2016年04月10日北师大七年级下册第一、二单元初中数学组卷
七年级数学下学期第一次月考试卷(含解析) 北师大版-北师大版初中七年级全册数学试题

2015-2016学年某某市南岸区长江中学七年级(下)第一次月考数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在相应的位置.1.下列运算正确的是()A.a3•a3=a9B.a3+a3=a6C.a3•a3=a6D.a2•a3=a62.如图,∠1与∠2是对顶角的是()A.B.C.D.3.经过直线外一点,有几条直线和已知直线平行()A.0条B.1条C.2条D.3条4.某种原子的直径为0.000 000 000 2米,用科学记数法表示为()×10﹣10B.2×10﹣10C.1×10﹣10×10﹣105.(﹣0.5)﹣2的值是()6.计算﹣6a3b2÷2a2b的结果是()A.﹣3ab2B.﹣3ab C.3ab D.3ab27.下列多项式的乘法中可用平方差公式计算的是()A.(1+x)(x+1) B.(2a+b)(b﹣2a)C.(﹣a+b)(a﹣b)D.(x2﹣y)(y2+x)8.下列语句中,错误的是()A.一条直线有且只有一条垂线B.不相等的两个角一定不是对顶角C.直角的补角必是直角D.两直线平行,同旁内角互补9.如图,不能判定AB∥CD的条件是()A.∠B+∠BCD=180°B.∠1=∠2 C.∠3=∠4 D.∠B=∠510.若(y+3)(y﹣2)=y2+my+n,则m、n的值分别为()A.m=5,n=6 B.m=1,n=﹣6 C.m=1,n=6 D.m=5,n=﹣611.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是()A.第一次右拐50°,第二次左拐130°B.第一次左拐50°,第二次右拐50°C.第一次左拐50°,第二次左拐130°D.第一次右拐50°,第二次右拐50°12.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是()A.a2﹣b2=(a+b)(a﹣b) B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab+b2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的正确答案填在相应的位置.13.计算:20060=______.14.∠1和∠2互为余角,且∠1=63°,则∠2=______度.15.若a m=a3•a4,则m=______.16.计算:(﹣3m2n2)•mn3=______.17.一个边长为a的正方形边长增加2后,面积增加了______.18.已知(2x﹣a)(3x+2)=6x2﹣5x+b,则b=______.三、解答题:(本大题共2个小题,每小题7分,共14分)解答时每小题都必须写出必要的演算过程或推理步骤,答案写在相应的位置.19.计算:﹣32+|﹣3|+(﹣1)2016×(π﹣3)0﹣()﹣1.20.计算:(1)x2•x3+(x2)4÷x3(2)(x+y)2﹣(x﹣y)2.四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题都必须写出必要的演算过程或推理步骤,答案写在相应的位置.21.若一个角的补角是这个角的余角的3倍,求这个角的度数.22.说理过程填空:(1)如图,已知OA⊥OB,OC⊥OD,那么∠1与∠2是否相等?为什么?解:∵OA⊥OB,(已知)∴∠1与______互余.又∵______,(已知)∴∠2与______互余.∴______.(同角的余角相等)(2)如图,∵∠A=______,(已知)∴AC∥ED.(______)∵∠2=______,(已知)∴AC∥ED.(______ )∵∠A+______=180°,(已知)∴AB∥FD.(______)23.计算如图阴影部分面积(单位:cm)24.先化简再求值:[(x﹣2y)2﹣(x﹣2y)(x+2y)]÷(﹣4y),其中x=﹣2,y=﹣.五、解答题:(本大题共2个小题,每小题12分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,答案写在相应的位置.25.如图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积.方法1:______方法2:______(2)观察图②请你写出下列三个代数式:(a+b)2,(a﹣b)2,ab之间的等量关系.______ (3)根据(2)题中的等量关系,解决如下问题:如果a+b=7,ab=﹣5,求(a﹣b)2的值.26.观察以下等式:(x+1)(x2﹣x+1)=x3+1(x+3)(x2﹣3x+9)=x3+27(x+6)(x2﹣6x+36)=x3+216…(1)按以上等式的规律,填空:(a+b)(______)=a3+b3(2)利用多项式的乘法法则,说明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y)(x2﹣xy+y2)﹣(x+2y)(x2﹣2xy+4y2)2015-2016学年某某市南岸区长江中学七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在相应的位置.1.下列运算正确的是()A.a3•a3=a9B.a3+a3=a6C.a3•a3=a6D.a2•a3=a6【考点】同底数幂的乘法;合并同类项.【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加可判断出A,C,D 的正误,再根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变可判断出B的正误.【解答】解:A、a3•a3=a6,故此选项错误;B、a3+a3=2a3,故此选项错误;C、a3•a3=a3+3=a6,故此选项正确;D、a2•a3=a2+3=a5,故此选项错误.故选:C.2.如图,∠1与∠2是对顶角的是()A.B.C.D.【考点】对顶角、邻补角.【分析】根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角,依次判定即可得出答案.【解答】解:A、∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角,故A选项错误;B、∠1与∠2没有公共顶点,不是对顶角,故B选项错误;C、∠1与∠2的两边互为反向延长线,是对顶角,故C选项正确;D、∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角,故D 选项错误.故选:C.3.经过直线外一点,有几条直线和已知直线平行()A.0条B.1条C.2条D.3条【考点】平行公理及推论.【分析】根据平行公理,知过直线外一点,有且只有一条直线和已知直线平行.【解答】解:根据平行公理,即过直线外一点,有且只有一条直线和已知直线平行.故选B.4.某种原子的直径为0.000 000 000 2米,用科学记数法表示为()×10﹣10B.2×10﹣10C.1×10﹣10×10﹣10【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 2=2×10﹣10.故选:B.5.(﹣0.5)﹣2的值是()【考点】负整数指数幂.【分析】根据负整数指数幂运算法则进行计算即可.【解答】解:原式==4.故选B.6.计算﹣6a3b2÷2a2b的结果是()A.﹣3ab2B.﹣3ab C.3ab D.3ab2【考点】整式的除法.【分析】原式利用单项式除以单项式法则计算即可得到结果.【解答】解:﹣6a3b2÷2a2b=﹣3ab,故选B7.下列多项式的乘法中可用平方差公式计算的是()A.(1+x)(x+1) B.(2a+b)(b﹣2a)C.(﹣a+b)(a﹣b)D.(x2﹣y)(y2+x)【考点】平方差公式.【分析】利用平方差公式的结构特征判断即可.【解答】解:下列多项式的乘法中可用平方差公式计算的是(2a+b)(b﹣2a)=b2﹣4a2,故选B.8.下列语句中,错误的是()A.一条直线有且只有一条垂线B.不相等的两个角一定不是对顶角C.直角的补角必是直角D.两直线平行,同旁内角互补【考点】平行线的性质.【分析】根据垂线、平行线的性质,对顶角和补角的定义作答.【解答】解:A、一条直线的垂线可以作无数条,故错误;B、对顶角一定相等,但不相等的两个角一定不是对顶角,故正确;C、∵180°﹣90°=90°,∴直角的补角必是直角,故正确;D、符合平行线的性质,故正确;故选A.9.如图,不能判定AB∥CD的条件是()A.∠B+∠BCD=180°B.∠1=∠2 C.∠3=∠4 D.∠B=∠5【考点】平行线的判定.【分析】根据同旁内角互补,两直线平行;内错角相等,两直线平行;同位角相等,两直线平行分别对四个选项进行判断,即可得到答案.【解答】解:A、∠B+∠BCD=180°,则AB∥CD(同旁内角互补,两直线平行);所以A选项不符;B、∠1=∠2,则AD∥BC(内错角相等,两直线平行),所以B选项符合;C、∠3=∠4,则AB∥CD(内错角相等,两直线平行),所以C选项不符;D、∠B=∠5,则AB∥CD(同位角相等,两直线平行),所以D选项不符.故选:B.10.若(y+3)(y﹣2)=y2+my+n,则m、n的值分别为()A.m=5,n=6 B.m=1,n=﹣6 C.m=1,n=6 D.m=5,n=﹣6【考点】多项式乘多项式.【分析】先根据多项式乘以多项式的法则计算(y+3)(y﹣2),再根据多项式相等的条件即可求出m、n的值.【解答】解:∵(y+3)(y﹣2)=y2﹣2y+3y﹣6=y2+y﹣6,∵(y+3)(y﹣2)=y2+my+n,∴y2+my+n=y2+y﹣6,∴m=1,n=﹣6.故选B.11.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是()A.第一次右拐50°,第二次左拐130°B.第一次左拐50°,第二次右拐50°C.第一次左拐50°,第二次左拐130°D.第一次右拐50°,第二次右拐50°【考点】平行线的性质.【分析】首先根据题意画出图形,由同位角相等,两直线平行,即可求得答案,注意排除法在解选择题中的应用.【解答】解:如图:可得B与C平行,但C方向相反,B平行,且方向向同,A、D不平行.故选B.12.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是()A.a2﹣b2=(a+b)(a﹣b) B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab+b2【考点】平方差公式的几何背景.【分析】利用正方形的面积公式可知剩下的面积=a2﹣b2,而新形成的矩形是长为a+b,宽为a﹣b,根据两者相等,即可验证平方差公式.【解答】解:由题意得:a2﹣b2=(a+b)(a﹣b).故选A.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的正确答案填在相应的位置.13.计算:20060= 1 .【考点】零指数幂.【分析】根据零指数幂的意义直接解答即可.【解答】解:20060=1.14.∠1和∠2互为余角,且∠1=63°,则∠2= 27 度.【考点】余角和补角.【分析】本题考查互余的概念,和为90度的两个角互为余角.【解答】解:根据定义,∠2的度数是90°﹣63°=27°,故答案为27度.15.若a m=a3•a4,则m= 7 .【考点】同底数幂的乘法.【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n计算即可.【解答】解:∵同底数幂相乘,底数不变,指数相加,∴a m=a3•a4,∴m=3+4,∴m=7故答案为7.16.计算:(﹣3m2n2)•mn3= ﹣3m3n5.【考点】单项式乘单项式.【分析】根据单项式乘单项式的法则进行计算,即可求出结果.【解答】解:(﹣3m2n2)•mn3=﹣3m3n5.故答案为:﹣3m3n5.17.一个边长为a的正方形边长增加2后,面积增加了4a+4 .【考点】完全平方公式.【分析】根据正方形的面积公式进行解答即可.【解答】解:∵正方形的边长为a,∴其面积=a2.∵正方形的边长为a,当边长增加2时其边长为a+2,∴其面积=(a+2)2,∴(a+2)2﹣a2=a2+4a+4﹣a2=4a+4.故答案为:4a+4.18.已知(2x﹣a)(3x+2)=6x2﹣5x+b,则b= ﹣6 .【考点】多项式乘多项式.【分析】先将等式左边展开化简,再根据等式性质得出关于a、b的方程组,求得b的值即可.【解答】解:∵(2x﹣a)(3x+2)=6x2﹣5x+b,∴6x2+4x﹣3ax﹣2a=6x2﹣5x+b,即6x2+(4﹣3a)x﹣2a=6x2﹣5x+b,∴,解得故答案为:﹣6三、解答题:(本大题共2个小题,每小题7分,共14分)解答时每小题都必须写出必要的演算过程或推理步骤,答案写在相应的位置.19.计算:﹣32+|﹣3|+(﹣1)2016×(π﹣3)0﹣()﹣1.【考点】实数的运算;零指数幂;负整数指数幂.【分析】首先根号乘方、零指数幂、负整数指数幂以及绝对值的性质化简各式,然后利用四则运算求出结果即可.【解答】解:原式=﹣9+3+1×1﹣2=﹣9+3+1﹣2=﹣720.计算:(1)x2•x3+(x2)4÷x3(2)(x+y)2﹣(x﹣y)2.【考点】整式的混合运算.