作为一种新型的功能材料,在光学领域有广泛的应用前景。

通过对光子晶体的制备和调控,可以实现对光的控制和处理,使得光子晶体具有非常丰富的应用潜力。

光子晶体原理与应用

光子晶体原理与应用

光子晶体原理与应用
光子晶体(photonic crystal)是一种结构精确的微纳米结构电磁材料,利用其介质固有的自由空间局域区域,对不同波长的光进行反射、阻隔、改变传播方式等特殊操作。

它具有体积小、材料制作成本低等特性,
极大程度上改善了传统光学结构的空间变形能力和可弯曲性,是一种极具
应用前景的新型光学材料。

光子晶体的基本原理是空间折射率(RRI)的离散值。

将正交双轴不
同折射率的介质,组成模块精确的微结构,通过精确的折射率分布、多层
堆叠及空间结构控制,可以对特定波长的光束实现准确的衍射和反射,从
而改变光的传播方向和波形,从而实现特定的光电功能。

它的优势是利用
其微结构优势实现可塑光学性能,能够极大地改善传统光学结构的空间变
形性,有效地把光固固定在一定的位置、实现光学隐形等多种功能。

光子晶体具有应用前景。

结合激光技术,能够实现快速控制及高精度
测量。

可用于实现多种新型电光特性,如智能光网络、高性能光识别技术、新型可调谐滤波器和激光结构器等功能。

它还能够应用于探测、传感和无
线通信等技术,以及激光标记、制造和位置定位等领域。

同时,光子晶体也可以用来实现新型可控光电功能。

光子晶体技术的研究进展与应用前景

光子晶体技术的研究进展与应用前景

光子晶体技术的研究进展与应用前景光子晶体是指在纳米尺度的范围内,通过控制材料的晶格结构使得电磁波的传输特性发生改变的一种新型材料。

随着纳米技术的不断发展和进步,光子晶体技术也在不断地被研究和应用。

其应用领域包括光电子学、光信息处理、基础研究等众多领域,其前景非常广阔。

一、光子晶体的基本原理光子晶体是由空气或其他物质的等间距排列的球形或柱形结构组成。

其特点是具有周期性结构,制备时要求每个元部件的大小和位置要满足一定的限制。

在光子晶体中,当光子的波长和晶格常数具有相同的数量级时,发生Bragg衍射。

由于光子晶体的等间距排列结构和Bragg衍射的原理,使得其具有优异的光学性能。

因此,光子晶体被应用在许多领域中,如光电子材料、光信息处理、生物医学等领域。

二、光子晶体的应用1.光子晶体的应用于太阳能电池光子晶体能够有效地控制光子的传输,这使其成为一个理想的材料用来提高太阳能电池的效率。

通过将光子晶体嵌入到太阳能电池中,可以增强太阳能电池的吸收效率,提高太阳能电池的转换效率。

事实上,研究发现,将光子晶体嵌入到太阳能电池中,其转换效率可以提高约30%。

因此,光子晶体在太阳能电池中的应用是非常有前途的。

2. 光子晶体的应用于生物医学光子晶体能够通过改变光子的波长,来识别某种特定的生物大分子,例如蛋白质和DNA等。

这一特点使得光子晶体在生物医学领域中的应用具有很大的潜力。

例如,可以使用光子晶体来制备高灵敏的生物传感器,以检测某种特定的生物分子。

此外,光子晶体还可以用于制备药物传输系统,以实现精准治疗。

由于其在生物医学领域的广泛应用,光子晶体技术已经逐渐成为了当今生物医学领域的热门研究课题。

3.光子晶体的应用于光纤通信光子晶体能够通过调整光子的传输效应来控制光纤中的波导,并且能够使波导具有更好的光学性能。

这使光子晶体成为一种理想的材料,用于光纤通信中的波导制备。

实际上,光子晶体在现代光纤通信网络中已经开始得到广泛的应用。

光子晶体:操控光的奇异材料

光子晶体:操控光的奇异材料

光子晶体:操控光的奇异材料光子晶体是一种具有周期性结构的材料,它能够有效地操控光的传播和特性。

光子晶体的研究和应用在光学领域具有重要的意义,不仅为我们深入理解光的行为提供了新的途径,还为光通信、光电子学等领域的发展带来了巨大的潜力。

一、光子晶体的基本原理光子晶体的基本原理是利用材料内部的周期性结构来调控光的传播。

