小学四年级奥数— 逻辑推理
四年级奥数讲义-简单逻辑推理(附答案)

1--6 2--3 4--5
6
5.某月中,星期四的天数比星期五的天数多,星期二的天数比星期一的天数多,这个月的第一 天是星期几?
※6.运动场上,有 1,2,3,4 四个班正在进行接力赛,对于比赛胜负,在一旁的张明、王浩、 李哲进行猜测。张明说:“我看 1 班只能得第三,冠军肯定是 3 班。”王浩说:“3 班只能得第 二,至于第三我看是 2 班。”李哲说:“肯定 4 班第二,1 班第一。”而真正的结果, 他们每 人的预测只猜对了一半,请你根据他们的猜测推出比赛结果。
刘艺妹妹小英 王天妹妹小平 张明妹妹小红
5
课后作业:
1.小兆一月份的工资比二月份多,二月份的工资比三月份的多。小兆哪个月的工资最高?
2.小明星幼儿园有 3 个班,中班人数比小班少,中班人数比大班少,大班人数比小班多。猜一 猜,哪班人数最多?哪班人数最少?
3.某班学生中,如果有红色铅笔的人就没有黄色铅笔,没有红色铅笔的人有蓝色铅笔,那有黄 色铅笔的人,一定有蓝铅笔吗? 一定
【试一试】 1.某年二月,星期日的天数最多,那么这个月最后一天是星期几?
星期日
2.某月中,星期日的天数比星期六的天数多,而星期二的天数比星期三的天数多,那么这个月 最后一天是星期几? 星期二
【※例 6】王帆、李昊、吴一凡三人中,有一人看了《地球奥秘》这部科技片。当老师问他们三 个谁看了这部科技片时,王帆说:“李昊看了。”李昊说:“我没有看。”吴一凡说:“我没 有看。”如果知道他们三人中有两人说了假话,有一人说的是真话,你能判断谁看了这部影片 吗? 李昊说真话 吴一凡看了
2.爷爷的年龄比奶奶大,奶奶的年龄比外婆大。他们三人中,谁最大?谁最小?
小学奥数-逻辑推理(经典)

逻辑推理★挑战锦囊★解答逻辑问题常用的方法有:直推法:先从一个条件出发,逐步往下推理,直到推出结论为止;假设法:先从一个假设,然后利用条件进行推理。
若得出矛盾结论,说明作为假设的前提不成立,而与假设相反的判断便是正确的。
★基础挑战一甲、乙、丙、丁坐在同一排的1至4号座位上,小红看着他们说:“甲的两边的人不是乙,丙两边的人不是丁,甲的座位号比丙大。
”那么,坐在1号位置上的是谁?分析:根据“甲的两边的人不是乙,丙两边的人不是丁”,可以推断出甲与丙是坐在位于中间的2号、3号座位上,再根据:“甲的座位号比丙大”,即可解答。
挑战自己,我能行练习1:甲、乙、丙、丁、戊五个人坐在同一排5个相邻的座位上看电影,已知甲坐在离乙、丙距离相等的座位上,丁坐在离甲、丙距离相等的座位上,戊的左右两侧的邻座上分别坐着她的两个姐姐,则和是戊的姐姐。
(第八届1试)★基础挑战二有A、B、C、D、E五位选手参加比赛,四位同学作如下预测:①:E将得第三,A将得第四;②:A将得第三,B将得第一;③:B将得第四,E将得第二;④:D将得第一,C将得第三。
结果这几位同学所作的两句预测都只有一句是正确的。
分析:可用假设法解题,先假设第一位同学的第一句是对的,则第二句为错,接着往后推,发现矛盾,假设不成立;假设第一位同学的第一句是错的,第二句为对,往下推,得出结论。
挑战自己,我能行练习2:甲、乙、丙、丁、戊五人猜测全班个人学科总成绩的前五名:甲:“第一名是D,第五名是E。
”乙:“第二名是A,第四名是C。