【分析】(1)原式利用同底数幂的乘法,幂的乘方,以及单项式除以单项式法则计算,合并即可得到结果;(2)原式利用平方差公式化简,计算即可得到结果.【解答】解:(1)原式=x5+x8÷x3=x5+x5=2x5;(2)原式=(x+y+x﹣y)(x+y﹣x+y)=2x•2y=4xy.四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题都必须写出必要的演算过程或推理步骤,答案写在相应的位置.21.若一个角的补角是这个角的余角的3倍,求这个角的度数.【考点】余角和补角.【分析】首先根据题意,设这个角是x,根据互余的两角之和为90°,互补的两角之和为180°,求出这个角的补角和余角各是多少,然后根据这个角的补角是这个角的余角的3倍,列出方程,解方程,求出这个角的度数是多少即可.【解答】解:设这个角是x,则这个角的补角为180°﹣x,余角为90°﹣x,所以3(90°﹣x)=180°﹣x,整理,可得2x=90°,解得:x=45°,即这个角的度数为45°.22.说理过程填空:(1)如图,已知OA⊥OB,OC⊥OD,那么∠1与∠2是否相等?为什么?解:∵OA⊥OB,(已知)∴∠1与∠AOC 互余.又∵OC⊥OD ,(已知)∴∠2与∠AOC 互余.∴∠1=∠2 .(同角的余角相等)(2)如图,∵∠A=∠BED ,(已知)∴AC∥ED.(同位角相等两直线平行)∵∠2=∠CFD ,(已知)∴AC∥ED.(内错角相等两直线平行)∵∠A+∠AFD =180°,(已知)∴AB∥FD.(同旁内角互补两直线平行)【考点】平行线的判定;余角和补角;垂线.【分析】(1)根据同角的余角相等即可解决问题.(2)根据两直线平行的条件即可判断.【解答】解:(1)∵OA⊥OB,(已知)∴∠1与∠AOC互余.又∵OC⊥OD,(已知)∴∠2与∠AOC互余.∴∠1=∠2.(同角的余角相等),故答案分别为∠AOC,OC⊥OD,∠AOC,∠1=∠2.(2)如图,∵∠A=∠BED,(已知)∴AC∥ED.(同位角相等两直线平行)∵∠2=∠CFD,(已知)∴AC∥ED.(内错角相等两直线平行)∵∠A+∠AFD=180°,(已知)∴AB∥FD.(同旁内角互补两直线平行)故答案分别为∠BED,(同位角相等,两直线平行),∠DFC,(内错角相等,两直线平行),∠AFD,(同旁内角互补,两直线平行).23.计算如图阴影部分面积(单位:cm)【考点】整式的混合运算.【分析】据图可知阴影部分的面积等于大长方形的面积减去小长方形的面积,以此列式计算即可.【解答】解:S阴影=(a+3b+a)(2a+b)﹣2a•3b=4a2+2ab+6ab+3b2﹣6ab=4a2+2ab+3b2(cm2)24.先化简再求值:[(x﹣2y)2﹣(x﹣2y)(x+2y)]÷(﹣4y),其中x=﹣2,y=﹣.【考点】整式的混合运算—化简求值.【分析】原式中括号中利用完全平方公式,平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=(x2﹣4xy+4y2﹣x2+4y2)÷(﹣4y)=(﹣4xy+8y2)÷﹣4y=x﹣2y,当x=﹣2,y=﹣时,原式=﹣2+=﹣.五、解答题:(本大题共2个小题,每小题12分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,答案写在相应的位置.25.如图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积.方法1:(m﹣n)2方法2:(m+n)2﹣4mn(2)观察图②请你写出下列三个代数式:(a+b)2,(a﹣b)2,ab之间的等量关系.(a ﹣b)2=(a+b)2﹣4ab(3)根据(2)题中的等量关系,解决如下问题:如果a+b=7,ab=﹣5,求(a﹣b)2的值.【考点】完全平方公式的几何背景.【分析】(1)根据图形中各个部分的面积得出即可;(2)根据(1)中的结果即可得出答案;(3)先根据(2)的结果进行变形,再代入求出即可.【解答】解:(1)图中阴影部分的面积为(m﹣n)2或(m+n)2﹣4mn,故答案为:(m﹣n)2,(m+n)2﹣4mn;(2)(a﹣b)2=(a+b)2﹣4ab,故答案为:(a﹣b)2=(a+b)2﹣4ab;(3)∵a+b=7,ab=﹣5,∴(a﹣b)2=(a+b)2﹣4ab=72﹣4×(﹣5)=69.26.观察以下等式:(x+1)(x2﹣x+1)=x3+1(x+3)(x2﹣3x+9)=x3+27(x+6)(x2﹣6x+36)=x3+216…(1)按以上等式的规律,填空:(a+b)(a2﹣ab+b2)=a3+b3(2)利用多项式的乘法法则,说明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y)(x2﹣xy+y2)﹣(x+2y)(x2﹣2xy+4y2)【考点】多项式乘多项式.【分析】(1)根据等式的规律填空即可;(2)利用多项式的乘法法则,进行计算即可得出(1)中的等式成立;(3)利用(1)中的公式进行计算、合并即可.【解答】解:(1)(a+b)(a2﹣ab+b2)=a3+b3;故答案为:a2﹣ab+b2;(2)(a+b)(a2﹣ab+b2)=a3﹣a2b+ab2+ba2﹣ab2+b3=a3+b3;(3)原式=(x3+y3)﹣(x3+8y3)=﹣7y3.。
2016--2017初一下数学第一次月考试题(北师新版)(含答案)

54D3E21C B A2016--2017学年下学期第一次统测七年级数学试卷本次数学测试时间为90分钟,全卷共25题,满分为120分一、选择题 (每小题3分,共30分)1. 下列运算正确的是( )A.933a a a =•B.633a a a =+C.633a a a =• D 532)(a a = 2. 经过直线外一点,有几条直线和已知直线平行( )(A )0条 (B )1条 (C )2条 (D )3条3. 如图,1∠与2∠是对顶角的是 ( )A.B. C. D.4.2)5.0(--的值是( )A 、0.5B 、4C 、-4D 、0.255. 某种原子的直径为0.000 000 000 2米,用科学记数法表示为( ) A .10102.0-⨯ B. 10101-⨯ C. 10102-⨯ D. 10101.0-⨯6.如果( ) ×23262b a b a -=,则( )内应填的代数式是A. 23ab -B. ab 3-C. ab 3D. 23ab7.下列多项式的乘法中可用平方差公式计算的是( ).A 、()()11x x ++B 、)21)(21(a b b a -+C 、()()a b a b -+-D 、()()22x y y x -+8.下列语句中,错误的是( )A. 一条直线有且只有一条垂线B.不相等的两个角一定不是对顶角,C. 直角的补角必是直角D.同旁内角互补,两直线平行 9.如图,不能判定 AB ∥CD 的条件是( )(A )∠B+∠BCD=1800; (B )∠1=∠2; (C )∠3=∠4; (D )∠B=∠5.班级 姓名 学号 成绩密 封 线 内 不 得 答 题10.若()()232y y y my n +-=++,则m 、n 的值分别为( ).A 、5m =,6n =B 、5m =,6n =-C 、1m =,6n =D 、1m =,6n =-二、填空题(每小题3分,共15分)11.____________)22.0(201=++--π。
北师大版数学七下第一、二单元提高训练题

七年级数学下册提高训练题1.(1)已知a x=5,a x+y=25,求a x+a y的值;(2)已知10α=5,10β=6,求102α+2β的值.2.观察下列各式:(x﹣1)÷(x﹣1)=1;(x2﹣1)÷(x﹣1)=x+1;(x3﹣1)÷(x﹣1)=x2+x+1;(x4﹣1)÷(x﹣1)=x3+x2+x+1;(1)根据上面各式的规律可得(x n+1﹣1)÷(x﹣1)=;(2)利用(1)的结论求22015+22014+…+2+1的值;(3)若1+x+x2+…+x2015=0,求x2016的值.3.已知(x2+mx+n)(x2﹣3x+2)中,不含x3项和x项,求m,n的值.4.计算:﹣23+×(2005+3)0﹣(﹣)﹣2.5.已知,求值:(1)(2).6.若x2﹣5x﹣1=0,求①x2+,②x4+.7.已知图甲是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均匀分成四小块长方形,然后按图乙的形状拼成一个正方形.(1)你认为图乙中阴影部分的正方形的边长等于多少?.(2)请用两种不同的方法求图乙中阴影部分的面积.方法一:;方法二:.(3)观察图乙,你能写出(m+n)2;(m﹣n)2;mn三个代数式之间的等量关系吗?(4)根据(3)题中的等量关系,解决如下问题:若a+b=8,ab=5,求(a﹣b)2的值.8.已知:x2+xy+y=14,y2+xy+x=28,求x+y的值.9.已知x2+y2=25,x+y=7,求xy和x﹣y的值.10.计算:(1)3a3b•(﹣2ab)+(﹣3a2b)2(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2.11.我们规定:a﹣p=(a≠0),即a的负P次幂等于a的p次幂的倒数.例:4﹣2=(1)计算:5﹣2=;(﹣2)﹣2=;(2)如果2﹣p=,那么p=;如果a﹣2=,那么a=;(3)如果a﹣p=,且a、p为整数,求满足条件的a、p的取值.12.为了求1+2+22+23+…+22012的值,可令s=1+2+22+23+…+22012,则2s=2+22+23+24…+22013,因此2s﹣s=22013﹣1,所以1+2+22+23+…+22012=22013﹣1.仿照以上推理,计算1+5+52+53+…+52013的值.13.计算:1002﹣992+982﹣972+…+22﹣12.13.若x2﹣5x﹣1=0,求①x2+,②x4+.14.已知多项式M=x2+5x﹣a,N=﹣x+2,P=x3+3x2+5,且M•N+P的值与x的取值无关,求字母a的值.15.阅读下文件,寻找规律:已知x≠1,计算:(1﹣x)(1+x)=1﹣x2(1﹣x)(1+x+x2)=1﹣x3(1﹣x)(1+x+x2+x3)=1﹣x4(1﹣x)(1+x+x2+x3+x4)=1﹣x5…(1)观察上式猜想:(1﹣x)(1+x+x2+x3+…+x n)=.(2)根据你的猜想计算:①1+2+22+23+24+...+22018②214+215+ (2100)16.求代数式5x2﹣4xy+y2+6x+25的最小值.17.已知多项式4x2+1,添上一项,使它成为一个完全平方式,你有哪几种方法?18.(1)如图1,正方形ABCD和CEFG的边长分别为a、b,用含a、b的代数式表示△AEG的面积.S△AEG=.(2)如图2,边长为a的正方形ABCD、边长为b的正方形CEFG和边长为c的正方形MNHF的位置如图所示,点G在线段AN上,则S△AEN=.(请直接写出结果,不需要过程)19.如图所示,已知AB∥CD,分别探究下面图形中∠APC,∠PAB,∠PCD的关系,请你从四个图形中任选一个,说明你所探究的结论的正确性.①结论:(1)(2)(3)(4)②选择结论,说明理由.20.如图,AD∥BC,∠EAD=∠C,∠FEC=∠BAE,∠EFC=50°(1)求证:AE∥CD;(2)求∠B的度数.21.如图,∠ACB=90°,BD平分∠ABE,CD∥AB交BD于D,∠1=20°,求∠2的度数.22.【探究】如图①,∠AFH和∠CHF的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.(1)若∠AFH=60°,∠CHF=50°,则∠EOF=度,∠FOH=度.(2)若∠AFH+∠CHF=100°,求∠FOH的度数.【拓展】如图②,∠AFH和∠CHI的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.若∠AFH+∠CHF=α,直接写出∠FOH的度数.(用含a 的代数式表示)23.如图,AB∥CD,∠1:∠2:∠3=1:2:3,说明BA平分∠EBF的道理.24.如图,DE∥BC,CD平分∠BCA,∠2=30°.(1)求∠1的度数;(2)求∠DEA的度数.25.如图,点A、B分别在直线CM、DN上,CM∥DN.(1)如图1,连接AB,则∠CAB+∠ABD=;(2)如图2,点P1是直线CM、DN内部的一个点,连接AP1、BP1.求证:∠CAP1+∠AP1B+∠P1BD=360°;(3)如图3,点P1、P2是直线CM、DN内部的一个点,连接AP1、P1P2、P2B.试求∠CAP1+∠AP1P2+∠P1P2B+∠P2BD的度数;(4)若按以上规律,猜想并直接写出∠CAP1+∠AP1P2+…∠P5BD的度数(不必写出过程).。
2016经典试题七年级数学(北师大)4.FIT)

2 (3) (x + 1) -(x - 1) (x + 2)
2 (4) (- x - y) (x - y)+(x + y)
2 22. (5 分)先化简再求值: (a - 2) +(2a - 1) (a + 4) , 其中 a = - 2。
E
C
B
C
(第 15 小题图)
1 1 2 2 1 2 1
C. 3 个
D. 4 个
x (分钟) 之间的函数图象, 则以下判断错误的是 ( A. 骑车的同学比步行的同学晚出发 30 分钟 B. 步行的速度是 6 千米 / 时
)
6
y (千米)
l2 l1
3. 下列图中∠1 和∠2 是同位角的是 (
1 2 2
C. 骑车的同学从出发到追上步行的同学用了 20 分钟 D. 骑车的同学和步行的同学同时达到目的地