光子晶体的周期性结构可以通过周期性的折射率分布来实现,这种分布可以通过控制材料的组成、形状和尺寸等参数来实现。

当光传播到光子晶体中时,由于周期性结构的存在,光子晶体会对光进行衍射和干涉,从而产生一系列特殊的光学效应。

二、光子晶体的特性光子晶体具有许多独特的特性,使其成为一种重要的光学材料。

首先,光子晶体可以实现光的完全禁带,即在某个频率范围内,光无法在光子晶体中传播。

这种禁带效应可以用来制备光学滤波器、光学隔离器等器件。

其次,光子晶体还可以实现光的反射、透射和散射等效应,这些效应可以用来制备光学镜子、光学波导等器件。

此外,光子晶体还具有色散调控、非线性光学效应等特性,这些特性为光子晶体的应用提供了更多的可能性。

三、光子晶体的制备方法目前,光子晶体的制备方法主要包括自组装法、光刻法和纳米加工法等。

自组装法是一种简单而有效的制备方法,通过控制溶液中颗粒的浓度和pH值等参数,可以使颗粒自发地排列成周期性结构。

光刻法是一种常用的微纳加工技术,通过光刻胶和光刻机等设备,可以将期望的结构图案转移到材料表面上。

纳米加工法是一种利用纳米级别的工具和技术来制备光子晶体的方法,如电子束曝光、离子束曝光等。

四、光子晶体的应用领域光子晶体的研究和应用涉及到多个领域,包括光通信、光电子学、光传感、光催化等。

在光通信领域,光子晶体可以用来制备高效的光纤耦合器、光开关等器件,提高光通信系统的传输效率和容量。

在光电子学领域,光子晶体可以用来制备高效的太阳能电池、光电探测器等器件,提高光电转换效率。

在光传感领域,光子晶体可以用来制备高灵敏度的光传感器、生物传感器等器件,实现对光、电磁波和生物分子等的高精度检测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光子晶体2.1光子晶体的基本原理大家都知道,许多研究都因类似的现象作出的假设。

这是因为宇宙具有相同的模式,其中有一个高度一致的内部规则,即使拥有千变万化的外观。

光子晶体也是这样,这是第一先假设光子也具有类似于电子的传输性质,不同的是电子是在普通晶体中传输,而光子是在光子晶体中传输,然后在半导体的基础上发展起来的。

另外,晶体的原子是周期性的,有序排列的,由于这个周期势场,电子的运动收到周期性布拉格散射效应,从而形成一个能带结构,带隙存在于带与带之间。

如果电子波带隙能量落到带隙中,就不能继续传播。

事实上,无论什么电磁波,只要受到周期性调制,就会产生一个能带结构,也有可能出现带隙。

简而言之,由于半导体中离子的周期性排列引起了能带结构的产生,而能带控制着载流子(半导体中的电子或者空穴)在半导体中运动。

同样的,在光子晶体由周期性变化所产生的光的光带隙结构,从而由光带隙结构控制着光在光子晶体中的移动。

2.2光子晶体的制备人们已广泛认识到光子晶体具有的巨大应用前景, 这是光子晶体得以应用的必要条件———光子晶体的制备工艺得到世界上众多研究人员的深入研究,在此后的时间里,关于光子晶体的理论研究和实际应用的探索得到突飞猛进的发展,已然成为国际信息科技领域的一个热点问题。

从光子晶体的维数上看,光子晶体可以分为一维光子晶体, 二维光子晶体和三维光子晶体。

一维光子晶体,顾名思义,就是在一个维度上周期性排布的光子晶体,它是由两种介质块构成的,而且这两种介质块须具有不同的介电常数,并在空间上交替排列。

二维光子晶体是不同介电常数的介质柱(或其他规则介质)在二维空间上周期性排列的结构,如石墨结构,在某一平面上具有周期性,而在垂直这个平面的方向上是连续不变的。

三维光子晶体是在三个方向上均具有周期性结构,因此与一维、二维光子晶体在某一个或两个方向上具有光子带隙不同,它在三个方向也都具有光子禁带,也被称为全方位光子带隙。

图1三种光子晶体示意图2.2.1一维光子晶体的制备一维光子晶体的制备可以用非常成熟的各种镀膜工艺来实现2.2.2二位光子晶体的制备本文主要讨论的是二维光子晶体中的多米诺等离子体。

