(浙江专用)2020版高考数学 数列的综合应用讲义(含解析)
浙江2020版高考数学第七章数列与数学归纳法7.1数列的概念与简单表示法讲义(含解析)

§7.1 数列的概念与简单表示法1.数列的有关概念2.数列的表示方法3.a n 与S n 的关系若数列{a n }的前n 项和为S n , 则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.4.数列的分类概念方法微思考1.数列的项与项数是一个概念吗?提示 不是,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号. 2.数列的通项公式a n =3n +5与函数y =3x +5有何区别与联系?提示 数列的通项公式a n =3n +5是特殊的函数,其定义域为N *,而函数y =3x +5的定义域是R ,a n =3n +5的图象是离散的点,且排列在y =3x +5的图象上.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)相同的一组数按不同顺序排列时都表示同一个数列.( × ) (2)所有数列的第n 项都能使用公式表达.( × )(3)根据数列的前几项归纳出数列的通项公式可能不止一个.( √ ) (4)1,1,1,1,…,不能构成一个数列.( × )(5)任何一个数列不是递增数列,就是递减数列.( × )(6)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n =S n -S n -1.( × ) 题组二 教材改编2.[P33A 组T4]在数列{a n }中,已知a 1=1,a n +1=4a n +1,则a 3=________. 答案 21解析 由题意知,a 2=4a 1+1=5,a 3=4a 2+1=21.3.[P33A 组T5]根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.答案 5n -4 题组三 易错自纠4.已知a n =n 2+λn ,且对于任意的n ∈N *,数列{a n }是递增数列,则实数λ的取值范围是________. 答案 (-3,+∞)解析 因为{a n }是递增数列,所以对任意的n ∈N *,都有a n +1>a n ,即(n +1)2+λ(n +1)>n 2+λn ,整理,得2n +1+λ>0,即λ>-(2n +1).(*)因为n ≥1,所以-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3. 5.数列{a n }中,a n =-n 2+11n (n ∈N *),则此数列最大项的值是________. 答案 30解析 a n =-n 2+11n =-⎝⎛⎭⎪⎫n -1122+1214,∵n ∈N *,∴当n =5或n =6时,a n 取最大值30.6.已知数列{a n }的前n 项和S n =n 2+1,则a n =________.答案 ⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2,n ∈N*解析 当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+1-[(n -1)2+1]=2n -1,故a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2,n ∈N *.题型一 由数列的前几项求数列的通项公式例1根据下面各数列前几项的值,写出数列的一个通项公式: (1)23,415,635,863,1099,…;(2)-1,7,-13,19,…; (3)12,2,92,8,252,…;(4)5,55,555,5555,…. 解 (1)这是一个分数数列,其分子构成偶数数列,而分母可分解为1×3,3×5,5×7,7×9,9×11,…,每一项都是两个相邻奇数的乘积,分子依次为2,4,6,…,相邻的偶数.故所求数列的一个通项公式为a n =2n(2n -1)(2n +1).(2)偶数项为正,奇数项为负,故通项公式必含有因式(-1)n,观察各项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的一个通项公式为a n =(-1)n (6n -5).(3)数列的各项,有的是分数,有的是整数,可将数列的各项都统一成分数再观察.即12,42,92,162,252,…,分子为项数的平方,从而可得数列的一个通项公式为a n =n 22. (4)将原数列改写为59×9,59×99,59×999,…,易知数列9,99,999,…的通项为10n-1,故所求的数列的一个通项公式为a n =59(10n-1).思维升华求数列通项时,要抓住以下几个特征: (1)分式中分子、分母的特征. (2)相邻项的变化特征.(3)拆项后变化的部分和不变的部分的特征. (4)各项符号特征等.(5)若关系不明显时,应将部分项作适当的变形,统一成相同的形式.跟踪训练1(1)(2018·宁波北仑中学期中)数列32,-54,78,-916,…的一个通项公式为( )A .a n =(-1)n·2n+12B .a n =(-1)n·2n +12nC .a n =(-1)n +1·2n+12nD .a n =(-1)n +1·2n +12n答案 D解析 数列各项的分母为等比数列{2n},分子为2n +1,可用(-1)n +1来控制各项的符号,故数列的一个通项公式为a n =(-1)n +1·2n +12n .(2)数列{a n }的前4项是32,1,710,917,则这个数列的一个通项公式是a n =________.答案2n +1n 2+1解析 数列{a n }的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故a n =2n +1n 2+1.题型二 由a n 与S n 的关系求通项公式例2(1)(2018·浙江绍兴一中期中)已知数列{a n }的前n 项和为S n =n 2+n +1,b n =(-1)n·(a n -2)(n ∈N *),则数列{a n }的通项公式为________,数列{b n }的前50项和为________.答案 a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2 49解析 当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=n 2+n +1-[(n -1)2+(n -1)+1]=2n ,当n =1时不满足上式,故则其通项公式为a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.当n =1时,b 1=-1;当n ≥2时,b n =(-1)n·(a n -2)=(-1)n·2(n -1),则数列{b n }的前50项和为-1+2×1-2×2+2×3-…+2×49=-1+2×(1-2+3-…+49)=-1+2×25=49. (2)(2018·全国Ⅰ)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________. 答案 -63解析 ∵S n =2a n +1,当n ≥2时,S n -1=2a n -1+1, ∴a n =S n -S n -1=2a n -2a n -1(n ≥2), 即a n =2a n -1(n ≥2).当n =1时,a 1=S 1=2a 1+1,得a 1=-1.∴数列{a n }是首项a 1=-1,公比q =2的等比数列,∴S n =a 1(1-q n )1-q =-1×(1-2n )1-2=1-2n,∴S 6=1-26=-63.(3)已知数列{a n }满足a 1+2a 2+3a 3+…+na n =2n,则a n =________. 答案 ⎩⎪⎨⎪⎧2,n =1,2n -1n,n ≥2解析 当n =1时,由已知,可得a 1=21=2, ∵a 1+2a 2+3a 3+…+na n =2n,① 故a 1+2a 2+3a 3+…+(n -1)a n -1=2n -1(n ≥2),②由①-②得na n =2n-2n -1=2n -1,∴a n =2n -1n.显然当n =1时不满足上式, ∴a n =⎩⎪⎨⎪⎧2,n =1,2n -1n,n ≥2.思维升华已知S n 求a n 的常用方法是利用a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,一定要检验a 1的情况.跟踪训练2(1)已知数列{a n }的前n 项和S n =3n+1,则a n =________.答案 ⎩⎪⎨⎪⎧4,n =1,2×3n -1,n ≥2解析 当n =1时,a 1=S 1=3+1=4; 当n ≥2时,a n =S n -S n -1=(3n+1)-(3n -1+1)=2×3n -1.当n =1时,2×31-1=2≠a 1,所以a n =⎩⎪⎨⎪⎧4,n =1,2×3n -1,n ≥2.(2)设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n3,则a n =________.答案13n 解析 因为a 1+3a 2+32a 3+…+3n -1a n =n3,①则当n ≥2时,a 1+3a 2+32a 3+…+3n -2a n -1=n -13,②①-②得3n -1a n =13,所以a n =13n (n ≥2).由题意知a 1=13符合上式,所以a n =13n .(3)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =________.答案 (-2)n -1解析 当n =1时,a 1=S 1=23a 1+13,即a 1=1;当n ≥2时,a n =S n -S n -1=23a n -23a n -1,故a n a n -1=-2,故a n =(-2)n -1.题型三 由数列的递推关系求通项公式例3设数列{a n }中,a 1=2,a n +1=a n +n +1,则a n =________.答案n 2+n +22解析 由条件知a n +1-a n =n +1,则当n ≥2时a n =(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)+a 1=(2+3+4+…+n )+2=n 2+n +22.当n =1时,符合上式,因此a n =n 2+n +22.引申探究1.若将“a n +1=a n +n +1”改为“a n +1=nn +1a n ”,如何求解? 解 ∵a n +1=nn +1a n ,a 1=2,∴a n ≠0, ∴a n +1a n =n n +1. ∴当n ≥2时a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1 =n -1n ·n -2n -1·n -3n -2·…·12·2=2n. 当n =1时,符合上式,因此a n =2n.2.若将“a n +1=a n +n +1”改为“a n +1=2a n +3”,如何求解?解 设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t ),即a n +1=2a n -t ,解得t =-3.故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=5,且b n +1b n =a n +1+3a n +3=2.所以{b n }是以5为首项,2为公比的等比数列. 所以b n =5×2n -1,故a n =5×2n -1-3.3.若将“a n +1=a n +n +1”改为“a n +1=2a na n +2”,如何求解? 解 ∵a n +1=2a na n +2,a 1=2,∴a n ≠0, ∴1a n +1=1a n +12,即1a n +1-1a n =12, 又a 1=2,则1a 1=12,∴⎩⎨⎧⎭⎬⎫1a n 是以12为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2.∴a n =2n.4.若将本例条件换为“a 1=1,a n +1+a n =2n ”,如何求解? 解 ∵a n +1+a n =2n ,∴a n +2+a n +1=2n +2, 故a n +2-a n =2.即数列{a n }的奇数项与偶数项都是公差为2的等差数列.当n 为偶数时,a 2=1,故a n =a 2+2⎝ ⎛⎭⎪⎫n2-1=n -1. 当n 为奇数时,∵a n +1+a n =2n ,a n +1=n (n +1为偶数),故a n =n .综上所述,a n =⎩⎪⎨⎪⎧n ,n 为奇数,n -1,n 为偶数,n ∈N *.思维升华已知数列的递推关系求通项公式的典型方法 (1)当出现a n =a n -1+m 时,构造等差数列. (2)当出现a n =xa n -1+y 时,构造等比数列. (3)当出现a n =a n -1+f (n )时,用累加法求解. (4)当出现a na n -1=f (n )时,用累乘法求解. 跟踪训练3(1)已知数列{a n }满足a 1=1,a 2=4,a n +2+2a n =3a n +1(n ∈N *),则数列{a n }的通项公式a n =______________. 