1 14、 1 15、 133° 10 2 16、 - ab 7 17、 AB = DC 或∠A = ∠D (不唯一) 18、 37.2 19、 50°、 80°或 65°、 65° 20、 55° 三、 21、 (1)9999 (2)1 (3)x + 3 (4)2y2 + 2xy 22、 原式化简 = 3a2 + 3a, 当 a = - 2 时, 原式 = 6 23、 略 24、 14 cm 25、 解: 理由: 连接 BD 依题意得: ∠CDB + ∠CBD = 180° - 90° - 20° - 30° = 40° 在△DCB 中, ∠CDB + ∠CBD + ∠DCB = 40° + 143° = 183° ≠ 180° 这与三角形的内角和不符, 所以不合格。 26、 证明: ∵ AB⊥BD, ED⊥BD ∴ ∠ABC = ∠EDC = 90° 由题意知: ∠A + ∠ACB = 90° ∠ACB + ∠ECD = 90° ∴∠A = ∠ECD ∠A = ∠ECD 在△ABC 和△CDE 中,AB = CD ∴ △ABC ≌ △CDE (ASA) ∠ABC = ∠EDC ∴ AC = CE 27、 (1)60° (2)AD = BE (3)证明: ∵ △ABC 和△DCE 都是等边三角形 ∵ AC = BC, CD = CE, ∠ACB = ∠DCE = 60° ∴ ∠ACD = 60° - ∠DCB, ∠BCE = 60° - ∠DCB ∴ ∠BCE = ∠ACD AC = BC 在△ACD 和△BCE 中,∠BCE = ∠ACD ∴ △ACD ≌ △BCE (SAS) CD = CE ∴ AD = EB 28、 (1)50 元 (2) (330 - 50) ÷80 = 3.5 元 (3) (450 - 330) ÷ (3.5 - 0.5)= 40 (千克) 40 + 80 = 120 (千克) (4)450 - 50 - 120×1.8 = 450 - 50 - 216 = 184 (元)
北师大版七年级下册数学第1章《整式的乘除》同步练习卷(能力卷)(包含答案)

北师大版七年级下册数学第1章同步练习卷(能力卷)学校题号 一 二 三 总分 得分一、选择题1.下列计算结果是x 5的为( )A .x 10÷x 2B .x 6﹣xC .x 2•x 3D .(x 3)2 2.31n y +可写成( ) A .31()n y +B .31()n y +C .3n y y ⋅D .1()n n y +3.(-x m -1y n+1)3=( )A .-x 3m -3y 3n+3B .x 3m -3y 3n+3C .-x 3m -1y 3n+1D .x 3m -1y 3n+1 4.在2x □xy□214y 的空格□中,分别填上“+”或“一”,在所得的代数式中,能构成完全平方式的概率是( ) A .1B .34C .12D .145.如果(a 3)2=64,则a 等于( ) A .2B .-2C .±2D .以上都不对6.李老师做了个长方形教具,其中一边长为2a+b ,另一边长为a -b ,则该长方形的面积为( ) A .6a+b B .2a 2-ab -b 2 C .3a D .10a -b 7.下列各式中,不能用平方差公式计算的是( ) A .()()11a a +-B .()()11a a -+C .()()11a a +--D .()()11a a ---8.等式(-a -b )( )=a 2-b 2中,括号内应填( ) A .a -bB .-a +bC .-a -bD .a +b9.下列计算正确的是( )A .()()22323264a ab a b a b a b --=--gB .()222342214ab a b a b -+-=-g C .()2232233232abc a b aba ba b -=-gD .()()22234233ab ab c a b a b c -=-g10.若(3x +2y)2=(3x -2y)2+A ,则代数式A =( ) A .-12xy B .12xy C .24xy D .-24xy二、填空题11.计算:()25155x x x +÷=_____________;12.计算:a 2·(-2a 2)3=_______,()20182019122⎛⎫-⋅-= ⎪⎝⎭_________.13.若 a m =2,a n =3;则a m+n = ________14.若多项式()219x m x -++是一个完全平方式,则m =________(写出-一个答案即可).15.已知a m =4,a n =5,则2m n a +的值是________.16.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b )10的展开式中第三项的系数为______.三、解答题17.计算:(1)(﹣a )3(a 3)2 (2)(2a 2b )3÷(ab )2(3)(-14)-1+(-2)2×50+(13)-2 (4)(x +3y +2)(x ﹣3y +2)18.若6x y +=,且()()2223x y ++=.(1)求xy 的值; (2)求226x xy y ++的值.19.已知:105m =,104n =,求2310m n -的值.20.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2). (1)图2中的阴影部分的面积为______ ;(2)观察图2请你写出(a +b )2、(a -b )2、ab 之间的等量关系是______ ; (3)根据(2)中的结论,若x +y =7,xy =454,则x -y = ______ ;(4)实际上通过计算图形的面积可以探求相应的等式.根据图3,写出一个因式分解的等式______ .21.(1)已知(a +b )2=6,(a ﹣b )2=2,求a 2+b 2与ab 的值;(2)已知x +1x =3,求x 2+1x 2的值22.(1)填空:()()a b a b -+= ;22()()a b a ab b -++= ;3223()()a b a a b ab b -+++= .(2)猜想:(a ﹣b)(a n ﹣1+a n ﹣2b+…+ab n ﹣2+b n ﹣1)= (其中n 为正整数,且n≥2). (3)利用(2)猜想的结论计算:10982739103323232...322+⨯+⨯+⨯++⨯+的值.参考答案1.C 2.C 3.A 4.C 5.C 6.B . 7.C 8.B 9.D 10.C 11.12.8-8a ; -2. 13.6.14.5或7-(写出一个答案即可) 15.80 16.4517.(1)9a -;(2)8a 4b ;(3)9;(4)22449y x x ++- 18.(1)7;(2)64 19.256420.(1)(b ﹣a )2;(2)(a+b )2﹣(a ﹣b )2=4ab ;(3)±2;(4)3a 2+4ab+b 2=(a+b )•(3a+b ) 21.(1)a 2+b 2=4;ab =1;(2)7.22.(1)a 2-b 2,a 3-b 3,a 4-b 4(2)a n -b n (3)311-211。
(常考题)北师大版初中数学七年级数学下册第一单元《整式的乘除》检测卷(包含答案解析)(1)

一、选择题1.若x 2+kx +16能写成一个多项式的平方形式,则k 的值为( ) A .±8B .8C .±4D .42.一个长方形的面积为322263xy x y xy -+,长为2xy ,则这个长方形的宽为( ) A .2332y xy -+B .22y 23xy -+C .22y 63xy -+D .232y 2xy -+3.下列运算正确的是( ) A .2222a a -= B .()32628b b -=-C .222()a b a b -=-D .()a b a b --=-- 4.下列计算正确的是( ) A .326a a a ⋅= B .()()2122a a a +-=-C .()333ab a b =D .623a a a ÷=5.下列各式正确的是( ) A .6212121x x x x --⋅== B .62331x xx x--÷==C .()332322x xyx y y--== D .13223y x x y -⎛⎫= ⎪⎝⎭6.下列运算正确的是( ) A .3333x x -= B .()4410a a a ÷=≠C .()222424mnm n -=- D .()232a b abab ÷-=7.下列运算正确的是( ) A .3a •3a =23a B .23()ab -=﹣3a 6b C .12a ÷3a =4a D .53()a =8a 8.如果(x +m )与(x +1)的乘积中不含x 的一次项,则m 的值为( ) A .1B .-1C .±1D .09.下列计算正确的是( )A .248a a a •=B .352()a a =C .236()ab ab =D .624a a a ÷=10.下列各式运算正确的是( ) A .235a a a +=B .1025a a a ÷=C .()32626b b = D .2421a aa -⋅=11.下列计算中,错误的有( )①222(2)4x y x y +=+;②222()2x y x xy y --=-+;③2211224x x x ⎛⎫-=-+ ⎪⎝⎭;④22(3)(3)9b a b a a b ---=- A .1个 B .2个C .3个D .4个12.如3a b +=-,1ab =,则22a b +=( )A .-11B .11C .-7D .7二、填空题13.如图所示,将一个边长为a 的正方形减去一个边长为b 的小正方形,将剩余部分(阴影部分)对半剪开,恰好是两个完全相同的直角梯形,将它们旋转拼接后构成一个等腰梯形.(1)利用图形的面积关系可以得到一个代数恒等式是________; (2)求前n 个正奇数1,3,5,7,…的和是________.14.如图所示的四边形均为长方形,请写出一个可以用图中图形的面积关系说明的正确等式______.15.如果210x x m -+是一个完全平方式,那么m 的值是__________. 16.已知a +b =5,且ab =3,则a 3+b 3=_____. 17.设(2a+3b )2=(2a ﹣3b )2+A ,则A =__________18.如图:一块直径为+a b 的圆形钢板,从中挖去直径分别为a 与b 的两个半圆,则剩下的钢板面积为______.19.若9a b +=,14ab =,则a b -=______. 20.若103a =,102b =,则210a b -=______.三、解答题21.(1)若x 满足(30)(20)10x x --=-,求22(30)(20)x x -+-的值;(2)若x 满足22(2017)(2015)4036x x -+-=,求(2017)(2015)x x --的值;(3)如图,正方形ABCD 的边长为x ,10,20AE CG ==,长方形EFGD 的面积是500,四边形 NGDH 和MEDQ 都是正方形,PQDH 是长方形,求图中阴影部分的面积.(结果必须是一个具体的数值)22.计算题 (1)32(2)(5)x xy -(2)()(2)x y x y -+23.先化简,再求值:()()()2222x y x y x y --+-其中1x =-,2y =24.(1)计算:12019(2)(3)2π-⎛⎫+---+ ⎪⎝⎭(2)化简:2(2)()x x y x y --+25.先化简,再求值:(2x+y )2﹣(y ﹣2x )2,其中11,34x y ==-. 26.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2).(1)观察图1、图2,请你写出()2a b +、()2a b -、ab 之间的等量关系; (2)根据(1)中的结论,若5x y -=,114xy =,试求x y +的值; (3)拓展应用:若()()222019202134m m -+-=,求()()20192021m m --的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k 的值. 【详解】解:∵x 2+kx +16=x 2+kx +42,x 2+kx +16能写成一个多项式的平方形式, ∴kx =±2•x •4, 解得k =±8. 故选:A . 【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.2.A解析:A 【分析】根据整式除法计算即可; 【详解】由题可得:()32223263232-+÷=-+xy x y xy xy y xy ; 故答案选A . 【点睛】本题主要考查了整式除法的计算,准确计算是解题的关键.3.B解析:B 【分析】A.根据合并同类项解题;B.根据积的乘方解题;C.根据完全平方公式;D.根据去括号法则,判断即可. 【详解】解:A. 2222a a a -=,原选项计算错误,不符合题意; B. ()32628b b -=-,原选项计算正确,符合题意;C. 222()2a b a ab b -=-+,原选项计算错误,不符合题意;D. ()a b a b --=-+,原选项计算错误,不符合题意; 故选:B . 【点睛】本题考查合并同类项、积的乘方、完全平方公式、去括号法则等.