”丙:“第三名是D,第四名是A”丁:“第一名是C,第三名是B。
”戊:“第二名是C,第四名是B。
”若每个人都是只猜对一个人的名次,且每个名次只有一个人猜对,则第一、二、三、四、五名分别是____________________。
(第九届1试)★目标挑战三某年的10月里有5个星期六,4个星期日。
问:这年的10月1日是星期几?分析:该月有5个星期六,只有4个星期日,可知第五个星期六是该月的最后一天,10月的最后一天是10月31号,即星期六,可得10月份第一个星期六是10月3号,往前依次推理。
最新版 四年级奥数 逻辑推理

逻辑推理例1:卢刚、丁飞和陈瑜一位是工程师,一位是医生,一位是飞行员。
现在只知道:卢刚和医生不同岁;医生比丁飞年龄小,陈瑜比飞行员年龄大。
问:谁是工程师、谁是医生、谁是飞行员?练习1:(1)有三个小朋友们在谈论谁做的好事多。
冬冬说:“兰兰做的比静静多。
”兰兰说:“冬冬做的比静静多。
”静静说:“兰兰做的比冬冬少。
”这三位小朋友中,谁做的好事最多?谁做的好事最少?(2)小李、小徐和小张是同学,大学毕业后分别当了教师、数学家和工程师。
小张年龄比工程师大;小李和数学家不同岁;数学家比小徐年龄小。
谁是教师、谁是数学家、谁是工程师?例2:有一个正方体,每个面分别写上汉字:数学奥林匹克。
三个人从不同角度观察的结果如下图所示。
这个正方体的每个汉字的对面各是什么字?(1)奥匹林(2)数奥学(3)林数克练习2:(1)下面三块正方体的六个面都是按相同的规律涂有红、黄、蓝、白、绿、黑六种颜色。
请判断黄色的对面是什么颜色?白色的对面是什么颜色?红色的对面是什么颜色?(2)一个正方体,六个面分别写上A 、B 、C 、D 、E 、F ,你能根据这个正方体不同的摆法,求出相对的两个面的字母是什么吗?例3:甲、乙、丙三个孩子踢球打碎了玻璃,甲说:“是丙打碎的。
”乙说:“我没有打碎破璃。
”丙说:“是乙打碎的。
”他们当中有一个人说了谎话,到底是谁打碎了玻璃?练习3:(1)已知甲、乙、丙三人中,只有一人会开汽车。
甲说:“我会开汽车。
”乙说:“我不会开。
”丙说:“甲不会开汽车。
”如果三人中只有一人讲的是真话,那么谁会开汽车?(A )黄黑白(B )红白绿(C )红蓝黄D A FA CBCD E(2)某学校为表扬好人好事核实一件事,老师找了A、B、C三个学生。
A说:“是B做的。
”B说:“不是我做的。
”C说:“不是我做的。
”这三个学生中只有一人说了实话,这件好事是谁做的?例4:A、B、C、D与小强五个同学一起参加象棋比赛,每两人都赛一盘,比赛一段时间后统计:A赛了4盘,B赛了3盘,C赛了2盘,D赛了一盘。
四年级奥数-逻辑推理

2、每个正方体的六个面上分别写着1-6这六个数, 并且任意向对面上数字之和等于7,相连正方体相 连面上数字之和等于8.图中打“?”处的数字是 几?
谢谢!
举一反三4
1,上海、辽宁、北京、山东四个足球队进行循 环赛,到现在为止,上海队赛了3场,辽宁队赛 了2场,山东队赛了1场。问北京队赛了几场?
举一反三4
2、明明、冬冬、兰兰、静静、思思和毛毛六人 参加一次会议,见面时每两个人都要握一次手。 明明已握了5次手,冬冬握了4次手,兰兰握了 3次手,静静握了2次,思思握了1次手。问毛 毛握了几次手?