在研究过程中进行的二维光子晶体的制备方法,对于光子晶体微波区域,可以使用一个单一介电圆柱体(直径为几毫米),以形成光子晶体,其制备过程相对简单,这是这里所模拟对象。

然而,当需求小到几微米和亚微米的波长时的光子晶体,即可见光和近红外线的光子晶体的制备是非常困难的。

图2 利用多点曝光技术制备的二维GaAs 光子晶体即使这样,研究人员充分利用纳米技术,特别是学习成熟的半导体加工技术,使得光子晶体在可见光和近红外区域,如温特等人的工作。

于1993年使用电子束直写和反应离子束刻蚀法在GaAs基板上(片)制备的二维光子晶体的AlGaAs 膜光子晶体。

首先他们利用电子束直写的单点曝光技术在电子胶上定义了二维光子晶体结构图形, 经过显影, 得到在电子胶上的二维图形。

然后通过反应离子束蚀刻技术最终被转移到图形的AlGaAs膜,这样的技术好处可以大大减少电子束直写系统定制的图形时间,并与多曝光技术(现在常用的技术)中,只有多点曝光技术使用十分之一时间,甚至更少。

然而,有一个单一的点的曝光技术的缺点是曝光的量不能被校正,如果能够克服这个问题,一个单一的点的曝光技术应该是更有前途的。

Krauss使用多次曝光技术和反应离子束蚀刻制备GaAs基光子晶体。

在此之后,大多数光子晶体微腔的制备的基于类似的技术。

除了使用电子束直写方法定义的光子晶体,也开发了使用深UV曝光技术复制的二维光子晶体,然后用转印到光子晶体层反应离子束图案化。

此外,多光束技术也可用于制备相干二维光子晶体图案。

除了利用电子束、深紫外光和多光束相干技术,对于二维光子晶体的制备辅以通过反应离子束蚀刻工艺,但是一些科学家也使用电化学蚀刻孔,产生了二维光子晶体,例如通过电化学以获得阳极氧化铝腐蚀一个大的纵横比周期的孔,又如在光照条件下, 在n 型硅〈110〉表面通过氟化氢溶液的腐蚀而得到的大纵横比的微孔。

除了阳极氧化铝方法外, 利用液体腐蚀方法通常只能制备孔径比较大的二维光子晶体, 该类光子晶体的光子带隙波长基本处在10 —30μm 区间。

光子晶体微结构的均匀性直接关系到光子晶体的物理性质, 当前制备工艺需要克服的一个重要困难是如何制备出孔径完全一致的光子晶体。

微孔的轻微差别, 就有可能引起谐振频率的改变, 而使器件的功能失效, 尤其是对于密集波分复用器件, 其频率间隔是100 GHz , 也就是0。

67 nm 的波长间隔。

“在一个二维平板GaAs 光子晶体中, 对于去掉一个微孔所形成的微腔, 如果要使微腔波长的偏差小于0。

67nm , 那么围绕微腔的微孔的直径偏差应近似小于Δd =Δλ4n ≈0.05 nm , 这对制备工艺来说是一个相当高的要求。

”【2】图3 利用多孔硅制备工艺的二维光子晶体如何克服制备工艺上的限制和光子晶体实际应用所需精度的矛盾, 将是未来光子晶体能够进一步走向应用的关键。

2.2.3三维光子晶体的制备具有完全带隙的三维光子晶体可以在空间所有方向上对光子的传播进行调制, 所以是光子晶体发展的重中之重, 是光子晶体研究中的难点。

对原子自发辐射的抑制和制备高Q 微腔是三维光子晶体发挥其主要性能的关键体现。

因而世界上许多研究组致力于三维光子晶体制备方法和工艺的研究。

和二维光子晶体的制备比较而言, 三维光子晶体的制备更加困难。

从光子晶体概念提出以来,大多数研究人员开始进行三维光子晶体通过自组装方法,经过20多年的努力,制备三维光子晶体的也得到了长足的发展,在一般情况下,主要已知的三维光子晶体的制备:蘸笔纳米光刻术,胶体微球自组装的方法,多光束相干,相位光栅,多光子聚合过程中,掠射角沉积技术,因为克隆技术,电子束直写和反应离子束刻蚀结合等。