熟记法则能分别计算是解题关键.4.C解析:C 【分析】分别用同底数幂的乘法法则、多项式与多项式的乘法、积的乘方以及同底数幂的除法公式来进行判断即可; 【详解】A 、325a a a = ,故该选项错误;B 、()()2212222a a a a a a a +-=-+-=-- ,故该选项错误;C 、()333ab a b = ,故该选项正确; D 、624a a a ÷= ,故该选项错误; 故选:C . 【点睛】本题考查了同底数幂的乘法法则、多项式与多项式的乘法、积的乘方以及同底数幂的除法公式,正确掌握公式是解题的关键;5.D解析:D 【分析】根据整数指数幂的运算法则计算,然后判断即可. 【详解】解:A 、624x x x -⋅=,错误; B 、628x x x -÷=,错误; C 、()332366x xyx yy--==,错误; D 、1332223y y x x x y ---⎛⎫== ⎪⎝⎭,正确;故选:D . 【点睛】本题考查了整数指数幂的运算,解题关键是按照整数指数幂的运算法则进行计算,会进行负指数的运算.6.B解析:B 【分析】根据幂的乘方、同底数幂乘法,合并同类项的运算法则逐一判断即可. 【详解】33332x x x -=,故A 选项错误;()4410a a a ÷=≠,故B 选项正确;()222424mn m n -=,故C 选项错误;()232a b ab ab ÷-=-,故D 选项错误;故选B . 【点睛】本题考查了整式的运算,幂的乘方、同底数幂乘法,合并同类项,关键是掌握各部分的运算法则.7.B解析:B 【分析】按照同底数幂的运算法则计算即可. 【详解】∵3a •3a =336a a +=, ∴选项A 错误; ∵23()ab -=﹣3a 6b , ∴选项B 正确; ∵12a ÷3a =1239a a -=, ∴选项C 错误; ∵53()a =3515a a ⨯=, ∴选项D 错误; 故选B. 【点睛】本题考查了同底数幂的运算,熟记运算形式和运算法则是解题的关键.8.B解析:B 【分析】利用多项式乘以多项式展开,使得一次项系数为0即可; 【详解】 由题可得:()()()211x m x x m x m ++=+++,∵不含x 的一次项, ∴10m +=, ∴1m =-; 故答案选B . 【点睛】本题主要考查了多项式乘以多项式的应用,准确计算是解题的关键.9.D解析:D 【分析】分别根据同底数幂的乘法,幂的乘方,积的乘方法则以及同底数幂的除法法则逐一计算判断即可. 【详解】解:A 、a 2∙a 4=a 6,故选项A 不合题意; B 、(a 2)3=a 6,故选项不B 符合题意; C 、(ab 2)3=a 3b 6,故选项C 不符合题意; D 、a 6÷a 2=a 4,故选项D 符合题意. 故选:D . 【点睛】本题主要考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.10.D解析:D 【分析】根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;合并同类项的法则,对各选项计算后利用排除法求解. 【详解】解:A 、a 2与3a 不是同类项,不能合并,故本选项错误; B 、1028a a a ÷=,故本选项错误; C 、()32628b b =,故本选项错误;D 、24221a aa a--⋅==,正确. 故选:D . 【点睛】本题考查了幂的乘方的性质,同底数幂的乘法,合并同类项的法则,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的不能合并.11.C解析:C 【分析】直接利用完全平方公式和平方差公式分别计算,判断各式得出答案即可. 【详解】解:①(2x+y )2=4x 2+4xy+y 2,错误;②2222()()2x y x y x xy y --=+=++,错误;③221124x x x ⎛⎫-=-+ ⎪⎝⎭,错误; ④()()()()2233339b a b a a b a b a b ---=-+--=-,正确;故选:C . 【点睛】此题主要考查了完全平方公式和平方差公式,正确掌握公式的基本形式是解题关键.12.D解析:D 【分析】根据222()2a b a b ab +=+-直接代入求值即可. 【详解】解:当3a b +=-,1ab =,时,222()2a b a b ab +=+-=9-2=7. 故选:D . 【点睛】本题考查对完全平方公式的变形应用能力,熟记有关完全平方公式的几个变形公式是解题的关键二、填空题13.【分析】(1)可分别在正方形和梯形中表示出阴影部分的面积两式联立即可得到关于ab 的恒等式(2)由12-02=122-12=332-22=542-32=7…n2-(n-1)2=2n-1相加即可得结果【解析:22()()a b a b a b -=+- 2n 【分析】(1)可分别在正方形和梯形中表示出阴影部分的面积,两式联立即可得到关于a 、b 的恒等式(2)由12-02=1,22-12=3,32-22=5,42-32=7…n 2-(n-1)2=2n-1相加即可得结果. 【详解】解:正方形中,S 阴影=a 2-b 2; 梯形中,S 阴影=12(2a+2b )(a-b )=(a+b )(a-b ); 故所得恒等式为:a 2-b 2=(a+b )(a-b ), 故答案为:a 2-b 2=(a+b )(a-b ).(2)∵12-02=1,22-12=3,32-22=5,42-32=7…n 2-(n-1)2=2n-1 ∴1+3+4+5+7+9+…+(2n-1)=12-02+22-12+32-22+42-32+…+n 2-(n-1)2=n 2 故答案为:n 2. 【点睛】本题考查了平方差公式的几何背景,正确表示出两个图形中阴影部分的面积是关键.14.(a+b )(2a+b )=【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可【详解】由题意得:(a+b )(2a+b )=故答案为:(a+b )(2a+b )=【点睛】解析:(a+b )(2a+b )=2223a ab b ++【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可. 【详解】由题意得:(a+b )(2a+b )=2223a ab b ++, 故答案为:(a+b )(2a+b )=2223a ab b ++. 【点睛】此题考查多项式乘多项式与图形面积,正确理解图形面积的构成是解题的关键.15.25【分析】利用完全平方公式的结构特征即可求出m 的值【详解】解:∵x2-10x+m 是一个完全平方式∴m==25故答案为:25【点睛】此题考查了完全平方式熟练掌握完全平方公式是解本题的关键解析:25 【分析】利用完全平方公式的结构特征,即可求出m 的值. 【详解】解:∵x 2-10x +m 是一个完全平方式,∴m=210()2-=25. 故答案为:25. 【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.16.80【分析】先求出再将a +b =5代入a3+b3公式中计算即可【详解】∵a +b =5且ab =3∴∴∴故答案为:80【点睛】此题考查完全平方公式的变形计算立方和公式正确掌握立方和的计算公式是解题的关键解析:80 【分析】先求出2216a b ab +-=,再将a +b =5,2216a b ab +-=代入a 3+b 3公式中计算即可. 【详解】∵a +b =5,且ab =3,∴2222()253219a b a b ab +=+-=-⨯=, ∴2222()353316a b ab a b ab +-=+-=-⨯=, ∴3322()()51680a b a b a ab b +=+-+=⨯= 故答案为:80. 【点睛】此题考查完全平方公式的变形计算,立方和公式,正确掌握立方和的计算公式是解题的关键.17.24ab 【分析】由完全平方公式(a±b )2=a2±2ab+b2得到(a+b )2=(a ﹣b )2+4ab 据此可以作出判断【详解】解:∵(2a+3b )2=(2a ﹣3b )2+4×2a×3b =(2a ﹣3b )2解析:24ab 【分析】由完全平方公式(a ±b )2=a 2±2ab +b 2,得到(a +b )2=(a ﹣b )2+4ab ,据此可以作出判断. 【详解】解:∵(2a +3b )2=(2a ﹣3b )2+4×2a ×3b =(2a ﹣3b )2+24ab , (2a +3b )2=(2a ﹣3b )2+A , ∴A =24ab . 故答案为:24ab . 【点睛】本题考查了完全平方公式.关键是要了解(a ﹣b )2与(a +b )2展开式中区别就在于2ab 项的符号上,通过加上或者减去4ab 可相互变形得到.18.【分析】先求出圆形钢板的面积再减去两个小半圆的面积即可【详解】解:圆形钢板的面积为:直径为a 的半圆面积为:直径为b 的半圆面积为:剩下钢板的面积为:=故答案为:【点睛】本题考查了圆的面积利用面积的差求解析:()2248ab ab π++【分析】先求出圆形钢板的面积,再减去两个小半圆的面积即可. 【详解】解:圆形钢板的面积为:2()2a b π+, 直径为a 的半圆面积为:21()22a π⨯, 直径为b 的半圆面积为:21()22b π⨯, 剩下钢板的面积为:22211()()()22222a b a bπππ+-⨯-⨯, =()2248ab ab π++,故答案为:()2248ab ab π++.【点睛】本题考查了圆的面积,利用面积的差求出剩余钢板的面积,注意:圆的面积等于半径的平方乘以π.19.【分析】由完全平方式得(a+b )=(a-b )+4ab 变形为(a-b )=(a+b )-4ab 把a+b=9ab=18代入计算即可求得【详解】由完全平方式得(a-b )=(a+b )-4ab 当a+b=9ab=1解析:5±【分析】由完全平方式得(a +b )2=(a -b )2+4ab 变形为(a -b )2=(a +b )2-4ab ,把a +b =9,ab =18代入计算即可求得.【详解】由完全平方式得(a -b )2=(a +b )2-4ab .当a +b =9,ab =14时,(a -b )2=81-4×14=81-56=25,∴a -b.故答案为:±5.【点睛】本题主要考查完全平方公式的熟练掌握情况,利用完全平方公式整理成已知条件的形式是解题的关键,再代入求值即可.20.【分析】根据同底数幂的除法和幂的乘方得出代入求出即可【详解】∵10a=310b=2∴=102a÷10b==32÷2=故答案为【点睛】本题考查同底数幂的除法和幂的乘方的应用关键是得出关于10a 和10b 解析:92【分析】根据同底数幂的除法和幂的乘方得出()21010ab ÷,代入求出即可. 【详解】∵10a =3,10b =2,∴210a b -=102a ÷10 b=()21010a b ÷ =32÷2 =92. 故答案为92. 【点睛】 本题考查同底数幂的除法和幂的乘方的应用,关键是得出关于10a 和10b 的式子,用了整体代入思想.三、解答题21.(1)120;(2)2016;(3)2100(1)设(30-x )=m ,(x -20)=n ,利用完全平方公式变形计算;(2)设(2017-x )=c ,(2015-x )=d ,则(2017-x )2+(2015-x )2=c 2+d 2=4036,c -d =(2017-x )-(2015-x )=2,所以2cd =(c 2+d 2)-(c -d )2=4036-22=4032,可得cd =2016,即可解答;(3)根据正方形ABCD 的边长为x ,AE =10,CG =20,所以DE =(x -10),DG =x -20,得到(x -10)(x -20)=500,设(x -10)=a ,(x -20)=b ,从而得到ab =500,a -b =(x -10)-(x -20)=10,根据举例求出a 2+b 2,即可求出阴影部分的面积.【详解】解:(1)设(30-x )=m ,(x -20)=n ,则(30-x )(x -20)=mn =-10,m +n =(30-x )+(x -20)=10,∴(30-x )2+(x -20)2=m 2+n 2=(m +n )2-2mn =(-10)2-2×(-10)=120;(2)设(2017-x )=c ,(2015-x )=d ,则(2017-x )2+(2015-x )2=c 2+d 2=4036,c -d =(2017-x )-(2015-x )=2,∴2cd =(c 2+d 2)-(c -d )2=4036-22=4032,∴cd =2016,∴(2017-x )(2015-x )=cd =2016.(3)∵正方形ABCD 的边长为x ,AE =10,CG =20,∴DE =(x -10),DG =x -20,∴(x -10)(x -20)=500,设(x -10)=a ,(x -20)=b ,∴ab =500,a -b =(x -10)-(x -20)=10,∴a 2+b 2=(a -b )2+2ab =102+2×500=1100,∴阴影部分的面积为:a 2+b 2+2ab =1100+2×500=2100.【点睛】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式,进行转化运用. 22.(1)4240x y ;(2)222x xy y --【分析】(1)首先进行积的乘方运算,然后再进行单项式乘以单项式运算即可得到答案; (2)根据整式多项式乘以多项式运算法则计算可得.【详解】解:(1)32(2)(5)x xy -328(5)x xy =--4240x y =;(2)()(2)x y x y -+222+2x xy xy y =--22=2x xy y --本题主要考查整式的乘法运算,解题的关键是熟练掌握整式的乘法运算顺序和法则. 