答案 3×2n -1-2解析 由a n +2+2a n -3a n +1=0, 得a n +2-a n +1=2(a n +1-a n ),∴数列{a n +1-a n }是以a 2-a 1=3为首项,2为公比的等比数列, ∴a n +1-a n =3×2n -1,∴当n ≥2时,a n -a n -1=3×2n -2,…,a 3-a 2=3×2,a 2-a 1=3,将以上各式累加,得a n -a 1=3×2n -2+…+3×2+3=3(2n -1-1),∴a n =3×2n -1-2(当n =1时,也满足).(2)在数列{a n }中,a 1=3,a n +1=a n +1n (n +1),则通项公式a n =________.答案 4-1n解析 原递推公式可化为a n +1=a n +1n -1n +1,则当n ≥2时,a 2=a 1+11-12,a 3=a 2+12-13,a 4=a 3+13-14,…,a n -1=a n -2+1n -2-1n -1,a n =a n -1+1n -1-1n ,逐项相加得a n =a 1+1-1n,故a n =4-1n,经验证当n =1时也符合.题型四 数列的性质命题点1 数列的单调性 例4已知a n =n -1n +1,那么数列{a n }是( ) A .递减数列 B .递增数列 C .常数列 D .摆动数列答案 B 解析 a n =1-2n +1,将a n 看作关于n 的函数,n ∈N *,易知{a n }是递增数列. 命题点2 数列的周期性例5(2018·台州质检)在数列{a n }中,a 1=0,a n +1=3+a n1-3a n ,则S 2020=________.答案 0解析 ∵a 1=0,a n +1=3+a n1-3a n ,∴a 2=31=3,a 3=3+31-3×3=23-2=-3, a 4=3-31+3×3=0,即数列{a n }的取值具有周期性,周期为3, 且a 1+a 2+a 3=0,则S 2020=S 3×673+1=a 1=0. 命题点3 数列的最值例6已知等差数列{a n }的前n 项和为S n ,且S m -1=-2,S m =0,S m +1=3(m ≥2),则nS n 的最小值为( ) A .-3 B .-5 C .-6 D .-9答案 D解析 由S m -1=-2,S m =0,S m +1=3(m ≥2)可知a m =2,a m +1=3,设等差数列{a n }的公差为d ,则d =1, ∵S m =0,∴a 1=-a m =-2, 则a n =n -3,S n =n (n -5)2,nS n =n 2(n -5)2.设f (x )=x 2(x -5)2,x >0,f ′(x )=32x 2-5x ,x >0,∴f (x )的极小值点为x =103,∵n ∈N *,且f (3)=-9,f (4)=-8, ∴f (n )min =-9.思维升华应用数列单调性的关键是判断单调性,判断数列单调性的常用方法有两个:(1)利用数列对应的函数的单调性判断;(2)对数列的前后项作差(或作商),利用比较法判断. 跟踪训练4(1)(2018·浙江杭州二中期中)已知数列{a n }满足a 1=2,a n +1=11-a n(n ∈N *),则a 2020等于( )A .-2B .-1C .2D.12答案 C解析 由a 1=2,a n +1=11-a n (n ∈N *),得a 2=11-a 1=-1,a 3=11-a 2=12,a 4=11-a 3=2,…,以此类推知数列{a n }是周期为3的周期数列,所以a 2020=a 3×673+1=a 1=2,故选C. (2)若数列{a n }的前n 项和S n =n 2-10n (n ∈N *),则数列{na n }中数值最小的项是( ) A .第2项 B .第3项 C .第4项 D .第5项答案 B解析 ∵S n =n 2-10n ,∴当n ≥2时,a n =S n -S n -1=2n -11; 当n =1时,a 1=S 1=-9也适合上式. ∴a n =2n -11(n ∈N *).记f (n )=na n =n (2n -11)=2n 2-11n , 此函数图象的对称轴为直线n =114,但n ∈N *,∴当n =3时,f (n )取最小值. ∴数列{na n }中数值最小的项是第3项.1.(2018·嘉兴期末检测)已知数列{a n }的通项公式为a n =2n 2+n ,则115是它的( ) A .第4项 B .第5项 C .第6项 D .第7项答案 B 解析 由2n 2+n =115,n ∈N *,得n =5,所以115是数列{a n }的第5项,故选B. 2.记S n 为数列{a n }的前n 项和.“任意正整数n ,均有a n >0”是“{S n }是递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 ∵“a n >0”⇒“数列{S n }是递增数列”, ∴“a n >0”是“数列{S n }是递增数列”的充分条件.如数列{a n }为-1,1,3,5,7,9,…,显然数列{S n }是递增数列,但是a n 不一定大于零,还有可能小于零,∴“数列{S n }是递增数列”不能推出“a n >0”, ∴“a n >0”是“数列{S n }是递增数列”的不必要条件. ∴“a n >0”是“数列{S n }是递增数列”的充分不必要条件. 3.若S n 为数列{a n }的前n 项和,且S n =2a n -2,则S 8等于( ) A .255B .256C .510D .511 答案 C解析 当n =1时,a 1=S 1=2a 1-2,据此可得a 1=2, 当n ≥2时,S n =2a n -2,S n -1=2a n -1-2, 两式作差可得a n =2a n -2a n -1,则a n =2a n -1,据此可得数列{a n }是首项为2,公比为2的等比数列, 其前8项和为S 8=2×()1-281-2=29-2=512-2=510.4.已知数列{a n }的前n 项和S n =n 2+2n ,则数列⎩⎨⎧⎭⎬⎫1a n ·a n +1的前6项和为( ) A.215B.415C.511D.1011 答案 A解析 数列{a n }的前n 项和S n =n 2+2n ,S n -1=n 2-1,两式作差得到a n =2n +1(n ≥2), 又当n =1时,a 1=S 1=12+2×1=3,符合上式, 所以a n =2n +1,1a n ·a n +1=1()2n +1()2n +3=12⎝ ⎛⎭⎪⎫12n +1-12n +3裂项求和得到S 6=12⎝ ⎛⎭⎪⎫13-15+…-115=215,故选A.5.在数列{a n }中,a 1=2,a n +1n +1=a n n +ln ⎝ ⎛⎭⎪⎫1+1n ,则a n 等于( ) A .2+n ln n B .2n +(n -1)ln n C .2n +n ln n D .1+n +n ln n答案 C 解析 由题意得a n +1n +1-a n n =ln(n +1)-ln n ,n 分别用1,2,3,…,(n -1)取代,累加得a n n -a 11=ln n -ln1=ln n ,a nn=2+ln n ,∴a n =(ln n +2)n ,故选C.6.已知数列{a n }的通项公式a n =632n ,若a 1·a 2·…·a n ≤a 1·a 2·…·a k 对n ∈N *恒成立,则正整数k 的值为( ) A .5B .6C .7D .8 答案 A解析 a n =632n ,当n ≤5时,a n >1;当n ≥6时,a n <1,由题意知,a 1·a 2·…·a k 是{a n }的前n 项乘积的最大值,所以k =5.故选A. 7.若数列{a n }满足关系a n +1=1+1a n ,a 8=3421,则a 5=________.答案 85解析 借助递推关系,由a 8递推依次得到a 7=2113,a 6=138,a 5=85.8.(2018·浙江“七彩阳光”新高考研究联盟第二学期期初)已知数列{a n }的前n 项和S n =n 2+2n -1(n ∈N *),则a 1=________;数列{a n }的通项公式为a n =________.答案 2 ⎩⎪⎨⎪⎧2,n =1,2n +1,n ≥2解析 由题意易得a 1=S 1=2,当n ≥2时,a n =S n -S n -1=(n 2+2n -1)-[(n -1)2+2(n -1)-1]=2n +1,而a 1=2≠3,所以a n =⎩⎪⎨⎪⎧2,n =1,2n +1,n ≥2.9.(2018·绍兴柯桥第二学期质检)已知正数数列{a n }的前n 项和S n 满足:S n 和2的等比中项等于a n 和2的等差中项,则a 1=________;S n =________. 答案 2 2n 2解析 由题意,得a n +22=2S n ,即(a n +2)2=8S n ,①所以(a 1+2)2=8a 1,解得a 1=2; 当n ≥2时,(a n -1+2)2=8S n -1,②①-②,得(a n -a n -1)(a n +a n -1)=4(a n +a n -1),又a n >0,所以a n -a n -1=4,所以数列{a n }是首项为2,公差为4的等差数列,所以S n =2n +n (n -1)2×4=2n 2.10.(2019·衢州质检)在数列{a n }中,a 1=1,(n 2+2n )(a n +1-a n )=1(n ∈N *),则通项公式a n =________. 答案 74-2n +12n (n +1)解析 由(n 2+2n )(a n +1-a n )=1得a n +1-a n =1n 2+2n =12×⎝ ⎛⎭⎪⎫1n -1n +2,所以当n ≥2时,a 2-a 1=12×⎝ ⎛⎭⎪⎫11-13,a 3-a 2=12×⎝ ⎛⎭⎪⎫12-14,…,a n -1-a n -2=12⎝ ⎛⎭⎪⎫1n -2-1n ,a n -a n -1=12⎝ ⎛⎭⎪⎫1n -1-1n +1,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=12×⎝ ⎛⎭⎪⎫1+12-1n +1-1n +1=74-2n +12n (n +1),当n =1时,满足上式,故a n =74-2n +12n (n +1).11.已知在数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3; (2)求{a n }的通项公式.解 (1)由S 2=43a 2,得3(a 1+a 2)=4a 2,解得a 2=3a 1=3;由S 3=53a 3,得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6.(2)由题设知a 1=1.当n >1时,有a n =S n -S n -1=n +23a n -n +13a n -1,整理,得a n =n +1n -1a n -1. 于是a 1=1,a 2=31a 1,a 3=42a 2,…,a n -1=n n -2a n -2,a n =n +1n -1a n -1,将以上n 个等式两端分别相乘,整理,得a n =n (n +1)2.经检验,当n =1时,a 1=1符合上式, 综上,{a n }的通项公式a n =n (n +1)2.12.已知数列{a n }中,a 1=1,其前n 项和为S n ,且满足2S n =(n +1)a n (n ∈N *). (1)求数列{a n }的通项公式;(2)记b n =3n-λa 2n ,若数列{b n }为递增数列,求λ的取值范围. 解 (1)∵2S n =(n +1)a n , ∴2S n +1=(n +2)a n +1,∴2a n +1=(n +2)a n +1-(n +1)a n , 即na n +1=(n +1)a n ,∴a n +1n +1=a nn, ∴a n n =a n -1n -1=…=a 11=1,∴a n =n (n ∈N *). (2)b n =3n-λn 2.b n +1-b n =3n +1-λ(n +1)2-(3n -λn 2)=2·3n-λ(2n +1). ∵数列{b n }为递增数列,∴2·3n-λ(2n +1)>0,即λ<2·3n2n +1.令c n =2·3n2n +1,即c n +1c n =2·3n +12n +3·2n +12·3n =6n +32n +3>1. ∴{c n }为递增数列,∴λ<c 1=2, 即λ的取值范围为(-∞,2).13.(2018·浙江杭州四中期中)已知数列{a n }满足:a 1=1,a n +1=a na n +2(n ∈N *).若b n +1=(n -2λ)·⎝ ⎛⎭⎪⎫1a n+1(n ∈N *),b 1=-λ,且数列{b n }是单调递增数列,则实数λ的取值范围是( ) A .λ>23B .λ<23C .λ>32D .λ<32答案 B 解析 由a n +1=a na n +2,得1a n +1=2a n +1,则1a n +1+1=2⎝ ⎛⎭⎪⎫1a n +1,所以数列⎩⎨⎧⎭⎬⎫1a n +1是等比数列,首项为2,公比为2,于是有1a n+1=2×2n -1=2n ,所以b n =(n -1-2λ)·2n -1(n ≥2).由b 2>b 1得2(1-2λ)>-λ,解得λ<23;当n ≥2时,由b n +1>b n 得(n -2λ)·2n >(n -1-2λ)·2n -1,解得λ<n +12.