小张年龄比工程师大;小李和数
学家不同岁;数学家比小徐年龄小。谁是教师、谁是数学
家、谁是工程师?
2,江波、刘晓、吴萌三个老师,其中一位教语文, 一位教数学,一位教英语。已知: 江波和语文老 师是邻居;吴萌和语文老师不是邻居;吴萌和数 学老师是同学。请问:三个老师分别教什么科目?
【例题1 】
已知某月中,星期二的天数比星期一的 天数多,而星期三的天数比星期四的天 数多,那么这个月最后一天是星期几?
逻辑推理
专题解析
解答推理问题常用的方法有排除法、假设法、反证 法。
一般可以从以下几方面考虑:
1、根据题中条件,在推理过程中,不断排除不可能 的情况,从而得出符合要求的结论。
2、对可能出现的情况做出假设,然后根据条件推理。
ห้องสมุดไป่ตู้
课前回顾
1、小李、小徐和小张是同学,大学毕业后分别当了教师、
数学家和工程师。
举一反三1
1、某年二月,星期日的天数最多,那么这个 月最后一天是星期几?
举一反三1
2、某月中,星期日的天数比星期六的天数多, 而星期二的天数比星期三的天数多,那么这 个月最后一天是星期几?
四年级奥数语言的逻辑推理

四年级奥数语言的逻辑推理
四年级奥数语言的逻辑推理
甲、乙、丙、丁四人在一起,交谈时发生了语言困难,在汉、英、法、日四种语言中,每人只会两种,可惜没有大家都会的语言,只有一种语言是三个人都会的'。
(1)乙不会英语,但当甲与丙交谈时,却要请他当翻译。
(2)甲会日语,丁不懂日语,但两人能相互交谈;
(3)乙、丙、丁三人想相互交谈,却找不到大家都会的语言;
(4)没有人既能用日语讲话,又能用法语讲话。
想一想:甲、乙、丙、丁四人各会说哪两种语言?
由(1)、(2)、(4)得:乙不会英语,甲会日语但不会法语,丁不会日语。
假设甲还会英语,由(1)知甲、丙没有共同语言,得丙会汉语和法语,而乙与甲、乙与丙有共同语言,且乙又不能既懂法语又懂日语,得乙会汉语和日语,由(3)得丁会英语、法语,与题已知条件"只有一种语言三人都会"有矛盾。
假设甲还会汉语,由(1)知甲、丙没有共同语言,得丙会英语、法语,而乙与丙、乙与甲有共同语言,只能是乙会汉语、法语,由(3)知丁不会法语,得丁会汉语、英语,这样甲、丁也能相互交谈。
所以甲会汉语、日语,乙会汉语、法语,丙会英语、法语,丁会汉语、英语。
小学四年级奥数-数学逻辑推理课件

在线课程
利用在线课程资源,如“学而 思”、“腾讯课堂”等平台上 的奥数课程,进行系统学习。
练习题集
选择适合的练习题集,如《小 学奥数千题巧解》等,进行有
针对性的练习。
数学逻辑推理游戏
通过数学逻辑推理游戏,如“ 数独”、“逻辑拼图”等,提
高数学逻辑推理能力。
THANKS
感谢观看
03
数学逻辑推理应用
数字推理
总结词
通过数字的变化规律,推导出未知数 。
详细描述
数字推理题通常给出一些数字序列, 要求找出其中的规律,并推导出下一 个数字。常见的数字推理规律包括递 增、递减、循环等。
图形推理
总结词
通过观察图形的变化规律,判断未知图形。
详细描述
图形推理题通常给出一些图形序列,要求找出其中的规律,并判断出下一个图形。常见的图形推理规律包括旋转 、对称、拼接等。
间接推理
总结词
理解间接推理的概念,掌握通过反证法、假设法等间接方法得出结论的技巧。
详细描述
间接推理是通过否定或质疑某些条件,进而推断出与原命题相反的结论的过程 。常用的间接推理方法包括反证法、假设法等。