23.248xy y -+,40【分析】先提公因式(2)x y -,然后计算括号内的运算,得到最简整式,然后把1x =-,2y =代入计算,即可得到答案.【详解】解:原式()()()222x y x y x y =---+⎡⎤⎣⎦()[]222x y x y x y =----()42y x y =--248xy y =-+.当1x =-,2y =时,原式()4212240=-⨯⨯--⨯=.【点睛】本题考查了整式的混合运算,整式的化简求值,解题的关键是掌握运算法则进行化简. 24.(1)8;(2)24y xy --【分析】(1)先计算算术平方根,乘方,零次幂及负整数指数幂,再计算加减法;(2)先计算单项式乘以多项式及完全平方公式,再合并同类项.【详解】解:(1)原式3412=+-+8=;(2)原式22222x xy x y xy =----24y xy =--.【点睛】此题考查实数的混合运算及整式的混合运算,掌握实数算术平方根,乘方,零次幂及负整数指数幂计算法则,以及整式的单项式乘以多项式及完全平方公式计算法则是解题的关键.25.8xy ,23-【分析】直接利用完全平方公式化简进而合并同类项,再把已知数据代入计算即可.【详解】解:(2x+y )2﹣(y ﹣2x )2,=4x 2+4xy+y 2﹣(y 2+4x 2﹣4xy ),=4x 2+4xy+y 2﹣y 2﹣4x 2+4xy ,当11,34x y ==-时, 原式=8×13×(14-), =﹣23. 【点睛】本题主要考查了用完全平方公式化简求值,熟记公式的几个变形公式是解题关键. 26.(1)()()224a b a b ab +--=;(2)6x y +=±;(3)-15.【分析】(1)由长方形的面积公式解得图1的面积,图2中白色部分面积为大正方形面积与小正方形面积的差,又由图1与图2中的空白面积相等,据此列式解题;(2)由(1)中结论可得()()224x y x y xy +--=,将5x y -=,114xy =整体代入,结合平方根性质解题;(3)将()2019m -与()2021m -视为一个整体,结合(1)中公式,及平方的性质解题即可.【详解】解:(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为()()()()2222a b b a a b a b +--=+-- ∵图1的面积和图2中白色部分的面积相等 ∴()()224a b a b ab +--=(2)根据(1)中的结论,可知()()224x y x y xy +--=∵5x y -=,114xy =∴()2211544x y +-=⨯∴()236x y += ∴6x y +=±(3)∵()()201920212m m -+-=-∴()()2201920214m m -+-=⎡⎤⎣⎦ ∴()()()()22201922019202120214m m m m -+--+-= ∵()()222019202134m m -+-=∴()()22019202143430m m --=-=-∴()()2019202115m m --=-.【点睛】本题考查完全平方公式在几何图形中的应用,是重要考点,难度较易,掌握相关知识是解题关键.。
北师大版七年级数学下册单元测试题全套及参考答案
北师大版七年级数学下册单元测试题全套(含答案)第一章达标检测卷(满分: 120 分 时间: 90 分钟)一、选择题 ( 每小题 3 分,共 30 分 )1 .计算x 3 • X 3的结果是()A . 2x 3B . 2x 6C . x 6D. x 92017 年 6 月 8 日 24 时,个人普通小客车指标的基准中签几率继续创新低,约为 0.00122 ,相当于 817 人抢一个指标,小客车指标中签难度继续加大.将 0.00122用科学记数法表示应为 ()-5-3 A. 1.22 X 10 B 122X 10-3-2C. 1.22 X10 D . 1.22 X10 3.下列计算中,能用平方差公式计算的是( )5.若(y+3)( y —2) = y 2+m 什n,则m, n 的值分别为()A. m= 5, n=6 B . m= 1, n=—6 C. m= 1, n= 6D. m= 5, n=—66 .计算(8 a 2b 3—2a 3b 2+ab) + ab 的结果是()A . 8ab 2-2a 2b +1 B . 8ab 2- 2a 2b C . 8a 2b 2-2a 2b +1D. 8a 2b - 2a 2b + 17 .设(a+2b )2=(a —2b )2+A,则 A 等于( )试猜想:(n+1)( n+2)( n+3)( n+4) + 1 = 三、解答题(共66分)2.根据北京小客车指标办的通报,截至 A . ( x +3)( x - 2)B C . ( a 2+ b )( a 2- b ) D 4.下列各式计算正确的是 (A. a + 2a 2=3a 3Bbb . ( - 1- 3x )(1 +3x ). (3x + 2)(2 x - 3)).(a+ b )2= a 2 + ab+ b 2A.8ab B .-8abC.8b2 D .4ab8.若M= (a+3)(a— 4), N= (a+2)(2 a—5),其中a为有理数,则M N的大小关系是( )A. M> N B . Mk NC. M= N.无法确定2 20163 20179 .若 a= 20180,b = 2016 x 2018— 20172, c= -- x - ,则下列 a,b, c 的大小关系正确的是 ( )3 211 .计算:a 3+ a =.212 .右长方形的面积是 3a+2ab+ 3a,长为3a,则匕的范为 13 .若 x n= 2, y n= 3,贝U(xy )n=. 14 .化简a 4b* 3+ (ab )3的结果为.15 .若 2x +1= 16,则 x =.16 .用一张包装纸包一本长、宽、厚如图所示的书(单位:cm ).若将封面和封底每一边都包进去3cm,则需长方形的包装纸 cm 2.17 .已知(x+ y )2=1, (x-y )2=49,则 x 2+y 2的值为 18 .观察下列运算并填空.21X2X3X4+ 1= 24+1 = 25=5;22X3X4X5+ 1=120+1=121 = 11 ;___, , ._23X4X5X6+ 1= 360+ 1 = 361 = 19; 4X5X6X7+ 1= 840+ 1 = 841 = 292;27X8X9X 10+ 1 = 5040+ 1 = 5041 = 71 ;19. (8分)计算:A. a< b< c Ba< c< b C. bvavc Dc< b< a10.已知x 2+4y 2=13, xy = 3,求x+2y 的值.这个问题我们可以用边长分别为x 与y 的两种正方形组成、填空题(每小题3分,共24分)(第16题图)(1)2 3X 22 - 10- 2 —3—2(2) — 12+(兀一3.14)+ (-2)3.20. (12分)化简:⑴(2 x— 5)(3 x+2);2(2)(2 a+ 3b)(2 a- 3b) — (a-3b);52x3y3+ 4x2y2—3xy + ( - 3xy);(4) ( a+ b — c)( a+ b+ c).21 .(10 分)先化简,再求值:(2)[ x2+y2—(x+ y)2+2x(x—y)] +4x,其中x—2y=2.22.(8 分)若m p= 1, m2q= 7, mr= - 7,求m3p+4q—2r的值.5 523.(8分)对于任意有理数a、b、c、d,我们规定符号(a, b) (c, d) = ad—b c.例如:(1, 3) (2, 4)= 1X4-2X3=- 2.(1)( —2, 3) (4, 5)=;(2)求(3a+1, a-2) (a+2, a—3)的值,其中a2—4a+1 = 0.24.(10分)王老师家买了一套新房,其结构如图所示(单位:米).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米 x 元,木地板的价格为每平方米3x 元,那么王老师需要花多少钱?25. (10 分)阅读:已知 a+b=-4, ab=3,求 a 2+ b 2的值.解:= a+ b= — 4, ab= 3,.•.a 2+b 2=(a + b )2—2ab=( —4)2 —2X3= 10.请你根据上述解题思路解答下面问题:⑴已知 a — b=—3, ab=—2,求(a+b)( a 2—b 2)的值;(2)已知 a- c —b=—10, (a —b )c=—12,求(a —b ) 2+c 2的值.7-—*卧室卫生问(第24题图)参考答案与解析、1. C 2.C3.C4.C5.B 6 . A 7.A 8.B 9.C10. B 解析:(x+2y )2=x 2+4xy+4y 3 4,故符合的图形为 B.14. a 15.3 16.(2 a 2+19a —10) 17.2518 . (n 2+5n+ 5) 解析:观察几个算式可知结果都是完全平方式, 且5=1X4+ 1, 11=2X5+ 1, 19=3X6+ 1, .. 由此可知,最后一个式子为完全平方式,且底数为 (n+1)( n + 4)+1 = n 2+5n + 5.19 .解:(1)原式=8X4— 1—8= 23.(4 分) (2)原式=—1 + 1 — 9— 8 = — 17.(8 分)20 .解:(1)原式=6x 2+4x —15x —10=6x 2—11x —10.(3 分) (2)原式=4a 2—9b 2—a 2+6ab —9b 2=3a 2+6ab —18b 2.(6 分)⑶原式=-6x 2y 2—3xy+1.(9 分)(4)原式=(a+b )2—c 2= a 2+b 2—c 2+2ab.(12 分)22—1 …一121.解:(1)原式=1 —a +a —4a+ 4=— 4a+ 5.(3 分)当 a =]时,原式=—4x 万+5=3.(5 分)(2)原式=(x 2+y 2_x 2_2xy_ y 2+2x 2—2xy )+4 x= (2x 2—4xy )+4x= gx —y .(8 分).x_2y=2, 1-2x —y=1, • .原式=1.(10 分) 22. 解:m 3p4q 2r = ( m p) 3 • ( m 2q ) 2+(而2.(4 分). mp :;,m 2q = 7,m i= - m 3p4q 2r=553 3 2 7 21 … 5 XL 蓝=5.(8 分) 23.解:(1) —22(2 分)(2)(3 a+1, a — 2) (a+2, a — 3) = (3a+1)( a — 3) — (a — 2)( a+ 2) = 3a — 9a+ a — 3 — (a — 4) = 3a — 9a422_2+ a — 3— a + 4 = 2a — 8a + 1.(5 分)= a — 4a + 1 = 0, • • 2 a — 8a = — 2,,(3a+1, a — 2) (a+2, a — 3) =—2+ 1 = — 1.(8 分)24.解:(1)卧室的面积是2b (4a —2a ) =4ab (平方米),(2分)厨房、卫生间、客厅的面积和是b - (4a-2a11. a 212. a +23b+113.64. 卜列作图能表示点 A 到BC 的距离的是()(2) .. a-c-b=- 10, (a-b )c=- 12, . .( a —b )2+ c 2= [( a —b ) — c ] 2+2( a —b )c=( — 10)2+2x( — 12)= 76.(10 分)第二章达标检测卷 (满分:120分时间:90分钟)、选择题(每小题3分,共30分)1.下列图形中,Z1 与/2互为对顶角的是()(第2题图)(第3题图)A. 154° C. 116°3.如图,已知直线a, b 被直线c 所截,那么/I 的同旁内角是() A. Z 3 B . Z4 C. Z 5D . Z6B 144 D.26° 或 154°2.如图,O 是直线AB 上一点,若/ 1 = 26° ,则/AOC 勺度数为()5.如图,下列条件:①/ 1 = /3;②/2=/3;③/4=/5;(DZ 2+74=180°中,能判断直线 l i// 12的有( )A. 1个 B . 2个 C. 3个D. 4个6.如图,直线 a, b 与直线c, d 相交,已知/ 1 = Z2, 73=110° ,则/4 的度数为(A. 70° B . 80° C. 110°D. 1007.如图,AB// CD CD// EF,则/ BCE?于()A. Z 2-Z 18.如图,将一副三角板叠放在一起,使直角的顶点重合于点 O, AB// OC DC 与OB 交于点E,则/ DEO 勺度数为()A. 85° B . 70° C. 75°D, 60°C. 180° + Z 1-Z 2D . 180° -Z 1 + Z29.如图,E, F 分别是AB, CD 上的点,G 是BC 的延长线上一点,且/ B= / DCG= / D,则下列结论不一定(第5题图)(第6题图)(第7题图)(第8题图)10. 一次数学活动中,检验两条完全相同的纸带①、 ②的边线是否平行, 小明和小丽采用两种不同的方法:小明把纸带①沿 AB 折叠,量得/ 1 = /2=50。
(常考题)北师大版初中数学七年级数学下册第一单元《整式的乘除》检测题(含答案解析)(1)