综上所述,λ<23,故选B. 14.已知数列{a n }的首项a 1=a ,其前n 项和为S n ,且满足S n +S n -1=4n 2(n ≥2,n ∈N *),若对任意n ∈N *,a n <a n +1恒成立,则a 的取值范围是( ) A.⎝⎛⎭⎪⎫-∞,163 B.⎝⎛⎭⎪⎫5,163C.⎝⎛⎭⎪⎫3,163D .(3,5)答案 D解析 ∵S n +S n -1=4n 2,S n +1+S n =4(n +1)2, ∴当n ≥2时,S n +1-S n -1=8n +4, 即a n +1+a n =8n +4, 即a n +2+a n +1=8n +12, 故a n +2-a n =8(n ≥2),由a 1=a 知a 2+2a 1=4×22=16, ∴a 2=16-2a 1=16-2a ,a 3+2S 2=4×32=36,∴a 3=36-2S 2=36-2(16-a )=4+2a ,a 4=24-2a ; 若对任意n ∈N *,a n <a n +1恒成立, 只需使a 1<a 2<a 3<a 4, 即a <16-2a <4+2a <24-2a ,解得3<a <5,故选D.15.已知数列{a n }的前n 项和为S n ,a 1=15,且满足()2n -5a n +1=()2n -3a n +4n 2-16n +15,已知n ,m ∈N *,n >m ,则S n -S m 的最小值为( ) A .-494B .-498C .-14D .-28答案 C解析 根据题意可知(2n -5)a n +1=(2n -3)a n +(2n -5)(2n -3), 式子的每一项都除以(2n -5)(2n -3), 可得a n +12n -3=a n2n -5+1,即a n +12(n +1)-5-a n2n -5=1,所以数列⎩⎨⎧⎭⎬⎫a n 2n -5是以152-5=-5为首项,以1为公差的等差数列,所以a n2n -5=-5+(n -1)·1=n -6,即a n =(n -6)(2n -5),a n <0, 解得52<n <6.由此可以判断出只有a 3,a 4,a 5这三项是负数,且a 6=0,从而得到当n =5或6,m =2时,S n -S m 取得最小值,且S n -S m =S 5-S 2=S 6-S 2=a 3+a 4+a 5=-3-6-5=-14,故选C.16.已知数列{a n }是递增的等比数列且a 1+a 4=9,a 2a 3=8,设S n 是数列{a n }的前n 项和,数列⎩⎨⎧⎭⎬⎫a n +1S n ·S n +1的前n 项和为T n ,若不等式λ≤T n 对任意的n ∈N *恒成立,求实数λ的最大值.解 ∵数列{a n }是递增的等比数列, 且a 1+a 4=9,a 2a 3=8,a 1a 4=a 2a 3,∴a 1,a 4是方程x 2-9x +8=0的两个根,且a 1<a 4, 解方程x 2-9x +8=0, 得a 1=1,a 4=8,∴q 3=a 4a 1=81=8,解得q =2, ∴a n =a 1qn -1=2n -1.∴S n =a 1()1-q n1-q =1×()1-2n1-2=2n-1,令b n =a n +1S n S n +1=2n ()2n -1·()2n +1-1=12n-1-12n +1-1, ∴数列{b n }的前n 项和T n =1-13+13-17+17-115+…+12n-1-12n +1-1=1-12-1在正整数集上单调递增,∴T n ≥T 1=23,∵λ≤T n ,且对一切n ∈N *恒成立, ∴λ≤23,∴实数λ的最大值是23.。
浙江2020版高考数学第七章数列与数学归纳法专题突破四高考中的数列问题讲义(含解析)

高考专题突破四 高考中的数列问题题型一 等差数列、等比数列的基本问题例1(2018·浙江杭州地区四校联考)已知数列{a n }满足a 1=1, 1a 2n+4=1a n +1,记S n =a 21+a 22+…+a 2n ,若S 2n +1-S n ≤t30对任意的n ∈N *恒成立.(1)求数列{a 2n }的通项公式; (2)求正整数t 的最小值. 解 (1)由题意得1a 2n +1-1a 2n=4,则⎩⎨⎧⎭⎬⎫1a 2n 是以1为首项,4为公差的等差数列, 则1a 2n=1+(n -1)×4=4n -3,则a 2n =14n -3. (2)不妨设b n =S 2n +1-S n =a 2n +1+a 2n +2+…+a 22n +1,考虑到b n -b n +1=a 2n +1+a 2n +2+…+a 22n +1-(a 2n +2+a 2n +3+…+a 22n +2+a 22n +3) =a 2n +1-a 22n +2-a 22n +3 =14n +1-18n +5-18n +9=18n +2-18n +5+18n +2-18n +9>0, 因此数列{b n }单调递减,则b n 的最大值为b 1=S 3-S 1=a 22+a 23=15+19=1445≤t 30,∴t ≥283,则t min =10.思维升华等差数列、等比数列综合问题的解题策略(1)分析已知条件和求解目标,为最终解决问题设置中间问题,例如求和需要先求出通项、求通项需要先求出首项和公差(公比)等,确定解题的顺序.(2)注意细节:在等差数列与等比数列综合问题中,如果等比数列的公比不能确定,则要看其是否有等于1的可能,在数列的通项问题中第一项和后面的项能否用同一个公式表示等,这些细节对解题的影响也是巨大的.跟踪训练1 (2018·浙江名校联盟联考)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的公比是q (q ≠1),且满足:a 1=2,b 1=1,S 2=3b 2,a 2=b 3. (1)求a n 与b n ;(2)设c n =2b n -λ·23na ,若数列{c n }是递减数列,求实数λ的取值范围.解 (1)设数列{a n }的公差为d ,依题意可得⎩⎪⎨⎪⎧2+2+d =3q ,2+d =q 2,解得⎩⎪⎨⎪⎧d =-1,q =1(舍去)或⎩⎪⎨⎪⎧d =2,q =2.故a n =2+2(n -1)=2n ,b n =2n -1.(2)由(1)可知c n =2n-λ·3n, 若{c n }是递减数列,则c n +1<c n , 即2n +1-λ·3n +1<2n -λ·3n,即λ>12×⎝ ⎛⎭⎪⎫23n 在n ∈N *时成立,只需λ>⎣⎢⎡⎦⎥⎤12×⎝ ⎛⎭⎪⎫23n max . 因为y =12×⎝ ⎛⎭⎪⎫23n 在n ∈N *时单调递减,所以⎣⎢⎡⎦⎥⎤12×⎝ ⎛⎭⎪⎫23n max =12×23=13. 故λ>13,即实数λ的取值范围是⎝ ⎛⎭⎪⎫13,+∞.题型二 数列的通项与求和例2(2018·台州质检)已知数列{a n }的前n 项和为S n ,数列⎩⎨⎧⎭⎬⎫S n n 是首项为1,公差为2的等差数列.(1)求数列{a n }的通项公式;(2)设数列{b n }满足a 1b 1+a 2b 2+…+a n b n =5-(4n +5)·⎝ ⎛⎭⎪⎫12n,求数列{b n }的前n 项和T n .解 (1)因为数列⎩⎨⎧⎭⎬⎫S n n 是首项为1,公差为2的等差数列,所以S n n=1+2(n -1)=2n -1. 所以S n =2n 2-n . 当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=(2n 2-n )-[2(n -1)2-(n -1)]=4n -3, 当n =1时,a 1=1也符合上式.所以数列{a n }的通项公式为a n =4n -3(n ∈N *).(2)当n =1时,a 1b 1=12,所以b 1=2a 1=2;当n ≥2时,由a 1b 1+a 2b 2+…+a n b n =5-(4n +5)⎝ ⎛⎭⎪⎫12n,所以a 1b 1+a 2b 2+…+a n -1b n -1=5-(4n +1)⎝ ⎛⎭⎪⎫12n -1. 两式相减,得a n b n =(4n -3)⎝ ⎛⎭⎪⎫12n.因为a n =4n -3,所以b n =4n -3(4n -3)⎝ ⎛⎭⎪⎫12n=2n(当n =1时,也符合此式).又b n +1b n =2n +12n =2,则数列{b n }是首项为2,公比为2的等比数列. 所以T n =2(1-2n)1-2=2n +1-2.思维升华(1)可以利用数列的递推关系探求数列的通项,利用递推关系构造数列或证明数列的有关结论.(2)根据数列的特点选择合适的求和方法,常用的求和方法有错位相减法、分组转化法、裂项相消法等.跟踪训练2(2018·浙江教育绿色评价联盟适应性考试)已知数列{a n }中,a 1=3,a 2=5,其前n 项和S n 满足S n +S n -2=2S n -1+2n -1(n ≥3).令b n =1a n ·a n +1.(1)求数列{a n }的通项公式; (2)若f (x )=2x -1,求证:T n =b 1f (1)+b 2f (2)+…+b n f (n )<16(n ≥1).(1)解 由题意知S n -S n -1=S n -1-S n -2+2n -1(n ≥3),即a n -a n -1=2n -1(n ≥3),所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+a 2 =2n -1+2n -2+…+22+5 =2n -1+2n -2+…+22+2+1+2=2n+1(n ≥3),检验知n =1,2时,结论也成立,故a n =2n+1.(2)证明 由于b n f (n )=1(2n +1)(2n +1+1)·2n -1=12·(2n +1+1)-(2n+1)(2n +1)(2n +1+1) =12⎝ ⎛⎭⎪⎫12n +1-12n +1+1. 故T n =b 1f (1)+b 2f (2)+…+b n f (n ) =12⎣⎢⎡⎝ ⎛⎭⎪⎫12+1-122+1+⎝ ⎛⎭⎪⎫122+1-123+1+…⎦⎥⎤+⎝⎛⎭⎪⎫12n +1-12n +1+1 =12⎝ ⎛⎭⎪⎫12+1-12n +1+1<12×12+1=16. 所以T n <16.题型三 数列与不等式的交汇例3 已知数列{a n }满足a 1=1,a n +1=a n1+a 2n ,n ∈N *,记S n ,T n 分别是数列{a n },{a 2n }的前n 项和,证明:当n ∈N *时, (1)a n +1<a n ; (2)T n =1a2n +1-2n -1;(3)2n -1<S n <2n . 证明 (1)由a 1=1及a n +1=a n1+a 2n, 知a n >0,故a n +1-a n =a n1+a 2n -a n =-a 3n1+a 2n <0,∴a n +1<a n ,n ∈N *. (2)由1a n +1=1a n+a n ,得1a 2n +1=1a 2n +a 2n +2, 从而1a 2n +1=1a 2n -1+a 2n -1+a 2n +2×2=…=1a 21+a 21+a 22+…+a 2n +2n ,又a 1=1,∴1a 2n +1=1+a 21+a 22+…+a 2n +2n , ∴T n =1a 2n +1-2n -1,n ∈N *.(3)由(2)知,a n +1=1T n +2n +1,由T n ≥a 21=1,得a n +1≤12n +2,∴当n ≥2时,a n ≤12n =22n <2n +n -1=2(n -n -1),∴S n <a 1+2[(2-1)+(3-2)+…+(n -n -1)] =1+2(n -1)<2n ,n ≥2, 又a 1=1,∴S n <2n ,n ∈N *, 由a n =1a n +1-1a n,得S n =a 1+a 2+…+a n=⎝ ⎛⎭⎪⎫1a 2-1a 1+⎝ ⎛⎭⎪⎫1a 3-1a 2+…+⎝ ⎛⎭⎪⎫1a n +1-1a n =1a n +1-1a 1≥2n +2-1>2n -1,综上,2n -1<S n <2n .思维升华(1)以数列为背景的不等式证明的基本策略是对数列递推式进行放缩; (2)解题过程中要注意观察数列递推公式的特点,联想常用的求和形式灵活进行转化. 跟踪训练3对任意正整数n ,设a n 是方程x 2+xn=1的正根. 求证:(1)a n +1>a n ;(2)12a 2+13a 3+…+1na n <1+12+13+…+1n . 证明 由a 2n +a n n=1且a n >0,得0<a n <1. (1)a 2n +a n n=1,a 2n +1+a n +1n +1=1, 两式相减得 0=a 2n +1-a 2n +a n +1n +1-a n n <a 2n +1-a 2n +a n +1n -a n n=(a n +1-a n )⎝ ⎛⎭⎪⎫a n +1+a n +1n .因为a n +1+a n +1n>0,故a n +1-a n >0,即a n +1>a n .(2)因为a n ⎝ ⎛⎭⎪⎫a n +1n =1,所以1a n =a n +1n,由0<a n <1,得1a n <1+1n,从而当i ≥2时,1i ⎝ ⎛⎭⎪⎫1a i -1<1i ⎝⎛⎭⎪⎫1+1i-1=1i 2<1i -1-1i, ∑ni =11i ⎝ ⎛⎭⎪⎫1a i -1=1a 1-1+∑ni =21i ⎝ ⎛⎭⎪⎫1a i -1 <1a 1-1+∑ni =2⎝ ⎛⎭⎪⎫1i -1-1i =1a 1-1n <1a 1.所以12a 2+13a 3+...