归纳与演绎推理
总结词
了解归纳和演绎推理的基本概念,初步掌握其应用方法。
详细描述
归纳推理是从个别到一般的推理过程,通过观察和实验得出一般性结论;演绎推 理则是从一般到个别的推理过程,根据一般性原理推导出个别结论。
应用题推理
总结词
通过分析应用题的已知条件,推导出未知量。
详细描述
应用题推理题通常涉及实际问题的解决,如路程、时间、速度等问题。解题时需要仔细分析已知条件 ,并运用数学逻辑推理方法,推导出未知量。
小学奥数-逻辑推理

小学奥数-逻辑推理逻辑推理(一)解题思路:以重要的条件为突破口,用排除、假设、反证、筛选等方法有条理地进行推理例1公路上按一路纵队排列着五辆大客车.每辆车的后面都贴上了该车的目的地的标志.每个司机都知道这五辆车有两辆开往A市,有三辆开往B市;并且他们都只能看见在自己前面的车的标志.调度员听说这几位司机都很聪明,没有直接告诉他们的车是开往何处的,而让他们根据已知的情况进行判断.他先让第三个司机猜猜自己的车是开往哪里的.这个司机看看前两辆车的标志,想了想说“不知道”.第二辆车的司机看了看第一辆车的标志,又根据第三个司机的“不知道”,想了想,也说不知道.第一个司机也很聪明,他根据第二、三个司机的“不知道”,作出了正确的判断,说出了自己的目的地。
请同学们想一想,第一个司机的车是开往哪儿去的;他又是怎样分析出来的?例2XXX、XXX、XXX三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛.事先规定.兄妹二人不许搭伴。
第一盘,XXX和XXX对XXX和XXX;第二盘,XXX和XXX对XXX和XXX的妹妹。
请你判断,XXX、XXX和XXX各是谁的妹妹。
例3“迎春杯”数学竞赛后,甲、乙、丙、XXX四名同砚推测他们之中谁能获奖.甲说:“假如我能获奖,那么乙也能获奖.”乙说:“假如我能获奖,那么丙也能获奖.”丙说:“假如丁没获奖,那么我也不能获奖.”实践上,他们之中只有一小我没有获奖.并且甲、乙、丙说的话都是正确的.那么没能获奖的同砚是___。
例4数学竞赛后,XXX、XXX、XXX各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌.XXX猜测:“XXX得金牌;XXX不得金牌;XXX不得铜牌.”结果XXX只猜对了一个.那么XXX得___牌,XXX得___牌,XXX得___牌。
例5有三只盒子,甲盒装了两个1克的砝码;乙盒装了两个2克的砝码;丙盒装了一个1克、一个2克的砝码.每只盒子外面所贴的标明砝码重量的标签都是错的.聪明的XXX只从一只盒子里掏出一个砝码,放到天平上称了一下,就把所有标签都矫正过来了.你晓得这是为何吗?例6四人打桥牌,某人手中有13张牌,四种花色样样有;四种花色的张数互不相同.红桃和方块共5张;红桃与黑桃共6张;有两张将牌(主牌).试问这副牌以什么花色的牌为主?1例7S、B、J、R四人分别获数学、英语、语文和逻辑学四个学科的奖学金,但他们都不知道自己获得的是哪一门获学金.他们相互猜测:S:“R得逻辑学奖”;B:“J得英语奖”;J:“S得不到数学奖”;R:“B得语文奖”。
四年级奥数逻辑推理学生版

知识要点逻辑推理根据解题思路的不同,逻辑推理分为两种类型:真假判断型和条件分析型。