一、选择题1.下列运算正确的是( ) A .2222a a -= B .()32628b b -=-C .222()a b a b -=-D .()a b a b --=--2.如图,长为()cm y ,宽为()cm x 的大长方形被分割为7小块,除阴影A ,B 外,其余5块是形状、大小完全相同的小长方形,其较短的边长是5cm ,下列说法中正确的是( )①小长方形的较长边为15y -;②阴影A 的较短边和阴影B 的较短边之和为5x y -+; ③若x 为定值,则阴影A 和阴影B 的周长和为定值; ④当15x =时,阴影A 和阴影B 的面积和为定值. A .①③④ B .②④ C .①③ D .①④ 3.如果(x +m )与(x +1)的乘积中不含x 的一次项,则m 的值为( ) A .1B .-1C .±1D .04.下列计算中正确的是( )A .1(1)1--=B .0(1)0-=C .1122aa-=D .﹣0.0000035=﹣3.5×10﹣65.将4个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成a c b d ,定义a c bd=ad-bc .上述记号就叫做2阶行列式,若11x x +-11x x -+=12,则x=( ).A .2B .3C .4D .66.计算下列各式,结果为5x 的是( ) A .()32xB .102x x ÷C .23x x ⋅D .6x x -7.多项式2425a ma ++是完全平方式,那么m 的值是( ) A .10± B .20± C .10 D .20 8.如果249x mx -+是一个完全平方式,则m 的值是( )A .12±B .9C .9±D .129.下列计算正确的是( ) A .(a +b )(a ﹣2b )=a 2﹣2b 2 B .(a ﹣12)2=a 2﹣14C .﹣2a (3a ﹣1)=﹣6a 2+aD .(a ﹣2b )2=a 2﹣4ab +4b 210.下列运算正确的是( ) A .236a a a ⋅=B .22a a -=-C .572a a a ÷=D .0(2)1(0)a a =≠11.下列计算中,错误的有( )①222(2)4x y x y +=+;②222()2x y x xy y --=-+;③2211224x x x ⎛⎫-=-+ ⎪⎝⎭;④22(3)(3)9b a b a a b ---=- A .1个 B .2个C .3个D .4个12.下列计算中,正确..的是( ) A .632a a a ÷=B .32622a a a ⋅=C .222()a b a b -=-D .222()ab a b -=二、填空题13.在代数式求值时,可以利用交换律,将各项交换位置后,把一个多项式化成“()222a ab b±++其他项”的形式,然后利用完全平方公式得到“()2a b ±+其他项”,最后整体代入求值.例如对于问题“已知2a b +=,1c =,求2222a c b ab +++的值”,可按以下方式求解:2222a c b ab +++2222a ab b c =+++22()a b c =++=22215+=.请仿照以上过程,解决问题:若3m n t +=-,7n k t -=-,则22244241m n k mn mk nk +++--+=______.14.如果a c =b ,那么我们规定(a ,b)=c ,例如:因为23=8,所以(2,8)=3.若(3,5)=a ,(3,6)=b ,(3,m)=2a-b ,则m=________.15.将7张如图①所示的小长方形纸片按图②的方式不重叠地放在长方形ABCD 内,未被覆盖的部分恰好被分割为两个长方形,面积分别为1S ,2S .已知小长方形纸片的宽为a ,长为4a ,则21=S S -______(结果用含a 的代数式表示).16.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是:__________;(请选择正确的一个) A .2222()a ab b a b -+=- B .22()()a b a b a b -=+- C .2()a ab a a b +=+(2)应用:利用所选(1)中等式两边的等量关系,完成下面题目:若46x y +=,45x y -=,则221664x y -+的值为__________.17.已知实数m ,n 满足3n km =+,()()22254816m m n n -+-+=,则k =_______.18.已知29x mx ++是完全平方式,则m =_________. 19.若20206m =,20204n =,则22020m n -=_____. 20.若9×32m ×33m =322,则m 的值为_____.三、解答题21.把一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后拼成一个正方形(如图1).(1)请用两种不同的方法求图2中阴影部分的面积(直接用含m ,n 的代数式表示). 方法1:______________________________. 方法2:______________________________.(2)根据(1)中结论,请你写出下列三个代数式()2m n +,()2m n -,mn 间的等量关系:________(3)根据(2)中的等量关系,解决如下问题:已知实数x ,y 满足6xy =,5x y -=,请求出x y +的值.22.如图,在长8cm ,宽5cm 的长方形塑料板的四个角剪去4个边长为 cm x 的小正方形,按折痕做一个无盖的长方体盒子,求盒子的容积(塑料板的厚度忽略不计).23.(1)计算:1301|6|(2)(2)3π-⎛⎫-÷--⨯- ⎪⎝⎭; (2)先化简,再求值:(3)(2)()x x y x y x y +-++,其中1x =-,2y =. 24.图①是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)观察图②,请用两种不同的方式表示阴影部分的面积,写出三个代数式()2m n +、()2m n -、mn 之间的等量关系是______________;(2)有许多等式可以用图形的面积来表示.如图③,它表示了_________;(3)请你用图③提供的若干个长方形和正方形硬纸片图形,用拼长方形的方法,把下列二次三项式进行因式分解:2243m mn n ++.要求:在图④的框中画出图形并在下方写出分解的因式. 25.计算:(1)(x 3)2•(﹣2x 2y 3)2; (2)(a ﹣3)(a +3)+(2a +1)2.26.如图,点M 是AB 的中点,点P 在MB 上.分别以AP ,PB 为边,作正方形APCD 和正方形PBEF ,连结MD 和ME .设AP =a ,BP =b ,且a +b =8,ab =6,求图中阴影部分的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】A.根据合并同类项解题;B.根据积的乘方解题;C.根据完全平方公式;D.根据去括号法则,判断即可. 【详解】解:A. 2222a a a -=,原选项计算错误,不符合题意; B. ()32628b b -=-,原选项计算正确,符合题意;C. 222()2a b a ab b -=-+,原选项计算错误,不符合题意;D. ()a b a b --=-+,原选项计算错误,不符合题意; 故选:B . 【点睛】本题考查合并同类项、积的乘方、完全平方公式、去括号法则等.熟记法则能分别计算是解题关键.2.C解析:C 【分析】①观察图形,由大长方形的长及小长方形的宽,可得出小长方形的长为(y-15)cm ,说法①正确;②由大长方形的宽及小长方形的长、宽,可得出阴影A ,B 的较短边长,将其相加可得出阴影A 的较短边和阴影B 的较短边之和为(2x+5-y )cm ,说法②错误;③由阴影A ,B 的相邻两边的长度,利用长方形的周长计算公式可得出阴影A 和阴影B 的周长之和为2(2x+15),结合x 为定值可得出说法③正确;④由阴影A ,B 的相邻两边的长度,利用长方形的面积计算公式可得出阴影A 和阴影B 的面积之和为(xy-25y+375)cm 2,代入x=15可得出说法④错误. 【详解】解:①∵大长方形的长为ycm ,小长方形的宽为5cm , ∴小长方形的长为y-3×5=(y-15)cm ,说法①正确;②∵大长方形的宽为xcm ,小长方形的长为(y-15)cm ,小长方形的宽为5cm , ∴阴影A 的较短边为x-2×5=(x-10)cm ,阴影B 的较短边为x-(y-15)=(x-y+15)cm , ∴阴影A 的较短边和阴影B 的较短边之和为x-10+x-y+15=(2x+5-y )cm ,说法②错误; ③∵阴影A 的较长边为(y-15)cm ,较短边为(x-10)cm ,阴影B 的较长边为3×5=15cm ,较短边为(x-y+15)cm ,∴阴影A 的周长为2(y-15+x-10)=2(x+y-25),阴影B 的周长为2(15+x-y+15)=2(x-y+30),∴阴影A 和阴影B 的周长之和为2(x+y-25)+2(x-y+30)=2(2x+5), ∴若x 为定值,则阴影A 和阴影B 的周长之和为定值,说法③正确; ④∵阴影A 的较长边为(y-15)cm ,较短边为(x-10)cm ,阴影B 的较长边为3×5=15cm ,较短边为(x-y+15)cm ,∴阴影A 的面积为(y-15)(x-10)=(xy-15x-10y+150)cm 2,阴影B 的面积为15(x-y+15)=(15x-15y+225)cm 2,∴阴影A 和阴影B 的面积之和为xy-15x-10y+150+15x-15y+225=(xy-25y+375)cm 2, 当x=15时,xy-25y+375=(375-10y )cm 2,说法④错误. 综上所述,正确的说法有①③. 故选:C .【点睛】本题考查了列代数式以及整式的混合运算,逐一分析四条说法的正误是解题的关键.3.B解析:B 【分析】利用多项式乘以多项式展开,使得一次项系数为0即可; 【详解】 由题可得:()()()211x m x x m x m ++=+++,∵不含x 的一次项, ∴10m +=, ∴1m =-; 故答案选B . 【点睛】本题主要考查了多项式乘以多项式的应用,准确计算是解题的关键.4.D解析:D 【分析】根据零指数幂、负指数幂和科学记数法的表示判断即可; 【详解】1(1)1--=-,故A 错误;0(11)-=,故B 错误;122a a-=,故C 错误; ﹣0.0000035=﹣3.5×10﹣6,故D 正确;故选:D . 【点睛】本题主要考查了零指数幂、负指数幂和科学记数法,准确分析判断是解题的关键.5.B解析:B 【分析】根据题中的新定义将所求的方程化为普通方程,整理后即可求出方程的解,即为x 的值. 【详解】 解:根据题意化简11 11x x x x +--+=12,得(x+1)2-(x-1)2=12, 整理得:x 2+2x+1-(1-2x+x 2)-12=0,即4x=12, 解得:x=3, 故选:B . 【点睛】此题考查了整式的混合运算,属于新定义的题型,涉及的知识有:完全平方公式,去括号、合并同类项法则,根据题意将所求的方程化为普通方程是解本题的关键.6.C解析:C 【分析】分别计算每个选项然后进行判断即可. 【详解】A 、()326x x =,选项错误;B 、1028x x x =÷,选项错误;C 、235x x x ,选项正确;D 、6x x -不能得到5x ,选项错误.故选:C 【点睛】此题考查同底数幂的运算,熟练掌握运算法则是解题的关键.7.B解析:B 【分析】由4a 2+ma+25是完全平方式,可知此完全平方式可能为(2a±5)2,再求得完全平方式的结果,根据多项式相等,即可求得m 的值. 【详解】解:∵4a 2+ma+25是完全平方式, ∴4a 2+ma+25=(2a±5)2=4a 2±20a+25, ∴m=±20. 故选:B . 【点睛】本题考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.A解析:A 【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值. 【详解】解:∵()22249=23x mx x mx -+-+, ∴223mx x -=±⨯⨯ , 解得m=±12. 故选:A . 【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.9.D解析:D 【分析】根据整式的乘法逐项判断即可求解. 【详解】解:A. (a +b )(a ﹣2b )=a 2﹣4b 2,原题计算错误,不合题意; B. (a ﹣12)2=a 2﹣a +14,原题计算错误,不合题意; C. ﹣2a (3a ﹣1)=﹣6a 2+2a ,原题计算错误,不合题意; D. (a ﹣2b )2=a 2﹣4ab +4b 2,计算正确,符合题意. 故选:D 【点睛】本题考查了单项式乘以多项式,平方差公式,完全平方式,熟练掌握单项式乘以多项式的法则、乘法公式是解题的关键.10.D解析:D 【分析】运用同底数幂乘法、负整数次幂、同底数幂除法以及零次幂的知识逐项排查即可. 【详解】解:A. 235a a a ⋅=,故A 选项不符合题意; B. 221aa-=,故B 选项不符合题意; C. 572a a a -÷=,故C 选项不符合题意; D. 0(2)1(0)a a =≠,故D 选项符合题意. 故填:D . 【点睛】本题主要考查了同底数幂乘法、负整数次幂、同底数幂除法、零次幂等的知识点,灵活运用相关运算法则是解答本题的关键.11.C解析:C 【分析】直接利用完全平方公式和平方差公式分别计算,判断各式得出答案即可. 