+1na n <1+12+13+ (1).1.(2018·绍兴市上虞区调研)已知数列{a n }满足a 1=511,4a n =a n -1-3(n ≥2). (1)求证:{a n +1}是等比数列;(2)令b n =|log 2(a n +1)|,求{b n }的前n 项和S n . (1)证明 由题意知a n =14a n -1-34,则a n +1=14(a n -1+1),∵a 1+1=512≠0,∴数列{a n +1}是以512为首项,14为公比的等比数列.(2)解 由(1)知,a n +1=512·⎝ ⎛⎭⎪⎫14n -1=211-2n ,则log 2(a n +1)=11-2n . ∴b n =|11-2n |,令c n =11-2n ,当n ≤5时,c n >0; 当n ≥6时,c n <0,设{c n }的前n 项和为T n ,则T n =10n -n 2, 当n ≤5时,S n =T n =10n -n 2; 当n ≥6时,S n =2T 5-T n =n 2-10n +50.综上,S n =⎩⎪⎨⎪⎧10n -n 2,n ≤5,n 2-10n +50,n ≥6.2.(2018·绍兴市嵊州市适应性考试)已知S n 是数列{a n }的前n 项和,a 1=2,且4S n =a n ·a n+1,数列{b n }中,b 1=14,且b n +1=nb n (n +1)-b n,n ∈N *.(1)求数列{a n }的通项公式; (2)设12332n n n b a c +=(n ∈N *),求{c n }的前n 项和T n .解 (1)当n =1时,可得a 2=4,当n ≥2时,4S n =a n ·a n +1,4S n -1=a n ·a n -1, 两式相减,得4a n =a n (a n +1-a n -1), ∵a n ≠0,∴a n +1-a n -1=4,∴{a n }的奇数项和偶数项分别成以4为公差的等差数列, 当n =2k -1,k ∈N *时,a n =2n ; 当n =2k ,k ∈N *时,a n =2n . ∴a n =2n (n ∈N *). (2)∵1b n +1=n +1nb n -1n, 1(n +1)b n +1=1nb n -1n (n +1),当n ≥2时,1nb n -1(n -1)b n -1=-⎝ ⎛⎭⎪⎫1n -1-1n , 1(n -1)b n -1-1(n -2)b n -2=-⎝ ⎛⎭⎪⎫1n -2-1n -1, 12b 2-1b 1=-⎝ ⎛⎭⎪⎫1-12,将上式累加得1nb n=3n +1n,∴b n =13n +1(n ≥2),n =1时也适合,∴b n =13n +1(n ∈N *),∴c n =n 2n , T n =12+222+323+…+n -12n -1+n 2n ,12T n =122+223+…+n -12n +n 2n +1, 再由错位相减得T n =2-n +22n.3.(2018·浙江名校新高考研究联盟联考)设数列{a n }的前n 项和为S n ,且⎩⎨⎧⎭⎬⎫S n n 是一个首项与公差均为1的等差数列. (1)求数列{a n }的通项公式;(2)对任意的k ∈N *,将数列{a n }中落入区间(2k,22k)内的项的个数记为b k , ①求数列{b k }的通项公式;②记c k =222k -1-b k ,数列{c k }的前k 项和为T k ,求使等式T k -m T k +1-m =1c m +1成立的所有正整数k ,m 的值.解 (1)由题意得S n n=1+(n -1)×1=n ,∴S n =n 2, 则a n =S n -S n -1=n 2-(n -1)2=2n -1(n ≥2),当n =1时,a 1=1,适合上式,因此a n =2n -1(n ∈N *). (2)①∵2k<a n <22k,∴2k <2n -1<22k ,则2k +1<2n <22k +1,即2k -1+12<n <22k -1+12, ∴2k -1+1≤n ≤22k -1,则b k =22k -1-(2k -1+1)+1=22k -1-2k -1,k ∈N *.②由题意得c k =222k -1-22k -1+2k -1=42k , ∴T k =4⎝ ⎛⎭⎪⎫121+122+…+12k =4⎝ ⎛⎭⎪⎫1-12k , 则T k +1=4⎝ ⎛⎭⎪⎫1-12k +1,T k -m T k +1-m =4⎝ ⎛⎭⎪⎫1-12k -m 4⎝ ⎛⎭⎪⎫1-12k +1-m=4-m -22k -22k 4-m -22k =1-22k4-m -22k ,1c m +1=142m +1=1-44+2m , 由T k -m T k +1-m =1c m +1,得22k 4-m -22k=44+2m , 则4+2m=(4-m )2k +1-4,即有0<8+2m=(4-m )2k +1,因此m <4,对于m ∈N *,则当m =1时,正整数k 不存在,m =2时,正整数k 不存在,m =3时,k =3, 因此存在符合条件的k ,m ,且m =3,k =3.4.(2018·浙江名校协作体联考)已知数列{a n }中,a 1=1,且点P (a n ,a n +1)(n ∈N *)在直线x -y +1=0上.(1)求数列{a n }的通项公式; (2)若f (n )=1n +a 1+1n +a 2+1n +a 3+…+1n +a n(n ∈N *,且n ≥2),求f (n )的最小值; (3)设b n =1a n,S n 表示数列{b n }的前n 项和.试问:是否存在关于n 的整式g (n ),使得S 1+S 2+…+S n -1=(S n -1)g (n )对于一切不小于2的自然数n 恒成立?若存在,写出g (n )的解析式,并加以证明;若不存在,请说明理由.解 (1)因为a n -a n +1+1=0,所以a n +1-a n =1,因此数列{a n }是首项为1,公差为1的等差数列,则a n =1+(n -1)×1=n . (2)因为f (n )=1n +1+1n +2+1n +3+…+1n +n , f (n +1)=1n +2+1n +3+1n +4+…+1n +n +1n +1+n +1n +1+n +1, 所以f (n +1)-f (n )=12n +1+12n +2-1n +1=12n +1-12n +2=1(2n +1)(2n +2)>0.因此f (n )单调递增,则f (n )的最小值为f (2)=12+1+12+2=712. (3)方法一 由(1)知,b n =1n ,当n ≥2时,因为S 1=1,S 2=1+12,S 3=1+12+13,…,S n -1=1+12+13+…+1n -1, 所以S 1+S 2+…+S n -1=n -1+12(n -2)+13(n -3)+…+1n -1[n -(n -1)]=n -1+12n -1+13n -1+…+1n -1n -1=n -(n -1)+n ⎝ ⎛⎭⎪⎫12+13+…+1n -1=1+n ⎝ ⎛⎭⎪⎫12+13+…+1n -1=n ⎝ ⎛⎭⎪⎫12+13+…+1n -1+1n 而(S n -1)g (n )=⎝ ⎛⎭⎪⎫12+13+…+1n ×g (n ),因此g (n )=n .故存在关于n 的整式g (n )=n ,使得对于一切不小于2的自然数恒成立. 方法二 由b n =1n ,可得S n =1+12+…+1n,S n -S n -1=1n(n ≥2),即n (S n -S n -1)=1(n ≥2),故nS n -(n -1)S n -1=S n -1+1,(n -1)S n -1-(n -2)S n -2=S n -2+1,…,2S 2-S 1=S 1+1,以上式子相加得nS n -S 1=S 1+S 2+…+S n -1+(n -1), 则有S 1+S 2+…+S n -1=nS n -n =n (S n -1)(n ≥2), 因此g (n )=n ,故存在关于n 的整式g (n )=n ,使得对于一切不小于2的自然数恒成立.5.(2019·诸暨质检)已知数列{a n }的各项都大于1,且a 1=2,a 2n +1-a n +1-a 2n +1=0(n ∈N *). (1)求证:n +74≤a n <a n +1<n +2;(2)求证:12a 21-3+12a 22-3+12a 23-3+…+12a 2n -3<1.证明 (1)由a 2n +1-a 2n =a n +1-1>0,得a n +1>a n , ∵a n +1-a n =a n +1-1a n +1+a n<1,∴a n +1=(a n +1-a n )+…+(a 2-a 1)+a 1<n +2.a n +1-a n =a n +1-1a n +1+a n >a n +1-12a n +1=12-12a n +1>14,∴a n =(a n -a n -1)+…+(a 2-a 1)+a 1>n -14+2=n +74(n ≥2),又a 1=2=1+74,∴a n ≥n +74.∴原不等式得证.(2)∵a 2n +1-a 2n =a n +1-1≥n +84-1=n +44, ∴a 2n +1>n 2+9n 8+a 21=n 2+9n +328, 即a 2n ≥n 2+7n +248, 2a 2n -3≥n 2+7n +124=(n +3)(n +4)4, 12a 21-3+12a 22-3+…+12a 2n -3 ≤4⎝ ⎛⎭⎪⎫14-15+15-16+…+1n +3-1n +4 =4⎝ ⎛⎭⎪⎫14-1n +4=1-4n +4<1. ∴原不等式得证.6.(2018·浙江名校协作体考试)已知无穷数列{a n }的首项a 1=12,1a n +1=12⎝⎛⎭⎪⎫a n +1a n ,n ∈N *. (1)证明:0<a n <1;(2)记b n =(a n -a n +1)2a n a n +1,T n 为数列{b n }的前n 项和,证明:对任意正整数n ,T n <310. 证明 (1)①当n =1时,0<a 1=12<1,显然成立; ②假设当n =k (k ∈N *)时不等式成立,即0<a k <1,那么当n =k +1时,1a k +1=12⎝ ⎛⎭⎪⎫a k +1a k >12·2a k ·1a k =1, ∴0<a k +1<1.即当n =k +1时不等式也成立.综合①②可知,0<a n <1对任意n ∈N *成立.(2)∵0<a n <1,∴a n +1a n =2a 2n +1>1, 即a n +1>a n ,∴数列{a n }为递增数列.又1a n -1a n +1=1a n -12⎝ ⎛⎭⎪⎫a n +1a n =12⎝ ⎛⎭⎪⎫1a n -a n , 易知⎩⎨⎧⎭⎬⎫1a n -a n 为递减数列,∴⎩⎨⎧⎭⎬⎫1a n -1a n +1为递减数列, 又1a 2=12⎝⎛⎭⎪⎫a 1+1a 1=54, ∴当n ≥2时,1a n -1a n +1≤12⎝ ⎛⎭⎪⎫1a 2-a 2=12⎝ ⎛⎭⎪⎫54-45=940, ∴当n ≥2时,b n =(a n -a n +1)2a n a n +1=(a n +1-a n )⎝ ⎛⎭⎪⎫1a n -1a n +1≤940(a n +1-a n ). 当n =1时,T n =T 1=b 1=940<310,成立; 当n ≥2时,T n =b 1+b 2+…+b n ≤940+940[(a 3-a 2)+(a 4-a 3)+…+(a n +1-a n )] =940+940(a n +1-a 2)≤940+940(1-a 2) =940+940⎝ ⎛⎭⎪⎫1-45=27100<310. 综上,对任意正整数n ,T n <310.。
(浙江专用)2020版高考数学大二轮复习专题三小题考法课数列的概念及基本运算课件

+1+Sn=2,则满足11 000010<SS2nn<1110的 n 的最大值是(
)
A.8
B.9
C.10
D.11
(3)已知等比数列{an}的公比 q>0,前 n 项和为 Sn.若 2(a5-
a3-a4)=a4,且 a2a4a6=64,则 q=________,Sn=________.
(4)设 Sn 为等差数列{an}的前 n 项和,满足 S2=S6,S55-S44=
1.已知数列{an}的前 n 项和 Sn 满足 Sn=2an-3(n∈N *),
则 S6=( )
A.192
B.189
C.96
D.93
解析:选 B ∵a1=S1=2a1-3,∴a1=3.又 n≥2 时,an
=Sn-Sn-1=(2an-3)-(2an-1-3),即有 n≥2 时,an=2an-1, 故数列{an}是首项为 3,公比为 2 的等比数列,则 a6=3×25=
(2)当 n=1 时,由 2a2+S1=2,得 a2=12. 由 2an+1+Sn=2 知, 当 n≥2 时,有 2an+Sn-1=2, 两式相减得 an+1=12an. 当 n=1 时上式也成立, 所以数列{an}是公比为12的等比数列, 故 Sn=2-2·12n.
因此原不等式化为11
N *,r∈R ,r≠0),则“r=1”是“数列{an}成等差数列”的
() A.充分不必要条件 C.充要条件
B.必要不充分条件 D.既不充分也不必要条件
解析:选 A 当 r=1 时,an+1=an+1,则数列{an}是首项 为 1,公差为 1 的等差数列,充分性成立;当 r=12时,数列{an} 是首项为 1,公差为 0 的等差数列,必要性不成立.综上所述, “r=1”是“数列{an}成等差数列”的充分不必要条件,故选 A.