真假判断型逻辑推理主要有以下两种推理方法: 1.假设推理法(真假为二选一):根据已知条件先作一个假设,然后利用已知条件一步一步往下推,直到推出结论为止。
如果从这个假设出发推出自相矛盾的结论,这就说明所作的假设不成立,而假设的反面就一定是成立的。
主要适用于结论只有两种、非真即假的推理题目。
2.枚举排除法(有多种真假情况):通常直接采用正确的推理,逐一分析,讨论所有可能出现的情况,舍弃不合理的情形,最后得到符合题意的解答。
适用于真假情况不只两种的推理题目。
条件分析型逻辑推理可借助于画图、列表来简化推理过程: 1.图表分析法:将题中关系用图表表示出来,再借助其他分析方法结合图表进行分析推理以得出结论。
其他逻辑推理真假判断型条件分析型枚举排除法假设法图表分析法真假判断型1.甲、乙两人中的一人来自真话村,一个人来自谎话村,谎话村里的人从来不说真话,真话村里的人从来不说谎话。
甲说:“我们两人中至少有一个人在说谎。
”那么甲、乙分别来自什么村呢?2.一个骗子和一个老实人一路同行,骗子总是讲假话,老实人总是讲真话。
请提一个尽量简单的问题,使两人的回答相同。
这个问题可以是什么呢?3.甲、乙、丙三人中只有1人懂法语。
甲说:“我懂。
”乙说:“我不懂。
”丙说:“甲不懂。
”如果三个人的话恰有一句是真话,那么懂法语的是_______,讲真话的是_______。
4.甲、乙、丙三人分别说了下面三句话,请你从他们所说的话判定谁说假话?甲说:“乙在说谎。
”乙说:“丙在说谎。
”丙说:“甲和乙都在说谎。
”5.四个小朋友宝宝、星星、强强和乐乐在院子里踢足球,一阵响声,惊动了正在读书的陆老师,陆老师跑出来查看,发现一块窗户玻璃被打破了。
陆老师问:“是谁打破了玻璃?”宝宝说:“是星星无意打破的。
”星星说:“是乐乐打破的。
”乐乐说:“星星说谎。
”强强说:“反正不是我打破的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学四年级数学逻辑推理(例题详解)
例1对某班同学进行了调查,知道如下情况:
①有哥哥的人没有姐姐;
②没有哥哥的人有弟弟;
③有弟弟的人有妹妹。
试问:
(1)有姐姐的人一定没有哥哥,对吗?
(2)有弟弟的人一定没有哥哥,对吗?
(3)没有哥哥的人一定有妹妹,对吗?
解答:根据条件①得到(1)是对的;
“有弟弟且有哥哥”并不与①②③矛盾,因此得到(2)是不对的;
根据条件②③得到(3)是对的;
例2 有甲、乙、丙、丁四人同住在一座四层的楼房里,他们之中有工程师、工人、教师和医生.如果已知:
①甲比乙住的楼层高,比丙住的楼层低,丁住第四层;
②医生住在教师的楼上,在工人的楼下,工程师住最低层。
试问:甲、乙、丙、丁各住在这座楼的几层?各自的职业是什么?
解答 (1)由已知条件,丁住在第四层,是最高层,于是甲、乙、丙只能住在1,2,3这三层之中了.因为条件①还告诉我们,“甲比乙住的高”比“丙住的低”,所以甲肯定住在第二层,而丙住在第三层,乙住在第一层.
(2)由条件②知道,工程师住在最低层,说明工程师是住在一层.那么,医生、教师、工人一定住在2,3,4层,条件②还告诉我们,“医生住在教师的楼上”.这说明医生不是住三层就是住四层,又由于“医生住在工人的楼下,”所以医生只能住在三层.工人住在四层,教师住在二层了.
我们把(1)与(2)联系起来,就得到最后的答案:
甲:教师,住二层;
乙:工程师,住一层;
丙:医生,住三层;
丁:工人,住四层.