【详解】解:①(2x+y )2=4x 2+4xy+y 2,错误;②2222()()2x y x y x xy y --=+=++,错误;③221124x x x ⎛⎫-=-+ ⎪⎝⎭,错误; ④()()()()2233339b a b a a b a b a b ---=-+--=-,正确;故选:C . 【点睛】此题主要考查了完全平方公式和平方差公式,正确掌握公式的基本形式是解题关键.12.D解析:D 【分析】分别根据幂的乘方法则、完全平方公式、同底数幂的乘法及除法法则进行逐一解答. 【详解】A 、636-33=a a a a ÷=,原选项计算错误,故不符合题意;B 、323+52=222a a a a ⋅=,原选项计算错误,故不符合题意;C 、222()2a b a ab b -=-+,原选项计算错误,故不符合题意;D 、222()ab a b -=,计算正确,符合题意. 故选:D . 【点睛】本题考查的是同底数幂的乘法与除法,合并同类项及幂的乘方法则,熟知以上知识是解答此题的关键.二、填空题13.17【分析】由m+n=3-t与n-k=t-7可得m+2n-k=-4再两边平方展开最后整体代入即可【详解】解:∵m+n=3-tn-k=t-7∴(m+n)+(n-k)=3-t+t-7即m+2n-k=-4解析:17【分析】由m+n=3-t与n-k=t-7可得m+2n-k=-4,再两边平方展开,最后整体代入即可.【详解】解:∵m+n=3-t,n-k=t-7,∴(m+n)+(n-k)=3-t+t-7,即m+2n-k=-4,∴(m+2n-k)2=(-4)2,∴m2+4n2+k2+4mn-2mk-4nk=16,∴m2+4n2+k2+4mn-2mk-4nk+1=16+1=17,故答案为:17.【点睛】本题考查代数式求值,将原代数式进行适当的变形是得出正确答案的关键.14.【分析】由新规定的运算可得3a=53b=6m=32a-b再将32a-b转化为后再代入求值即可【详解】解:由于(35)=a(36)=b(3m)=2a-b根据新规定的运算可得3a=53b=6m=32a-解析:25 6【分析】由新规定的运算可得3a=5,3b=6,m=32a-b,再将32a-b,转化为2(3)3ab后,再代入求值即可.【详解】解:由于(3,5)=a,(3,6)=b,(3,m)=2a-b,根据新规定的运算可得,3a=5,3b=6,m=32a-b,∴222(3)5253366aa bbm-====,故答案为:256.【点睛】本题考查了幂的乘方,同底数幂的除法,掌握幂的乘方和同底数幂的除法的计算方法是正确计算的前提,理解新规定运算的意义是解决问题的关键.15.【分析】可设长方形ABCD的长为m分别求出S1S2再代入S2-S1计算即可求解【详解】解:设长方形ABCD 的长为m 则S2-S1=(m-3a )×4a-(m-4a )×4a=4ma-12a2-4am+16解析:24a【分析】可设长方形ABCD 的长为m ,分别求出S 1,S 2,再代入S 2-S 1计算即可求解.【详解】解:设长方形ABCD 的长为m ,则S 2-S 1=(m-3a )×4a-(m-4a )×4a=4ma-12a 2-4am+16a 2×=4a 2.故答案为:4a 2.【点睛】本题考查了列代数式和整式的运算,关键是熟练掌握长方形的面积公式,准确的进行整式计算.16.B ;【分析】(1)先求出图1中剩余部分的面积为a2-b2再求出图2中图形的面积即可列得等式;(2)利用平方差公式分解因式后代入求值即可【详解】(1)图1中边长为a 的正方形的面积为:a2边长为b 的正方解析:B ; 94【分析】(1)先求出图1中剩余部分的面积为a 2-b 2,再求出图2中图形的面积即可列得等式; (2)利用平方差公式分解因式后代入求值即可.【详解】(1)图1中,边长为a 的正方形的面积为:a 2,边长为b 的正方形的面积为:b 2,∴图1中剩余部分面积为:a 2-b 2,图2中长方形的长为:a+b ,长方形的宽为:a-b ,∴图2长方形的面积为:(a+b )(a-b ),故选:B ;(2)∵46x y +=,45x y -=,∴221664x y -+=(4)(4)64x y x y +-+=6564⨯+=94,故答案为:94.【点睛】此题考查几何图形中平方差公式的应用,利用平方差公式进行计算,掌握平方差计算公式是解题的关键.17.-1【分析】根据完全平方公式对等式进行变形结合偶数次幂的非负性求出mn 的值进而即可求解【详解】∵∴∴∵∴∴m=1n=2∵∴∴k=-1故答案是:-1【点睛】本题主要考查完全平方公式一元一次方程以及偶数解析:-1【分析】根据完全平方公式对等式进行变形,结合偶数次幂的非负性,求出m ,n 的值,进而即可求解.【详解】∵()()22254816m m n n -+-+=,∴22(21)+4(44)416m m n n ⎡⎤⎡⎤-+-++=⎣⎦⎣⎦,∴22(1)+4(2)416m n ⎡⎤⎡⎤--+=⎣⎦⎣⎦, ∵2(1)44m -+≥,2(2)44n -+≥,∴2(1)0m -=,2(2)0n -=,∴m=1,n=2,∵3n km =+,∴23k =+,∴k=-1,故答案是:-1.【点睛】本题主要考查完全平方公式,一元一次方程以及偶数次幂的非负性,掌握完全平方公式,是解题的关键.18.【分析】根据完全平方公式的形式可得答案【详解】解:∵x2+mx+9是完全平方式∴m=故答案为:【点睛】本题考查了完全平方公式注意符合条件的答案有两个以防漏掉解析:6±【分析】根据完全平方公式的形式,可得答案.【详解】解:∵x 2+mx+9是完全平方式,∴m=2136±⨯⨯=±,故答案为:6±.【点睛】本题考查了完全平方公式,注意符合条件的答案有两个,以防漏掉.19.9【分析】根据幂的乘方运算法则以及同底数幂的除法法则计算即可【详解】∵∴故答案为:9【点睛】本题主要考查了同底数幂的除法以及幂的乘方熟记幂的运算法则是解答本题的关键解析:9【分析】根据幂的乘方运算法则以及同底数幂的除法法则计算即可.【详解】∵20206m =,20204n =,∴222(2020)20200922406m n m n -=÷=÷=.故答案为:9.【点睛】本题主要考查了同底数幂的除法以及幂的乘方,熟记幂的运算法则是解答本题的关键. 20.4【分析】先变形9=32再利用同底数幂的乘法运算法则运算然后指数相等列等式求解即可【详解】∵9×32m×33m=32×32m×33m =32+2m+3m=322∴2+2m+3m=22即5m=20解得:解析:4【分析】先变形9=32,再利用同底数幂的乘法运算法则运算,然后指数相等列等式求解即可.【详解】∵9×32m ×33m =32×32m ×33m =32+2m+3m =322∴2+2m+3m=22,即5m=20,解得:m=4,故答案为:4.【点睛】本题考查了同底数幂的乘法、等式的性质,灵活运用同底数幂的乘法运算法则是解答的关键.三、解答题21.(1)方法1:()24m n mn +-,方法2:()2m n -;(2)()()224m n m n mn -=+-;(3)7x y += 【分析】(1)由题意知,阴影部分为一正方形,其边长正好为m ﹣n .根据正方形的面积公式即可求出图中阴影部分的面积,也可以用大正方形的面积减去四个小长方形的面积由图形可得:(2)大正方形的面积减去四个小长方形的面积正好等于图中阴影部分的面积.(3)(x +y )2正好表示大正方形的面积,(x ﹣y )2正好表示阴影部分小正方形的面积,xy 正好表示一个小长方形的面积.根据(2)中的等式代入计算即可.【详解】解:(1)()24m n mn +-;()2m n -.(2)()()224m n m n mn -=+-.(3)∵()()224x y x x y y +=-+,5x y -=,6xy =,∴()2254649x y +=+⨯=, ∴7x y +=.【点睛】本题考查了完全平方式和整式的混合运算,主要考查学生的理解能力和计算能力.22.()32342640cm x x x -+ 【分析】这个盒子的容积=边长为8-2x,5-2x 的长方形的底面积乘高 x ,把相关数值代入即可.【详解】解:由题意,得()()8252x x x --()24016104x x x x =--+()242640x x x =-+3242640x x x =-+,答:盒子的容积是()32342640cm x x x -+.【点睛】本题主要考查单项式乘多项式,多项式乘多项式,解决本题的关键是找到表示长方体容积的等量关系.23.(1)10;(2)22x y --;-5【分析】(1)实数的混合运算,注意先算乘方,然后算乘除,最后算加减,如果有小括号,先算小括号里面的;(2)整式的混合运算,注意先算乘法,然后再算加减进行合并同类项的化简计算,最后代入求值【详解】解:(1)1301|6|(2)(2)3π-⎛⎫-÷--⨯- ⎪⎝⎭=63(8)1÷--⨯=2+8=10(2)(3)(2)()x x y x y x y +-++=2223(22)x xy x xy xy y +-+++=222323x xy x xy y +---=22x y --当1x =-,2y =时,原式=22(1)2145---=--=-【点睛】本题考查实数的混合运算,整式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.24.(1)()()224m n m n mn -=+-;(2)()()22223m n m n m mn n ++=++;(3)见解析;()()22433m mn n m n m n ++=++【分析】(1)在图2中,大正方形由小正方形和4个矩形组成,则()()224m n m n mn -=+-; (2)大长方形的面积=两个边长为m 的正方形的面积+边长为n 的正方形的面积+3个边长为m 、n 的长方形的面积,列式即可;(3)由已知的等式,画出相应的图形即可分解因式.【详解】解:(1)大正方形由小正方形和4个长方形组成,大正方形的面积为(m+n )2,小正方形的面积为(m-n )2,长方形的面积为mn∴()()224m n m n mn -=+-. (2)大长方形的面积=两个边长为m 的正方形的面积+边长为n 的正方形的面积+3个边长为m 、n 的长方形的面积,∴()()22223m n m n m mn n ++=++. (3)先拼接长方形,然后利用面积之间的关系得到()()22433m mn n m n m n ++=++..【点睛】本题考查了完全平方公式的实际应用,完全平方公式的几何背景,利用面积法证明完全平方公式,完全平方公式与正方形的面积公式和长方形的面积公式经常联系在一起,要学会观察.25.(1)4x 10y 6;(2)5a 2+4a ﹣8.【分析】(1)根据整式的乘法运算即可求出答案.(2)根据乘法公式即可求出答案.【详解】解:(1)(x 3)2•(﹣2x 2y 3)2=x 6•4x 4y 6=4x 10y 6.(2)(a ﹣3)(a +3)+(2a +1)2=a 2﹣9+4a 2+4a +1=5a 2+4a ﹣8.【点睛】本题考查整式的运算,解题的关键熟练运用整式的运算法则,本题属于基础题型. 26.36【分析】依据AP =a ,BP =b ,点M 是AB 的中点,可得AM =BM =2a b +,再根据S 阴影=S 正方形APCD +S 正方形BEFP ﹣S △ADM ﹣S △BEM ,即可得到图中阴影部分的面积.【详解】解:∵a +b =8,a b =6,∴S 阴影部分=S 正方形APCD +S 正方形BEFP ﹣S △AMD ﹣S △MBE , =22112222a b a b a b a b ++⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭, =()2224a b a b ++- , =()()22+24a b a b ab +--, =64﹣12﹣644, =64﹣12﹣16,=36.【点睛】本题主要考查了完全平方公式的几何背景,即运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大七年级下册第一、二单元综合提高一.选择题(共10小题)1.(2016•安徽四模)下列运算正确的是()A.x4+x2=x6B.(﹣2a)3•a=6a4 C.(﹣x)6÷x2=x3D.a2b•(﹣2a2b)=﹣2a4b22.(2016•富顺县校级模拟)初中毕业时,张老师买了一些纪念品准备分发给学生.若这些纪念品可以平均分给班级的(n+3)名学生,也可以平均分给班级的(n﹣2)名学生(n为大于3的正整数),则用代数式表示这些纪念品的数量不可能是()A.n2+n﹣6 B.2n2+2n﹣12 C.n2﹣n﹣6 D.n3+n2﹣6n3.(2016•沧州校级模拟)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用含a、b的式子表示)()A.(a+b)2B.(a﹣b)2C.2ab D.ab第3题第7题第8题第9题4.(2016•富顺县校级模拟)下列:①;②(﹣2016)0=1;③(a﹣b)2=a2﹣b2;④(﹣2ab3)3=﹣8a3b9;⑤5x2﹣6x=﹣x.其中计算正确的是()A.①②③ B.①②④ C.③④⑤ D.②④⑤5.(2015•永州)已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a2+b2+c2﹣ab﹣bc﹣ac的值为()A.0 B.1 C.2 D.36.(2014•金水区校级模拟)为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是()A.52013﹣1 B.52013+1 C.D.7.