2020浙江高考数学二轮讲义:专题三第1讲 等差数列、等比数列 Word版含解析

第1讲 等差数列、等比数列等差、等比数列的基本运算[核心提炼]1.等差数列的通项公式及前n 项和公式a n =a 1+(n -1)d ;S n =n (a 1+a n )2=na 1+n (n -1)2d .2.等比数列的通项公式及前n 项和公式 a n =a 1qn -1(q ≠0);S n =a 1(1-q n )1-q =a 1-a n q1-q(q ≠1).[典型例题](1)(2019·嘉兴市高考一模)设S n 为等差数列{a n }的前n 项和,若S 1S 4=110,则S 3S 5=( )A.25 B.35 C.37D.47(2)(2019·浙江名校协作体高三下学期考试)设等比数列{a n }的前n 项和为S n ,满足对任意的正整数n ,均有S n +3=8S n +3,则a 1=________,公比q =________.【解析】 (1)设公差为d ,则a 14a 1+6d =110,d =a 1,所以S 3S 5=3a 1+3d 5a 1+10d =25,故选A.(2)由S n +3=8S n +3,则S n +2=8S n -1+3,两式相减得,a n +3=8a n ⇒a n q 3=8a n ,则q 3=8⇒q =2,由等比数列前n 项和公式得,a 1(1-2n +3)1-2=8·a 1(1-2n )1-2+3,即2n +3a 1-a 1=8·2n a 1-8a 1+3, 从而解得a 1=37.【答案】 (1)A (2)372关于等差(等比)数列的基本运算,一般通过其通项公式和前n 项和公式构造关于a 1和d (或q )的方程或方程组解决,如果所给出的是递推关系式,可通过将递推关系式变形,构造出满足等差(等比)数列定义的新数列,然后再按等差(等比)数列进行基本运算.[对点训练]1.(2019·温州瑞安七中高考模拟)数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6=( )A .3×44B .3×44+1C .44D .44+1解析:选A.由a n +1=3S n ,得到a n =3S n -1(n ≥2), 两式相减得:a n +1-a n =3(S n -S n -1)=3a n , 则a n +1=4a n (n ≥2),又a 1=1,a 2=3S 1=3a 1=3,得到此数列除去第一项后,为首项是3,公比为4的等比数列, 所以a n =a 2q n -2=3×4n -2(n ≥2), a 6=3×44,故选A.2.(2019·名校新高考研究联盟)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的底层共有灯( )A .186盏B .189盏C .192盏D .96盏解析:选C.设塔的底层共有灯x 盏,则各层的灯数构成一个首项为x ,公比为12的等比数列.x ⎝⎛⎭⎫1-⎝⎛⎭⎫1271-12=381,解得x =192.3.(2019·绍兴市柯桥区高三期中考试)已知正数数列{a n }的前n 项和S n 满足:S n 和2的等比中项等于a n 和2的等差中项,则a 1=________,S n =________.解析:由题意知a n +22=2S n ,平方可得S n =(a n +2)28,①由a 1=S 1得a 1+22=2a 1,从而可解得a 1=2.又由①式得S n -1=(a n -1+2)28(n ≥2),②①-②可得a n =S n -S n -1=(a n +2)28-(a n -1+2)28(n ≥2),整理得(a n +a n -1)(a n -a n -1-4)=0 因为数列{a n }的各项都是正数, 所以a n -a n -1-4=0,即a n -a n -1=4.故数列{a n }是以2为首项4为公差的等差数列, 所以S n =2n +n (n -1)2×4=2n 2.当n =1时,S 1=a 1=2. 故S n =2n 2. 答案:2 2n 24.(2019·杭州市学军中学高三模拟)已知等比数列{a n }的公比q >0,前n 项和为S n ,若2a 3,a 5,3a 4成等差数列,a 2a 4a 6=64,则q =________,S n =________.解析:由2a 3,a 5,3a 4成等差数列得2a 5=2a 3+3a 4⇒2q 2=2+3q ⇒q =2(负舍),a 2a 4a 6=64⇒a 34=64⇒a 4=4⇒a 1=a 4q 3=12,S n =12(1-2n )1-2=2n -12.答案:2 2n -12等差、等比数列的判定与证明[核心提炼]1.证明数列{a n }是等差数列的两种基本方法 (1)利用定义,证明a n +1-a n (n ∈N *)为一常数; (2)利用等差中项,即证明2a n =a n -1+a n +1(n ≥2).2.证明数列{a n }是等比数列的两种基本方法 (1)利用定义,证明a n +1a n (n ∈N *)为一常数;(2)利用等比中项,即证明a 2n =a n -1a n +1(n ≥2).[典型例题](1)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n +2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列C .{d n }是等差数列D .{d 2n }是等差数列(2)(2019·温州市高考二模)设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1.①求a 4的值;②证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列;③求数列{a n }的通项公式.【解】 (1)选A.由题意,过点A 1,A 2,A 3,…,A n ,A n +1,…分别作直线B 1B n +1的垂线,高分别记为h 1,h 2,h 3,…,h n ,h n +1,…,根据平行线的性质,得h 1,h 2,h 3,…,h n ,h n +1,…成等差数列,又S n =12×|B n B n +1|×h n ,|B n B n +1|为定值,所以{S n }是等差数列.故选A.(2)①当n =2时,4S 4+5S 2=8S 3+S 1,即4⎝⎛⎭⎫1+32+54+a 4+5⎝⎛⎭⎫1+32=8⎝⎛⎭⎫1+32+54+1, 解得:a 4=78.②证明:因为4S n +2+5S n =8S n +1+S n -1(n ≥2), 所以4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2), 即4a n +2+a n =4a n +1(n ≥2),因为4a 3+a 1=4×54+1=6=4a 2,所以4a n +2+a n =4a n +1,因为a n +2-12a n +1a n +1-12a n =4a n +2-2a n +14a n +1-2a n =4a n +1-a n -2a n +14a n +1-2a n=2a n +1-a n2(2a n +1-a n )=12.所以数列{a n +1-12a n }是以a 2-12a 1=1为首项,公比为12的等比数列;③由②知,⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1为首项,公比为12的等比数列,所以a n +1-12a n =⎝⎛⎭⎫12n -1.即a n +1⎝⎛⎭⎫12n +1-a n⎝⎛⎭⎫12n =4, 所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n ⎝⎛⎭⎫12n 是以a 112=2为首项,4为公差的等差数列,所以a n ⎝⎛⎭⎫12n =2+(n -1)×4=4n -2,即a n =(4n -2)×⎝⎛⎭⎫12n =(2n -1)×⎝⎛⎭⎫12n -1, 所以数列{a n }的通项公式是a n =(2n -1)×⎝⎛⎭⎫12n -1.(1)判断一个数列是等差(等比)数列,还有通项公式法及前n 项和公式法,但不作为证明方法.(2)若要判断一个数列不是等差(等比)数列,只需判断存在连续三项不成等差(等比)数列即可.(3)a 2n =a n -1a n +1(n ≥2,n ∈N *)是{a n }为等比数列的必要不充分条件,也就是判断一个数列是等比数列时,要注意各项不为0.[对点训练]1.(2019·金华十校高考模拟)已知a ,b 为实常数,{c i }(i ∈N *)是公比不为1的等比数列,直线ax +by +c i =0与抛物线y 2=2px (p >0)均有两个交点,所成弦的中点为M i (x i ,y i ),则下列说法错误的是( )A .数列{x i }可能是等比数列B .数列{y i }是常数列C .数列{x i }可能是等差数列D .数列{x i +y i }可能是等比数列解析:选C.由直线ax +by +c i =0,当a =0,b ≠0时,直线by +c i =0与抛物线y 2=2px (p >0)仅有一个交点,不合题意.当a ≠0,b =0时,直线ax +c i =0,化为: x =-c i a ,则x i =-c i a ,y i =0,x i +y i =-c i a,由{c i }(i ∈N *)是公比不为1的等比数列,可得{x i }是等比数列,{x i +y i }是等比数列,不是等差数列.当a ≠0,b ≠0时,直线ax +by +c i =0化为:x =-b a y -c ia ,代入抛物线y 2=2px (p >0),所以y 2+2pb a y +2pc ia=0.根据根与系数的关系可得:M i ⎝⎛⎭⎫pb 2a 2-c i a ,-pb a ,即y i=-pb a ,{y i }是常数列,是等比数列,是等差数列. 综上可得:A ,B ,D 都有可能,只有C 不可能.故选C. 2.记S n 为等比数列{a n }的前n 项和,已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解:(1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6.解得q =-2,a 1=-2. 故{a n }的通项公式为a n =(-2)n .(2)由(1)可得S n =a 1(1-q n )1-q =-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23=2[-23+(-1)n 2n +13]=2S n ,故S n +1,S n ,S n +2成等差数列.数列的性质及应用[核心提炼]1.等差数列等比数列性 质(1)若m ,n ,p ,q ∈N *,且m +n =p +q , 则a m +a n =a p +a q ; (2)a n =a m +(n -m )d ;(3)S m ,S 2m -S m ,S 3m -S 2m ,…仍成等差数列 (1)若m ,n ,p ,q ∈N *,且m +n =p +q , 则a m ·a n =a p ·a q ; (2)a n =a m q n-m;(3)S m ,S 2m -S m ,S 3m -S 2m ,…仍成等比数列(q ≠-1)从第二项起,每一项都大于它的前一项,即a n >a n -1(n ≥2)的数列叫做递增数列;每一项都小于它的前一项,即a n <a n -1(n ≥2)的数列叫做递减数列.[典型例题](1)(2019·义乌高三模拟)设等差数列{a n }的前n 项和为S n ,则“a 2>0且a 1>0”是“数列{S n }单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(2)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________. 【解析】 (1)设等差数列{a n }的公差为d ,d ≠0. S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d2n =d 2⎝ ⎛⎭⎪⎫n -d -2a 12d 2-(d -2a 1)28d , 因为数列{S n }单调递增, 所以d >0,d -2a 12d ≤1,可得d +2a 1≥0.由a 2>0且a 1>0,可得a 2=a 1+d >0.所以“a 2>0且a 1>0”是“数列{S n }单调递增”的既不充分也不必要条件.(2)设{a n }的公比为q ,由a 1+a 3=10,a 2+a 4=5得a 1=8,q =12,则a 2=4,a 3=2,a 4=1,a 5=12,所以a 1a 2…a n ≤a 1a 2a 3a 4=64.【答案】 (1)D (2)64等差、等比数列性质问题的求解策略(1)抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)数列是一种特殊的函数,具有函数的一些性质,如单调性、周期性等,可利用函数的性质解题.(3)利用数列性质进行运算时,要利用整体思想(如本例(2)),可以减少计算量,此方法还适用于求函数值、求函数的解析式等问题.[对点训练]1.(2019·丽水市高考数学模拟)设等比数列{a n }的前n 项和为S n ,下列结论一定成立的是( )A .a 1+a 3≥2a 2B .a 1+a 3≤2a 2C .a 1S 3>0D .a 1S 3<0解析:选C.选项A ,数列-1,1,-1为等比数列,但a 1+a 3=-2<2a 2=2,故A 错误;选项B ,数列1,-1,1为等比数列,但a 1+a 3=2>2a 2=-2,故B 错误;选项D ,数列1,-1,1为等比数列,但a 1S 3=1>0,故D 错误;对于选项C ,a 1(a 1+a 2+a 3)=a 1(a 1+a 1q +a 1q 2)=a 21(1+q +q 2),因为等比数列的项不为0,故a 21>0,而1+q +q 2=⎝⎛⎭⎫q +122+34>0,故a 21(1+q +q 2)>0,故C 正确.2.设公差为d 的等差数列{a n }的前n 项和为S n ,若a 1=1,-217<d <-19,则当S n 取最大值时n 的值为________.解析:因为等差数列{a n }的公差d 为负值,所以{a n }是递减数列.又a 1=1,所以由a n =a 1+(n -1)d >0得n <d -a 1d ,即n <1-1d,因为-217<d <-19,所以192<1-1d <10,所以n ≤9,即当n ≤9时,a n >0,当n ≥10时,a n <0. 所以当S n 取得最大值时n 的值为9. 答案:9数列中的交汇创新问题[典型例题](1)(2019·绍兴市一中高三期末检测)对于数列{x n },若对任意n ∈N *,都有x n +2-x n +1<x n +1-x n 成立,则称数列{x n }为“减差数列”.设b n =2t -tn 2-n2n -1,若数列b 5,b 6,b 7,…,b n (n ≥5,n ∈N *)是“减差数列”,则实数t 的取值范围是( )A.⎝⎛⎭⎫0,35 B.⎝⎛⎦⎤0,35 C.⎝⎛⎭⎫35,+∞ D.