例3徐、王、陈、赵四位师傅分别是工厂的木工、车工、电工和钳工,他们都是象棋迷。
(1)木工只和车工下棋,而且总是输给车工(2)王、陈两位是邻居;(3)陈师傅与电工下棋互有胜负;(4)徐师傅比赵师师傅下得好;(5)木工的
陈××√
赵√
分析:由(3)知道陈不是电工,由(2)和(5)知道王、陈不是木工,由(1)和(4)知道徐是车工,赵是木工,最后可知陈是钳工,王是电工。
例4:卢刚、丁飞和陈瑜,一位是工程师,一位是医生,一位是飞行员。
现在只知道:卢刚和医生不同岁;医生比丁飞年龄小,陈瑜比飞行员年龄大。
问:谁是工程师、谁是医生、谁是飞行员?
解析:因为卢刚和医生不同岁,医生比丁飞年龄小,可以判断卢刚和丁飞不是医生,所以陈瑜是医生。
陈瑜比丁飞小,陈瑜比飞行员年龄大,所以丁飞是工程师,卢刚是飞行员。
例5:有一个正方体,每个面分别写上汉字:数学奥林匹克。
三个人从不同角度观察的结果如下图所示。
这个正方体的每个汉字的对面各是什么字?
解析:先找出出现次数最多的字
奥数林
“奥”的对面不是:林、匹、数、学。
所以是“克”
“数”的对面不是:学、奥、克、林。
所以是“匹”
“林”的对面是“学”
例6 有三个小朋友们在谈论谁做的好事多。
冬冬说:“兰兰做的比静静多。
”兰兰说:“冬冬做的比静静多。
”静静说:“兰兰做的比冬冬少。
”这三位小朋友中,谁做的好事最多?谁做的好事最少?
解答:我们用“>”来表示每个小朋友之间做好事多少的关系。
兰兰>静静冬冬>静静冬冬>兰兰
所以,冬冬>兰兰>静静,冬冬做的好事最多,静静做的最少。
例7甲、乙、丙三个孩子踢球打碎了玻璃,甲说:“是丙打碎的。
”乙说:“我没有打碎破璃。
”丙说:“是乙打碎的。
”他们当中有一个人说了谎话,到底是谁打碎了玻璃?
解答:由题意推出结论,必须符合他们中只有一个人说了谎,推理时可先假设,
看结论和条件是否矛盾。
如果是甲打碎的,那么甲说谎话,乙说的是真话,丙说的是谎话。
这样两人说的是谎话,与他们中只有一人说谎相矛盾,所以不是甲打碎的。
如果是乙打碎的,那么甲说的是谎话,乙说的是谎话,丙说的是真话,与他们中只有一人说谎相矛盾,所以不是乙打碎的。
如果是丙打碎的,那么甲说的是真话,乙说的是真话,而丙说的是谎话。
这样有两个说的是真话,符合条件中只有一个人说的是谎话,所以玻璃是丙打碎的。
例8甲、乙、丙、丁4人比赛乒乓球,每两个都要赛一场。
结果甲胜了丁,并且甲、乙、丙3人胜的场数相同,问:丁胜了几场?
解答:4个人每两人比赛一场一共6场,甲乙丙胜场一样,甲又胜了丁,则甲至少胜一场,三人加起来3场,那么丁胜利三场,可是这样与甲胜丁一场矛盾,故甲至少胜2场,三人刚好6场,所以丁一场都不胜。
分析:①假设甲乙丙同胜1场。
∵甲胜丁,∴甲输给了乙丙。
又∵甲乙丙同胜1场。
∴乙输给了丙丁。
∴丙就胜了甲乙,即胜了两场。
与假设相矛盾,∴假设不成立
②假设甲乙丙丁同胜3场
那么甲乙丙丁将全胜,显然不符合。
该假设不成立
③则,甲乙丙同胜2场
∵一共进行4×3÷2=6场。
三人胜的场数相同刚好6场,所以丁一场都不胜。