(2016•当涂县四模)如图,l∥m,等边△ABC的顶点A、B分别在直线l、m上,∠1=25°,则∠2=()A.35°B.45°C.55°D.75°8.(2016•温州校级一模)如图是一个安全用电标记图案,可以抽象为下边的几何图形,其中AB∥DC,BE∥FC,点E,F在AD上,若∠A=15°,∠B=65°,则∠AFC的度数是()A.50°B.65°C.80°D.90°9.(2016春•上海校级月考)如图,图中共有()对同位角.A.2 B.4 C.6 D.810.(2015秋•广饶县校级月考)在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为()A.1个B.2个C.3个D.4个二.填空题(共7小题)11.(2013•蒙城县校级模拟)定义运算“@”的运算法则为:x@y=xy﹣1,下面给出关于这种运算的几种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x﹣1=0;④若x@y=0,则(xy)@(xy)=0,其中正确结论的序号是.(在横线上填上你认为所有正确的序号)12.(2013•荆州模拟)对于任何实数,我们规定符号的意义是=ad﹣bc.例如:=1×4﹣2×3=﹣2,=(﹣2)×5﹣4×3=﹣22.按照这个规定,当x2﹣4x+4=0时,的值是.13.(2012•佛山)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.第13题第14题14.(2007•安顺)如图,把一张长方形纸条ABCD沿EF折叠,若∠1=58°,则∠AEG=度.15.(2011•湖州)如图,甲类纸片是边长为2的正方形,乙类纸片是边长为1的正方形,丙类纸片是长、宽边长分别是2和1的长方形.现有甲类纸片1张,乙类纸片4张,则应至少取丙类纸片张才能用它们拼成一个新的正方形.第15题第16题第17题16.(2008•河南)如图,直线L1∥L2,AB⊥CD,∠1=34°,那么∠2的度数是度.17.(2014•临淄区模拟)如图,正方形ABCD的边长为2,点E在AB边上.四边形EFGB也为正方形,设△AFC的面积S为.三.解答题(共4小题)18.(2016春•姜堰区校级月考)已知:2x+3y﹣4=0,求4x•8y的值.19.(2016春•上海校级月考)如图,∠CDA=∠CBA,DE平分∠CDA,BF平分∠CBA,且∠ADE=∠AED,试说明:(1)AB∥CD (2)DE∥BF.20.(2016春•旬阳县校级月考)如图,GH分别交AB、CD于点E、F,∠AEF=∠EFD.(1)试写出AB∥CD的依据;(2)若ME是∠AEF的平分线,FN是∠EFD的平分线,则EM、FN平行吗?若平行,请说明理由.21.(2016春•江阴市月考)已知下列等式:(1)22﹣12=3;(2)32﹣22=5;(3)42﹣32=7,…(1)请仔细观察,写出第4个式子;(2)请你找出规律,并写出第n个式子;(3)利用(2)中发现的规律计算:1+3+5+7+…+2005+2007.2016年04月10日北师大七年级下册第一、二单元初中数学组卷参考答案与试题解析一.选择题(共10小题)1.(2016•安徽四模)下列运算正确的是()A.x4+x2=x6B.(﹣2a)3•a=6a4C.(﹣x)6÷x2=x3D.a2b•(﹣2a2b)=﹣2a4b2【解答】解:A、x4•x2=x6,故错误;B、(﹣2a)3•a=﹣8a4,故错误;C、(﹣x)6÷x2=x6÷x2=x4,故错误;D、正确;故选:D.2.(2016•富顺县校级模拟)初中毕业时,张老师买了一些纪念品准备分发给学生.若这些纪念品可以平均分给班级的(n+3)名学生,也可以平均分给班级的(n﹣2)名学生(n为大于3的正整数),则用代数式表示这些纪念品的数量不可能是()A.n2+n﹣6 B.2n2+2n﹣12 C.n2﹣n﹣6 D.n3+n2﹣6n【解答】解:A、(n2+n﹣6)÷[(n+3)(n﹣2)]=1,即n2+n﹣6能被n+3和n﹣2整除,即能平均分,故本选项错误;B、(2n2+2n﹣12)÷[(n+3)(n﹣2)]=2,即2n2+2n﹣12能被n+3和n﹣2整除,即能平均分,故本选项错误;C、n2﹣n﹣6不能被(n+3)和(n﹣2)整除,即不能平均分,故本选项正确;D、(n3+n2﹣6n)÷[(n+3)(n﹣2)]=n,即n3+n2﹣6n能被n+3和n﹣2整除,即能平均分,故本选项错误.故选:C.3.(2016•沧州校级模拟)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用含a、b的式子表示)()A.(a+b)2B.(a﹣b)2C.2ab D.ab【解答】解:()2﹣4×()2=﹣==ab,故选D.4.(2016•富顺县校级模拟)下列:①;②(﹣2016)0=1;③(a﹣b)2=a2﹣b2;④(﹣2ab3)3=﹣8a3b9;⑤5x2﹣6x=﹣x.其中计算正确的是()A.①②③ B.①②④ C.③④⑤ D.②④⑤【解答】解:∵,故①正确;∵(﹣2006)0=1,故②正确;∵(a﹣b)2=a2﹣2ab+b2,故③错误;∵(﹣2ab3)3=﹣8a3b9,故④正确;∵5x2﹣6x不能合并,故⑤错误;故①②④正确,故选B.5.(2015•永州模拟)已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a2+b2+c2﹣ab﹣bc﹣ac的值为()A.0 B.1 C.2 D.3【解答】解:由题意可知a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,所求式=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),=[(a2﹣2ab+b2)+(b2﹣2bc+c2)+(a2﹣2ac+c2)],=[(a﹣b)2+(b﹣c)2+(a﹣c)2],=[(﹣1)2+(﹣1)2+(﹣2)2],=3.故选D.6.(2014•金水区校级模拟)为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是()A.52013﹣1 B.52013+1 C.D.【解答】解:令S=1+5+52+53+ (52012)则5S=5+52+53+…+52012+52013,5S﹣S=﹣1+52013,4S=52013﹣1,则S=.故选D.7.(2016•当涂县四模)如图,l∥m,等边△ABC的顶点A、B分别在直线l、m上,∠1=25°,则∠2=()A.35°B.45°C.55°D.75°【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,过C作CM∥直线l,∵直线l∥直线m,∴直线l∥直线m∥CM,∵∠ACB=60°,∠1=25°,∴∠1=∠MCB=25°,∴∠2=∠ACM=∠ACB﹣∠MCB=60°﹣25°=35°,故选A.8.(2016•温州校级一模)如图是一个安全用电标记图案,可以抽象为下边的几何图形,其中AB∥DC,BE∥FC,点E,F在AD上,若∠A=15°,∠B=65°,则∠AFC的度数是()A.50°B.65°C.80°D.90°【解答】解:∵AB∥DC,BE∥FC,∠A=15°,∠B=65°,∴∠D=∠A=15°,∠C=∠B=65°.∵∠AFC是△CDF的外角,∴∠AFC=∠D+∠C=15°+65°=80°.故选C.9.(2016春•上海校级月考)如图,图中共有()对同位角.A.2 B.4 C.6 D.8【解答】解:∠B与∠ADE,∠C与∠AED,∠A与∠BDE,∠A与∠CED是同位角,故选:B.10.(2015秋•广饶县校级月考)在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为()A.1个B.2个C.3个D.4个【解答】解:从左向右第一个图形中,BE不是线段,故错误;第二个图形中,BE不垂直AC,所以错误;第三个图形中,是过点E作的AC的垂线,所以错误;第四个图形中,过点C作的BE的垂线,也错误.故选D.二.填空题(共7小题)11.(2013•蒙城县校级模拟)定义运算“@”的运算法则为:x@y=xy﹣1,下面给出关于这种运算的几种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x﹣1=0;④若x@y=0,则(xy)@(xy)=0,其中正确结论的序号是①②④.(在横线上填上你认为所有正确的序号)【解答】解:根据题意得:①(2@3)@(4)=5@4=20﹣1=19,本选项正确;②x@y=xy﹣1,y@x=yx﹣1,故x@y=y@x,本选项正确;③若x@x=x2﹣1=0,则x﹣1=0或x+1=0,本选项错误;④若x@y=xy﹣1=0,则(xy)@(xy)=x2y2﹣1=(xy+1)(xy﹣1)=0,本选项正确,则其中正确的结论序号有①②④.故答案为:①②④12.(2013•荆州模拟)对于任何实数,我们规定符号的意义是=ad﹣bc.例如:=1×4﹣2×3=﹣2,=(﹣2)×5﹣4×3=﹣22.按照这个规定,当x2﹣4x+4=0时,的值是﹣1.【解答】解:∵=ad﹣bc,∴原式=(x+1)(2x﹣3)﹣2x(x﹣1)=x﹣3,∵x2﹣4x+4=0,∴(x﹣2)2=0,解得x=2,∴原式=3﹣4=﹣1.13.(2012•佛山)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为2m+4.【解答】解:设拼成的矩形的另一边长为x,则4x=(m+4)2﹣m2=(m+4+m)(m+4﹣m),解得x=2m+4.故答案为:2m+4.14.(2007•安顺)如图,把一张长方形纸条ABCD沿EF折叠,若∠1=58°,则∠AEG=64度.【解答】解:根据长方形的对边平行,得AD∥BC,∴∠DEF=∠1=58°.再根据对折,得:∠GEF=∠DEF=58°.再根据平角的定义,得:∠AEG=180°﹣58°×2=64°.15.(2011•湖州)如图,甲类纸片是边长为2的正方形,乙类纸片是边长为1的正方形,丙类纸片是长、宽边长分别是2和1的长方形.现有甲类纸片1张,乙类纸片4张,则应至少取丙类纸片4张才能用它们拼成一个新的正方形.【解答】解:甲类纸片1张,乙类纸片4张,总面积是4+4=8,大于8的完全平方数依次是9,16,25…,而丙的面积是2,因而不可能是9;当总面积是16时,取的丙纸片的总面积是8,因而是4张.因而应至少取丙类纸片4张才能用它们拼成一个新的正方形.故答案为:4.16.(2008•河南)如图,直线L1∥L2,AB⊥CD,∠1=34°,那么∠2的度数是56度.【解答】解:如图,∵AB⊥CD,∴∠4=90°,又∵∠4=∠1+∠3,∴∠3=90°﹣∠1=90°﹣34°=56°,∵l1∥l2,∴∠2=∠3=56°.故答案为56.17.(2014•临淄区模拟)如图,正方形ABCD的边长为2,点E在AB边上.四边形EFGB也为正方形,设△AFC的面积S为2.【解答】解:∵正方形ABCD和正方形EFGB,∴AB=BC=CD=AD,EF=FG=GB=BE,∵正方形ABCD的边长为2,∴S△AFC=S梯形ABGF+S△ABC﹣S△CGF=×(FG+AB)×BG+×AB×BC﹣×FG×CG=×(FG+AB)×BG+×AB×BC﹣×FG×(BC+BG)=×FG2+FG+2﹣FG﹣×FG2=2.解法二:连接FB∵∠CAB=∠ABF=45°∴FB∥AC又∵△ABC和△AFC有同底AC且等高∴S△AFC=S△ABC=×2×2=2故答案为:2.三.解答题(共4小题)18.(2016春•姜堰区校级月考)已知:2x+3y﹣4=0,求4x•8y的值.【解答】解:∵2x+3y﹣4=0,∴2x+3y=4,∴4x•8y=22x•23y=22x+3y=24=16,∴4x•8y的值是16.19.(2016春•上海校级月考)如图,∠CDA=∠CBA,DE平分∠CDA,BF平分∠CBA,且∠ADE=∠AED,试说明:(1)AB∥CD (2)DE∥BF.【解答】证明:(1)∵DE平分∠CDA,∴∠ADE=∠EDC,而∠ADE=∠AED,∴∠EDC=∠AED,∴AB∥CD;(2)∵BF平分∠CBA,∴∠ABF=∠ABC,∵∠AED=∠ADE=∠ADC,而∠CDA=∠CBA,∴∠AED=∠ABF,∴DE∥BF.20.(2016春•旬阳县校级月考)如图,GH分别交AB、CD于点E、F,∠AEF=∠EFD.(1)试写出AB∥CD的依据;(2)若ME是∠AEF的平分线,FN是∠EFD的平分线,则EM、FN平行吗?若平行,请说明理由.【解答】(1)证明:∵∠AEF=∠EFD,∴AB∥CD(内错角相等,两直线平行).(2)EM∥FN,证明:∵ME是∠AEF的平分线,FN是∠EFD的平分线,∴∠MEF=∠AEF,∠NFE=∠EFD,∵∠AEF=∠EFD,∴∠MEF=∠NFE,∴EM∥FN(内错角相等,两直线平行).21.(2016春•江阴市月考)已知下列等式:(1)22﹣12=3;(2)32﹣22=5;(3)42﹣32=7,…(1)请仔细观察,写出第4个式子;(2)请你找出规律,并写出第n个式子;(3)利用(2)中发现的规律计算:1+3+5+7+…+2005+2007.【解答】解:(1)依题意,得第4个算式为:52﹣42=9;(2)根据几个等式的规律可知,第n个式子为:(n+1)2﹣n2=2n+1;(3)由(2)的规律可知,1+3+5+7+…+2005+2007=1+(22﹣12)+(32﹣22)+(42﹣32)+…+(10042﹣10032)=10042.第11页(共11页)。