⎣⎡⎭⎫35,+∞ (2)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13,….该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数组成的数列称为“斐波那契数列”.若{a n }是“斐波那契数列”,则(a 1a 3-a 22)·(a 2a 4-a 23)(a 3a 5-a 24)·…·(a 2 017·a 2 019-a 22 018)的值为________. 【解析】 (1)由数列b 5,b 6,b 7,…,b n (n ≥5,n ∈N *)是“减差数列”,得b n +b n +22<b n+1(n ≥5),即t -tn 2-n 2n +t -t (n +2)2-(n +2)2n +2<2t -t (n +1)2-(n +1)2n ,即tn 2-n 2n +t (n +2)2-(n +2)2n +2>t (n +1)2-(n +1)2n ,化简得t (n 2-4n )>n -2,当n ≥5时,若t (n 2-4n )>n -2恒成立,则t >n -2n 2-4n=1(n -2)-4n -2恒成立,又当n ≥5时,1(n -2)-4n -2的最大值为35,则t 的取值范围是⎝⎛⎭⎫35,+∞.故选C. (2)因为a 1a 3-a 22=1×2-12=1,a 2a 4-a 23=1×3-22=-1,a 3a 5-a 24=2×5-32=1,a 4a 6-a 25=3×8-52=-1,…,a 2 017a 2 019-a 22 018=1, 共有2 017项,所以(a 1a 3-a 22)(a 2a 4-a 23)·(a 3a 5-a 24)…(a 2 017a 2 019-a 22 018)=1.【答案】 (1)C (2)1数列新定义型创新题的一般解题思路(1)阅读审清“新定义”;(2)结合常规的等差数列、等比数列的相关知识,化归、转化到“新定义”的相关知识; (3)利用“新定义”及常规的数列知识,求解证明相关结论.[对点训练]1.(2019·杭州第一次质量预测)正项等比数列{a n }中的a 1、a 4 035是函数f (x )=13x 3-4x 2+6x-3的极值点,则log 6a 2 018=( )A .1B .2C . 2D .-1解析:选A.因为f ′(x )=x 2-8x +6,且a 1、a 4 035是方程x 2-8x +6=0的两根,所以a 1·a 4 035=a 22 018=6,即a 2 018=6,所以log 6a 2 018=1,故选A.2.若数列{b n }对于n ∈N *,都有b n +2-b n =d (常数),则称数列{b n }是公差为d 的准等差数列,如数列{c n },若c n =⎩⎪⎨⎪⎧4n -1,n 为奇数,4n -9,n 为偶数,则数列{c n }是公差为8的准等差数列.设数列{a n }满足a 1=a ,对于n ∈N *,都有a n +a n +1=2n .(1)求证:{a n }为准等差数列; (2)求{a n }的通项公式及前20项和S 20. 解:(1)证明:因为a n +1+a n =2n ,① 所以a n +2+a n +1=2n +2.② 由②-①得a n +2-a n =2(n ∈N *), 所以{a n }是公差为2的准等差数列. (2)已知a 1=a ,a n +1+a n =2n (n ∈N *), 所以a 1+a 2=2,即a 2=2-a .所以由(1)可知a 1,a 3,a 5,…,成以a 为首项,2为公差的等差数列,a 2,a 4,a 6,…,成以2-a 为首项,2为公差的等差数列.所以当n 为偶数时,a n =2-a +⎝⎛⎭⎫n 2-1×2=n -a , 当n 为奇数时,a n =a +⎝⎛⎭⎪⎫n +12-1×2=n +a -1,所以a n =⎩⎪⎨⎪⎧n +a -1,n 为奇数,n -a ,n 为偶数.S 20=a 1+a 2+…+a 19+a 20=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20) =2×1+2×3+…+2×19=2×(1+19)×102=200.专题强化训练1.(2019·浙江新高考冲刺卷)已知等差数列{a n },S n 是{a n }的前n 项和,则对于任意的n ∈N *,“a n >0”是“S n >0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.对于任意的n ∈N *,“a n >0”,能推出“S n >0”,是充分条件,反之,不成立,比如:数列-3,-1,1,3,5,不满足条件,不是必要条件,故选A.2.(2018·浙江选考试卷)设数列{a n }的前n 项和为S n ,若S n +1=2a n +1,n ∈N *,则a 3=( ) A .3 B .2 C .1D .0解析:选B.S n +1=2a n +1,n ∈N *,则n =1时,a 1+a 2=2a 1+1,可得:a 2=a 1+1.n =2时,a 1+a 2+a 3=2a 2+1,可得:a 3=2.故选B.3.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为( )A.32f B.322f C.1225fD.1227f解析:选 D.从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122,第一个单音的频率为f ,由等比数列的概念可知,这十三个单音的频率构成一个首项为f ,公比为122的等比数列,记为{a n },则第八个单音的频率为a 8=f (122)8-1=1227f ,故选D.4.(2019·长春质量检测(一))等差数列{a n }中,已知|a 6|=|a 11|,且公差d >0,则其前n 项和取最小值时n 的值为 ( )A .6B .7C .8D .9解析:选C.由d >0可得等差数列{a n }是递增数列,又|a 6|=|a 11|,所以-a 6=a 11,即-a 1-5d =a 1+10d ,所以a 1=-15d 2,则a 8=-d 2<0,a 9=d2>0,所以前8项和为前n 项和的最小值,故选C.5.已知等比数列{a n }的前n 项和为S n ,若a 2=12,a 3a 5=4,则下列说法正确的是( ) A .{a n }是单调递减数列 B .{S n }是单调递减数列 C .{a 2n }是单调递减数列D .{S 2n }是单调递减数列解析:选C.由于{a n }是等比数列,则a 3a 5=a 24=4,又a 2=12,则a 4>0,a 4=2,q 2=16,当q =-66时,{a n }和{S n }不具有单调性,选项A 和B 错误;a 2n =a 2q 2n -2=12×⎝⎛⎭⎫16n -1单调递减,选项C 正确;当q =-66时,{S 2n }不具有单调性,选项D 错误. 6.(2019·温州市高考数学模拟)已知{a n }是等差数列,其公差为非零常数d ,前n 项和为S n ,设数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和为T n ,当且仅当n =6时,T n 有最大值,则a 1d 的取值范围是( )A.⎝⎛⎭⎫-∞,-52 B .(-3,+∞) C.⎝⎛⎭⎫-3,-52 D .(-∞,-3)∪⎝⎛⎭⎫-52,+∞ 解析:选C.因为S n n =d 2n +(a 1-d2),由题意知d <0,且⎩⎨⎧S 66=a 1+52d >0S 77=a 1+3d <0,得-3<a 1d <-52.7.(2019·杭州市第一次质量预测)已知数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),且对任意n ∈N *都有1a 1+1a 2+…+1a n<t ,则实数t 的取值范围为( )A .(13,+∞)B .[13,+∞)C .(23,+∞)D .[23,+∞)解析:选D.依题意得,当n ≥2时,a n =a 1a 2a 3…a na 1a 2a 3…a n -1=2n 22(n -1)2=2n 2-(n -1)2=22n -1,又a 1=21=22×1-1,因此a n =22n -1,1a n =122n -1,数列{1a n }是以12为首项,14为公比的等比数列,等比数列{1a n }的前n 项和等于12(1-14n )1-14=23(1-14n )<23,因此实数t 的取值范围是[23,+∞),选D.8.(2019·绍兴一中高考数学模拟)等差数列{a n }的公差d ∈(0,1),且sin 2a 3-sin 2a 7sin (a 3+a 7)=-1,当n =10时,数列{a n }的前n 项和S n 取得最小值,则首项a 1的取值范围为( )A.⎝⎛⎭⎫-58π,-916π B.⎣⎡⎦⎤-58π,-916π C.⎝⎛⎭⎫-54π,-98π D.⎣⎡⎦⎤-54π,-98π 解析:选D.因为{a n }为等差数列,sin 2a 3-sin 2a 7sin (a 3+a 7)=-1,所以1-cos 2a 32-1-cos 2a 72sin (a 3+a 7)=-1,所以cos 2a 7-cos 2a 32=-sin(a 3+a 7),由和差化积公式可得:12×(-2)sin(a 7+a 3)·sin(a 7-a 3)=-sin(a 3+a 7), 因为sin(a 3+a 7)≠0, 所以sin(a 7-a 3)=1, 所以4d =2k π+π2∈(0,4),所以k =0, 所以4d =π2,d =π8.因为n =10时,数列{a n }的前n 项和S n 取得最小值,所以⎩⎪⎨⎪⎧a 10≤0a 11≥0即⎩⎪⎨⎪⎧a 1+9×π8≤0a 1+10×π8≥0, 所以-5π4≤a 1≤-9π8.9.(2019·宁波诺丁汉大学附中高三期中检测)已知数列{a n }的前n 项和S n =n 2+2n -1(n ∈N *),则a 1=________;数列{a n }的通项公式为a n =________.解析:因为S n =n 2+2n -1, 当n =1时,a 1=1+2-1=2, 当n ≥2时,所以a n =S n -S n -1=n 2+2n -1-[(n -1)2+ 2(n -1)-1]=2n +1,因为当n =1时,a 1=2+1=3≠2,所以a n =⎩⎪⎨⎪⎧2,n =12n +1,n ≥2.答案:2 ⎩⎪⎨⎪⎧2,n =12n +1,n ≥210.(2019·台州市高考一模)已知数列{a n }的前m (m ≥4)项是公差为2的等差数列,从第m -1项起,a m -1,a m ,a m +1,…成公比为2的等比数列.若a 1=-2,则m =________,{a n }的前6项和S 6=________.解析:由a 1=-2,公差d =2, 得a m -1=-2+2(m -2)=2m -6,a m =-2+2(m -1)=2m -4,则a m a m -1=2m -42m -6=2,所以m =4;所以S 6=a 1+a 2+a 3+a 4+a 5+a 6 =-2+0+2+4+8+16=28. 答案:4 2811.设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q 的值为________.解析:设等比数列{a n }的公比为q ,前n 项和为S n ,且S n +1,S n ,S n +2成等差数列, 则2S n =S n +1+S n +2,若q =1,则S n =na 1,等式显然不成立,若q ≠1,则有2·a 1(1-q n )1-q =a 1(1-q n +1)1-q +a 1(1-q n +2)1-q ,故2q n =q n +1+q n +2,即q 2+q -2=0,因此q =-2.答案:-212.已知数列{a n }满足a n +2=a n +1-a n ,且a 1=2,a 2=3,则a 2 018的值为________. 解析:由题意得,a 3=a 2-a 1=1,a 4=a 3-a 2=-2,a 5=a 4-a 3=-3,a 6=a 5-a 4=-1,a 7=a 6-a 5=2,a 8=a 7-a 6=3,…,所以数列{a n }是周期为6的周期数列,而2 018=6×336+2,所以a 2 018=a 2=3.答案:313.设某数列的前n 项和为S n ,若S nS 2n为常数,则称该数列为“和谐数列”.若一个首项为1,公差为d (d ≠0)的等差数列{a n }为“和谐数列”,则该等差数列的公差d =________.解析:由S n S 2n =k (k 为常数),且a 1=1,得n +12n (n -1)d =k ⎣⎡⎦⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d ,整理得,(4k -1)dn +(2k -1)(2-d )=0,因为对任意正整数n ,上式恒成立,所以⎩⎪⎨⎪⎧d (4k -1)=0,(2k -1)(2-d )=0,得⎩⎪⎨⎪⎧d =2,k =14.所以数列{a n }的公差为2.答案:214.(2019·义乌市高三月考)设等差数列{a n }的前n 项和为S n ,且满足a 8>0,a 8+a 9<0,则S n >0的最大n 是______;数列⎩⎨⎧⎭⎬⎫S n a n (1≤n ≤15)中最大的项为第______项.解析:因为a 8>0,a 8+a 9<0,所以S 15=15(a 1+a 15)2=15a 8>0,S 16=162(a 1+a 16)=8(a 8+a 9)<0,所以S n >0的最大n 是15.因为等差数列{a n }的前n 项和为S n ,且满足a 8>0,a 8+a 9<0,所以该数列是递减数列,当n =8时,|a 8|最小,且|S 8|最大,所以数列⎩⎨⎧⎭⎬⎫S n a n (1≤n ≤15)中最大的项为第8项.答案:15 815.设数列{a n }的前n 项积为T n ,且T n +2a n =2(n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫1T n 是等差数列;(2)设b n =(1-a n )(1-a n +1),求数列{b n }的通项公式.解:(1)证明:因为T n +2a n =2,所以当n =1时,T 1+2a 1=2, 所以T 1=23,即1T 1=32.又当n ≥2时,T n =2-2×T nT n -1,得 T n ·T n -1=2T n -1-2T n ,所以1T n -1T n -1=12,所以数列⎩⎨⎧⎭⎬⎫1T n 是以32为首项,12为公差的等差数列. (2)由(1)知,数列⎩⎨⎧⎭⎬⎫1T n 为等差数列,所以1T n =32+12(n -1)=n +22,所以a n =2-T n 2=n +1n +2.所以b n =(1-a n )(1-a n +1)=1(n +2)(n +3).16.(2019·宁波高考模拟)已知数列{a n }中,a 1=4,a n +1=6+a n2,n ∈N *,S n 为{a n }的前n 项和.(1)求证:n ∈N *时,a n >a n +1; (2)求证:n ∈N *时,2≤S n -2n <167.