图4 制备的硅基反opal 的扫描电镜图微球自组装方法是最开始的三维光子晶体的制备方法。

在水或醇溶液的加入单分散聚苯乙烯或二氧化硅球可以自我组装成具有周期性排列的胶体光子晶体的面心立方结构。

然而,这在液体胶体光子晶体具有很大的不可控的且不稳定,因此很难在实际应用中发挥作用。

于是该生长方法得到进一步拓展, 发展到微球在重力作用下自然沉积, 溶液挥发后, 形成固态的三维光子晶体, 也称之为opal。

随着对胶体光子晶体的研究的深入, 人们又提出可以利用液体的表面张力, 将波片垂直插入胶体溶液中, 通过控制温度、湿度, 随着胶体悬浮溶液中溶剂的蒸发, 在波片的表面就自然形成了沿(111)方向周期排列的面心立方光子晶体。

“有科学家提出利用opal 制备微球和圆柱构成的光子晶体,但是制备高质量的具有完全带隙的反演光子晶体并不容易, 到目前为止, 仍没有能利用这种方法制备出在可见光区具有完全光子带隙的三维光子晶体。

”【2】为了在三维光子晶体中引入人为的缺陷, 利用双光子刻蚀的方法在胶体光子晶体中写入缺陷的方法被提出。

同时通过不同的途径(双光子激光直写或刻蚀和沉积的过程)已制成面波导、线波导和点缺陷等缺陷。

电子束直写、反应离子束刻蚀、气相沉积、表面抛光和湿法刻蚀的联用, 可以用来制备三维光子晶体, 利用这种方法可以制备出相应的带有特定缺陷的三维光子晶体。

由于当前制备工艺上的限制, 这种工艺也不容易制备出带隙在可见光区的光子晶体。

虽然如此,Qi 等人进一步提出改进的制备方法, 提高了制备速度和效率。

对于三维光子晶体的制备过程中,科学家们还开发了一些新的制备技术。

相干也是一个多光束全息好的制剂,它可以通过一个多光束相干晶格来形成几乎所有类型,例如面心立方金刚石结构,体心立方的,等等,所有这些都可以调整各个光束的相位和偏振而得到。

但受到的激光束波长的限制,它仍然不能制备完全光子带隙可见光区的三维光子晶体。

蘸笔纳米光刻术(dip-pen nanolithography methodor ink deposition)也被用来制备搭积木型等三维光子晶体。

其原理是利用计算机控制高浓度的聚合(高分子)电解质墨水流过毛细玻璃管喷口(直径1μm 或更细), 在一个凝结物的存储池里迅速凝固, 可以直接刻写任意设计形状和功能的三维周期性微结构。

“从制备的工艺看, 制备三维光子晶体的方法有使用“自上而下”的方法, 也有用“自下而上”的方法,也有综合利用“自上而下”和“自下而上”相结合的方法。

”【2】从总体上, 多光束相干方法可以用于制备大尺寸的三维光子晶体, 但是存在的问题是:由于所用光束的波长的限制, 至今只能制备出在近红外区的存在完全光子带隙的光子晶体。

而胶体自组装法可以制备任意晶格周期的光子晶体, 但是由于这种光子晶体是面心立方结构, 所以只有当折射率对比大于2。

9 时才能出现完全光子带隙, 因此至今未见在可见光区存在完全光子带隙的光子晶体的报道。

在这方面恰好是光子晶体应用的重要区域, 所以如果能制备出在可见光区存在完全光子带隙的光子晶体,将会给该领域带来重要突破。

2.3光子晶体的应用与展望从提出光子晶体概念的那一天,它就巨大的潜能。

光子晶体由于其所特有的光子带隙能够抑制物质的自发辐射, 可以用于全反射镜等。

而引入的缺陷, 可以形缺陷模, 这种缺陷模可以用作微腔、波导、光开关、激光器和探测器等等;同时即使在光子带隙外的区域, 光子晶体独特的色散关系也可以应用到不同的领域, 比如superprism,superlens , delay line , collimator 等。

总之, 光子晶体的应用主要是在集成光电子学中, 同时光子晶体也在其他方面有着重要的应用。

相关文档
最新文档