证明:(1)n ≥2时,作差:a n +1-a n =6+a n2-6+a n -12= 12×a n -a n -16+a n2+6+a n -12,所以a n +1-a n 与a n -a n -1同号, 由a 1=4,可得a 2=6+42=5,可得a 2-a 1<0, 所以n ∈N *时,a n >a n +1.(2)因为2a 2n +1=6+a n ,所以2(a 2n +1-4)=a n -2,即2(a n +1-2)(a n +1+2)=a n -2,① 所以a n +1-2与a n -2同号, 又因为a 1-2=2>0,所以a n >2.所以S n =a 1+a 2+…+a n ≥4+2(n -1)=2n +2. 所以S n -2n ≥2.由①可得:a n +1-2a n -2=12(a n +1+2)<18,因此a n -2≤(a 1-2)·⎝⎛⎭⎫18n -1,即a n ≤2+2×⎝⎛⎭⎫18n -1.所以S n =a 1+a 2+…+a n ≤2n +2×1-⎝⎛⎭⎫18n -11-18<2n +167.综上可得:n ∈N *时,2≤S n -2n <167.17.(2019·温州瑞安七中高考模拟)已知数列{a n }的各项均为正数,记A (n )=a 1+a 2+…+a n ,B (n )=a 2+a 3+…+a n +1,C (n )=a 3+a 4+…+a n +2,n =1,2,….(1)若a 1=1,a 2=5,且对任意n ∈N *,三个数A (n ),B (n ),C (n )组成等差数列,求数列{a n }的通项公式;(2)证明:数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.解:(1)因为对任意n ∈N *,三个数A (n ),B (n ),C (n )组成等差数列,所以B (n )-A (n )=C (n )-B (n ),即a n +1-a 1=a n +2-a 2,亦即a n +2-a n +1=a 2-a 1=4.故数列{a n }是首项为1,公差为4的等差数列,于是a n =1+(n -1)×4=4n -3.(2)证明:(必要性):若数列{a n }是公比为q 的等比数列,对任意n ∈N *,有a n +1=a n q .由a n >0知,A (n ),B (n ),C (n )均大于0,于是B (n )A (n )=a 2+a 3+…+a n +1a 1+a 2+…+a n =q (a 1+a 2+…+a n )a 1+a 2+…+a n =q ,C (n )B (n )=a 3+a 4+…+a n +2a 2+a 3+…+a n +1=q (a 2+a 3+…+a n +1)a 2+a 3+…+a n +1=q ,即B (n )A (n )=C (n )B (n )=q ,所以三个数A (n ),B (n ),C (n )组成公比为q 的等比数列; (充分性):若对任意n ∈N *,三个数A (n ), B (n ),C (n )组成公比为q 的等比数列,则 B (n )=qA (n ),C (n )=qB (n ),于是C (n )-B (n )=q [B (n )-A (n )],即a n +2-a 2=q (a n +1-a 1),亦即a n +2-qa n +1=a 2-qa 1. 由n =1时,B (1)=qA (1),即a 2=qa 1,从而a n +2-qa n +1=0. 因为a n >0,所以a n +2a n +1=a 2a 1=q .故数列{a n }是首项为a 1,公比为q 的等比数列.综上所述,数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N *,三个数A (n ), B (n ),C (n )组成公比为q 的等比数列.18.已知数列{a n }满足a 1=12且a n +1=a n -a 2n (n ∈N *). (1)证明:1<a n a n +1≤2(n ∈N *);(2)设数列{a 2n }的前n 项和为S n,证明:12(n +2)<S n n ≤12(n +1)(n ∈N *). 证明:(1)由题意得a n +1-a n =-a 2n <0,即a n +1<a n , 故a n ≤12.由a n =(1-a n -1)a n -1得a n =(1-a n -1)(1-a n -2)…(1-a 1)a 1>0. 由0<a n ≤12得a n a n +1=a n a n -a 2n =11-a n ∈(1,2],所以1<a na n +1≤2.(2)由题意得a 2n =a n -a n +1,所以S n =a 1-a n +1.① 由1a n +1-1a n =a n a n +1和1<a n a n +1≤2得1<1a n +1-1a n ≤2, 所以n <1a n +1-1a 1≤2n ,因此12(n +1)≤a n +1<1n +2(n ∈N *).②由①②得12(n +2)<S n n ≤12(n +1)(n ∈N *).。
(浙江专用)2020版高考数学新增分大一轮复习 第七章 数列与数学归纳法 7.5 数学归纳法课件

题组二 教材改编
2.[P99B组T1]在应用数学归纳法证明凸n边形的对角线为
步检验n等于
A.1
B.2
√C.3
D.4
n12(n-3)条时,第一
解析 凸n边形边数最小时是三角形, 故第一步检验n=3.
123456
3.[P96A组T2]已知{an}满足an+1=a-nan+1,n∈N*,且a1=2,则a2=___3, a3=__4_,a4=__5_,猜想an=_n_+__1_.
时命题也
只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.
【概念方法微思考】
1. 用 数 学 归 纳 法 证 题 时 , 证 明 当 n 取 第 一 个 值 n0(n0∈N*) 时 命 题 成 立 . 因 为 n0∈N*,所以n0=1.这种说法对吗? 提示 不对,n0也可能是2,3,4,….如用数学归纳法证明多边形内角和定理(n -2)π时,初始值n0=3.
(2)2xn+1-xn≤xnx2n+1; 证明 由xn=xn+1+ln(1+xn+1)得,xnxn+1-4xn+1+2xn =x2n+1-2xn+1+(xn+1+2)ln(1+xn+1).
记函数f(x)=x2-2x+(x+2)ln(1+x)(x≥0).
f′(x)=2x2+x+ln1+x>0(x>0),
②假设当n=k(k≥1,k∈N*)时等式成立,即有 2×1 4+4×1 6+6×1 8+…+2k21k+2=4k+k 1,
则当 n=k+1 时,2×1 4+4×1 6+6×1 8+…+2k21k+2+2k+1[21k+1+2]
=k+
1
kk+2+1 =
4k+1 4k+1k+2 4k+1k+2
k+12
2020版高考数学浙江专用新精准大一轮精讲通用版:第六章第4讲数列求和含解析

[基础达标]1.若数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…+a 12=( ) A .18 B .15 C .-18 D .-15解析:选A.记b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 11+a 12=(-b 1)+b 2+…+(-b 11)+b 12=(b 2-b 1)+(b 4-b 3)+…+(b 12-b 11)=6×3=18.2.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A .158或5B .3116或5C .3116D .158解析:选C.设数列{a n }的公比为q .由题意可知q ≠1,且9(1-q 3)1-q =1-q 61-q,解得q =2,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公比的等比数列,由求和公式可得S 5=3116.3.数列{a n }的通项公式是a n =1n +n +1,若前n 项和为10,则项数n 为( )A .120B .99C .11D .121解析:选A.a n =1n +n +1=n +1-n(n +1+n )(n +1-n )=n +1-n ,所以a 1+a 2+…+a n =(2-1)+(3-2)+…+(n +1-n )=n +1-1=10.即n +1=11,所以n +1=121,n =120.4.设各项均为正数的等差数列{a n }的前n 项和为S n ,且a 4a 8=32,则S 11的最小值为( )A .22 2B .44 2C .22D .44解析:选 B.因为数列{a n }为各项均为正数的等差数列,所以a 4+a 8≥2a 4a 8=82,S 11=(a 1+a 11)×112=112(a 4+a 8)≥112×82=442,故S 11的最小值为442,当且仅当a 4=a 8=42时取等号.5.设等比数列{a n }的各项均为正数,且a 1=12,a 24=4a 2a 8,若1b n=log 2a 1+log 2a 2+…+log 2a n ,则数列{b n }的前10项和为( )A .-2011B .2011C .-95D .95解析:选A.设等比数列{a n }的公比为q ,因为a 24=4a 2a 8,所以(a 1q 3)2=4a 1q ·a 1q 7,即4q 2=1,所以q =12或q =-12(舍),所以a n =⎝⎛⎭⎫12n =2-n ,所以log 2a n =log 22-n =-n ,所以1b n=-(1+2+3+…+n )=-n (1+n )2,所以b n =-2n (1+n )=-2⎝⎛⎭⎫1n -1n +1,所以数列{b n }的前10项和为-2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫110-111= -2⎝⎛⎭⎫1-111=-2011. 6.(2019·杭州八校联考)在各项都为正数的数列{a n }中,首项a 1=2,且点(a 2n ,a 2n -1)在直线x -9y =0上,则数列{a n }的前n 项和S n 等于( )A .3n-1 B .1-(-3)n 2C .1+3n 2D .3n 2+n 2解析:选A.由点(a 2n ,a 2n -1)在直线x -9y =0上,得a 2n -9a 2n -1=0,即(a n +3a n -1)(a n -3a n -1)=0,又数列{a n }各项均为正数,且a 1=2,所以a n +3a n -1>0,所以a n -3a n -1=0,即a na n -1=3,所以数列{a n }是首项a 1=2,公比q =3的等比数列,其前n 项和S n =a 1(1-q n )1-q =2×(3n -1)3-1=3n-1,故选A.7.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________.解析:由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0, 所以T 18=a 1+…+a 10-a 11-…-a 18 =S 10-(S 18-S 10)=60. 答案:608.设函数f (x )=12+log 2x 1-x ,定义S n =f ⎝⎛⎭⎫1n +f ⎝⎛⎭⎫2n +…+f ⎝⎛⎭⎫n -1n ,其中n ∈N *,且n ≥2,则S n =________.解析:因为f (x )+f (1-x )=12+log 2x 1-x +12+log 21-x x =1+log 21=1,所以2S n =⎣⎡⎦⎤f ⎝⎛⎭⎫1n +f ⎝⎛⎭⎫n -1n +[f⎝⎛⎭⎫2n +f ⎝⎛⎭⎫n -2n ]+…+⎣⎡⎦⎤f ⎝⎛⎭⎫n -1n +f ⎝⎛⎭⎫1n =n -1. 所以S n =n -12.答案:n -129.数列⎩⎨⎧⎭⎬⎫1n (n +1)的前n 项和为99100,则n 的值为________.解析:由题意得11×2+12×3+13×4+…+1n ×(n +1)=11-12+12-13+13-14+…+1n -1n +1=1-1n +1=n n +1=99100.所以n =99. 答案:9910.(2019·温州中学高三模考)已知数列{a n }满足:a 1=12,a n +1=a 2n +a n ,用[x ]表示不超过x 的最大整数,则⎣⎡⎦⎤1a 1+1+1a 2+1+…+1a 2 017+1的值等于________.解析:因为a n +1=a 2n +a n ,故a n +1-a n =a 2n >0,即数列{a n }是递增数列,由a n +1=a 2n +a n 可得a n +1=a n (a n +1),所以1a n +1=1a n -1a n +1,从而1a n +1=1a n -1a n +1,所以1<1a 1+1+1a 2+1+…+1a 2 017+1=1a 1-1a 2 018<1a 1=2,故⎣⎡⎦⎤1a 1+1+1a 2+1+…+1a 2 017+1=1.答案:111.(2019·金华十校联考)设数列{a n }的各项均为正数,且a 1,22,a 2,24,…,a n ,22n ,…成等比数列.(1)求数列{a n }的通项公式;(2)记S n 为数列{a n }的前n 项和,若S k ≥30(2k +1),求正整数k 的最小值.解:(1)设等比数列的公比为q ,则q 2=2422=22,又由题意q >0,故q =2, 从而a n =22n q=22n -1,即数列{a n }的通项公式为a n =22n -1.(2)由(1)知a 1=2,数列{a n }是以22为公比的等比数列,故S n =2[1-(22)n ]1-22=23(22n-1).因此不等式S k ≥30(2k +1)可化为23(22k -1)≥30(2k +1),即23(2k -1)(2k +1)≥30(2k +1),因为2k +1>0,所以2k ≥46, 即k ≥log 246, 又5<log 246<6,所以正整数k 的最小值为6.12.(2019·温州市普通高中模考)已知数列{a n }的前n 项和为S n ,a 1=32,2S n =(n +1)a n +1(n ≥2).(1)求{a n }的通项公式;(2)设b n =1(a n +1)2(n ∈N *),数列{b n }的前n 项和为T n ,证明:T n <710(n ∈N *). 解:(1)当n =2时,2S 2=3a 2+1,解得a 2=2. 当n =3时,2S 3=4a 3+1, 解得a 3=3.当n ≥3时,2S n =(n +1)a n +1,2S n -1=na n -1+1, 以上两式相减,得2a n =(n +1)a n -na n -1, 所以a n n =a n -1n -1,所以a n n =a n -1n -1=…=a 22=1,所以a n =⎩⎪⎨⎪⎧32,n =1n ,n ≥2.(2)证明:b n=1(a n+1)2=⎩⎨⎧425,n =11(n +1)2,n ≥2,当n ≥2时,b n =1(n +1)2<1n (n +1)=1n -1n +1, 所以T n =425+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1n +1=3350-1n +1<710.[能力提升]1.已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( ) A .a 1d >0,dS 4>0 B .a 1d <0,dS 4<0 C .a 1d >0,dS 4<0 D .a 1d <0,dS 4>0解析:选B.因为 a 3,a 4,a 8成等比数列,所以a 24=a 3a 8,所以(a 1+3d )2=(a 1+2d )(a 1+7d ),展开整理,得-3a 1d =5d 2,即a 1d =-53d 2.因为 d ≠0,所以a 1d <0.因为 S n =na 1+n (n -1)2d ,所以S 4=4a 1+6d ,dS 4=4a 1d +6d 2=-23d 2<0.2.在等差数列{a n }中,a 2=5,a 6=21,记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,若S 2n +1-S n ≤m15对任意的n ∈N *恒成立,则正整数m 的最小值为( )A .3B .4C .5D .6解析:选C.在等差数列{a n }中,因为a 2=5,a 6=21,所以⎩⎪⎨⎪⎧a 1+d =5,a 1+5d =21,解得a 1=1,d =4,所以1a n =11+4(n -1)=14n -3.因为()S 2n +1-S n -()S 2n +3-S n +1=⎝⎛⎭⎫1a n +1+1a n +2+…+1a 2n +1-⎝⎛⎭⎫1a n +2+1a n +3+…+1a 2n +3 =1a n +1-1a 2n +2-1a 2n +3=14n +1-18n +5-18n +9 =⎝⎛⎭⎫18n +2-18n +5+⎝⎛⎭⎫18n +2-18n +9>0,所以数列{}S 2n +1-S n (n ∈N *)是递减数列,数列{}S 2n +1-S n (n ∈N *)的最大项为S 3-S 1=15+19=1445,所以1445≤m 15,m ≥143.又m 是正整数,所以m 的最小值是5.3.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0,则d 的取值范围是________.解析:由S 5S 6+15=0,得⎝⎛⎭⎫5a 1+5×42d ·(6a 1+6×52d )+15=0. 整理可得2a 21+9a 1d +10d 2+1=0.因为a 1,d 为实数,所以Δ=(9d )2-4×2×(10d 2+1)≥0,解得d ≤-22或d ≥2 2. 答案:d ≤-22或d ≥2 24.(2019·台州诊断考试)已知数列{a n }中,a 1=1,S n 为数列{a n }的前n 项和,且当n ≥2时,有2a na n S n -S 2n=1成立,则S 2 017=________.解析:当n ≥2时,由2a n a n S n -S 2n =1,得2(S n -S n -1)=(S n -S n -1)S n -S 2n =-S n S n -1, 所以2S n -2S n -1=1,又2S 1=2,所以⎩⎨⎧⎭⎬⎫2S n 是以2为首项,1为公差的等差数列,所以2S n =n +1,故S n =2n +1,则S 2 017=11 009.答案:11 0095.(2019·浙江“七彩阳光”联盟联考)在数列{a n }中,a 1=2,a n +1=2⎝⎛⎭⎫1+1n a n . (1)求数列{a n }的通项公式;(2)设b n =2na n ,数列{b n }的前n 项的和为S n ,试求数列{S 2n -S n }的最小值.解:(1)由条件a n +1=2⎝⎛⎭⎫1+1n a n 得a n +1n +1=2·a n n , 又a 1=2,所以a 11=2,因此数列⎩⎨⎧⎭⎬⎫a n n 构成首项为2,公比为2的等比数列,从而a n n=2·2n -1=2n ,因此,a n =n ·2n .(2)由(1)得b n =1n ,设c n =S 2n -S n ,则c n =1n +1+1n +2+…+12n ,所以c n +1=1n +2+1n +3+…+12n +12n +1+12n +2,从而c n +1-c n =12n +1+12n +2-1n +1>12n +2+12n +2-1n +1=0,因此数列{c n }是单调递增的,所以{c n }min =c 1=12.6.(2019·浙江严州阶段测试)设等差数列{a n }的前n 项和为S n ,已知a 7=4,a 19=2a 9,数列{b n }的前n 项和为T n ,满足42a n -1=λT n -(a 5-1)(n ∈N *).(1)是否存在非零实数λ,使得数列{b n }为等比数列?并说明理由;(2)已知对于n ∈N *,不等式1S 1+1S 2+1S 3+…+1S n <M 恒成立,求实数M 的最小值.解:(1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d .因为⎩⎪⎨⎪⎧a 7=4,a 19=2a 9,所以⎩⎪⎨⎪⎧a 1+6d =4,a 1+18d =2(a 1+8d ).解得a 1=1,d =12,所以数列{a n }的通项公式为a n =n +12.因为a 5=3,42a n -1=λT n -(a 5-1), 所以4n =λT n -2,T n =1λ4n +2λ.当n =1时,b 1=6λ;当n ≥2时,b n =T n -T n -1=1λ4n +2λ-1λ4n -1-2λ=3λ4n -1.所以b n +1=3λ4n =4b n (n ≥2),若数列{b n }是等比数列,则有b 2=4b 1, 而b 2=12λ,所以b 2b 1=2与b 2=4b 1矛盾.故不存在非零实数λ,使得数列{b n }为等比数列. (2)由(1)知S n =n (n +3)4,所以1S n =4n (n +3)=43⎝⎛⎭⎫1n -1n +3,从而1S 1+1S 2+1S 3+…+1S n=43⎣⎡⎝⎛⎭⎫1-14+⎝⎛⎭⎫12-15+⎝⎛⎭⎫13-16+…+⎝⎛1n -2⎭⎫-1n +1⎦⎤+⎝⎛⎭⎫1n -1-1n +2+⎝⎛⎭⎫1n -1n +3 =43⎝⎛⎭⎫1+12+13-1n +1-1n +2-1n +3 =43⎝⎛⎭⎫116-1n +1-1n +2-1n +3<229, 所以M ≥229,故实数M 的最小值为229.。
2020年高考数学(理)总复习:数列的求和及综合应用(解析版)

2020年高考数学(理)总复习:数列的求和及综合应用题型一 数列求和 【题型要点】(1)分组求和法:分组求和法是解决通项公式可以写成c n =a n +b n 形式的数列求和问题的方法,其中{a n }与{b n }是等差(比)数列或一些可以直接求和的数列.(2)裂项相消法:将数列的通项分成两个代数式子的差,即a n =f (n +1)-f (n )的形式,然后通过累加抵消中间若干项的求和方法.形如1+n n a a c(其中{a n }是各项均不为0的等差数列,c 为常数)的数列等.(3)错位相减法:形如{a n ·b n }(其中{a n }为等差数列,{b n }为等比数列)的数列求和,一般分三步:①巧拆分;②构差式;③求和.(4)倒序求和法:距首尾两端等距离的两项和相等,可以用此法,一般步骤:①求通项公式;②定和值;③倒序相加;④求和;⑤回顾反思.(5)并项求和法:先将某些项放在一起求和,然后再求S n .(6)归纳猜想法:通过对S 1,S 2,S 3,…的计算进行归纳分析,寻求规律,猜想出S n ,然后用数学归纳法给出证明.【例1】已知各项为正数的等比数列{a n }的前n 项和为S n ,数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),若S 3=b 5+1,b 4是a 2和a 4的等比中项. (1)求数列{a n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .【解析】 (1)∵数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),∴b 5=6,b 4=4,设各项为正数的等比数列{a n }的公比为q ,q >0, ∵S 3=b 5+1=7,∴a 1+a 1q +a 1q 2=7,① ∵b 4是a 2和a 4的等比中项,∴a 2·a 4=a 23=16,解得a 3=a 1q 2=4,②由①②得3q 2-4q -4=0,解得q =2,或q =-23(舍),∴a 1=1,a n =2n -1.(2)当n 为偶数时,T n =(1+1)·20+2·2+(3+1)·22+4·23+(5+1)·24+…+[[(n -1)+1]·2n-2+n ·2n -1=(20+2·2+3·22+4·23+…+n ·2n -1)+(20+22+…+2n -2),设H n =20+2·2+3·22+4·23+…+n ·2n -1,①2H n =2+2·22+3·23+4·24+…+n ·2n ,② ①-②,得-H n =20+2+22+23+…+2n -1-n ·2n=1-2n 1-2-n ·2n =(1-n )·2n -1,∴H n =(n -1)·2n +1,∴T n =(n -1)·2n+1+1-4·2n 1-4=⎪⎭⎫ ⎝⎛-32n ·2n +23.当n 为奇数,且n ≥3时,T n =T n -1+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-35n ·2n -1+23+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-322n ·2n -1+23,经检验,T 1=2符合上式, ∴T n =⎪⎪⎩⎪⎪⎨⎧+⋅⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛--为偶数为奇数n n n n n n ,32232,3223221【反思总结】(1)错位相减法适用于求数列{a n ·b n }的前n 项和,其中{a n }为等差数列,{b n }为等比数列. (2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后所得部分,求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n =1,2进行验证.题组训练一 数列求和已知等比数列{a n }的前n 项和为S n ,且6S n =3n +1+a (a ∈N *).(1)求a 的值及数列{a n }的通项公式;(2)设b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2,求{b n }的前n 项和T n .【解析】 (1)∵等比数列{a n }满足6S n =3n +1+a (a ∈N *),n =1时,6a 1=9+a ;n ≥2时,6a n =6(S n -S n -1)=3n +1+a -(3n +a )=2×3n .∴a n =3n -1,n =1时也成立,∴1×6=9+a ,解得a =-3,∴a n =3n -1.(2)b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2=(-1)n -1(2n 2+2n +1)n 2(n +1)2=(-1)n -1()⎥⎦⎤⎢⎣⎡++22111n n当n 为奇数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1+1(n +1)2; 当n 为偶数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1-1(n +1)2. 综上,T n =1+(-1)n-11(n +1)2. 题型二 数列与函数的综合问题 【题型要点】数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题; (2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.【例2】已知数列{a n }的前n 项和为S n ,且S n =2n 2+2n . (1)求数列{a n }的通项公式;(2)若点(b n ,a n )在函数y =log 2x 的图象上,求数列{b n }的前n 项和T n . 【解】 (1)当n ≥2时,a n =S n -S n -1=2n 2+2n -[2(n -1)2+2(n -1)]=4n , 当n =1时,a 1=S 1=4=4×1, ∴数列{a n }的通项公式为a n =4n .(2)由点{b n ,a n }在函数y =log 2x 的图象上得a n =log 2b n ,且a n =4n ,∴b n =2an =24n =16n ,故数列{b n }是以16为首项,公比为16的等比数列.T n =16(1-16n )1-16=16n +1-1615.题组训练二 数列与函数的综合问题已知二次函数f (x )=ax 2+bx 的图象过点(-4n,0),且f ′(0)=2n (n ∈N *). (1)求f (x )的解析式;(2)若数列{a n }满足1a n +1=f ′⎪⎪⎭⎫ ⎝⎛na 1,且a 1=4,求数列{a n }的通项公式. 【解】 (1)由f ′(x )=2ax +b ,f ′(0)=2n ,得b =2n ,又f (x )的图象过点(-4n,0),所以16n 2a -4nb =0,解得a =12.所以f (x )=12x 2+2nx (n ∈N *).(2)由(1)知f ′(x )=x +2n (n ∈N *), 所以1a n +1=1a n +2n ,即1a n +1-1a n=2n .所以1a n -1a n -1=2(n -1), 1a n -1-1a n -2=2(n -2),…1a 2-1a 1=2,以上各式相加得1a n -14=n 2-n ,所以a n =1n 2-n +14,即a n =4(2n -1)2(n ∈N *). 题型三 数列与不等式的综合问题 【题型要点】(1)以数列为背景的不等式恒成立问题,多与数列求和相联系,最后利用数列或数列对应函数的单调性求解.(2)以数列为背景的不等式证明问题,多与数列求和有关,常利用放缩法或单调性法证明.(3)当已知数列关系时,需要知道其范围时,可借助数列的单调性,即比较相邻两项的大小即可.【例3】设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点(记为a n ),且0<a n -12<13n⎪⎭⎫ ⎝⎛32.(1)【解】 方法一 由题设f n ′(x )=1+2x +…+nx n -1,所以f n ′(2)=1+2×2+…+(n -1)2n -2+n ·2n -1,①则2f n ′(2)=2+2×22+…+(n -1)2n -1+n ·2n ,②由①-②得,-f n ′(2)=1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n =(1-n )2n -1, 所以f n ′(2)=(n -1)2n +1.方法二 当x ≠1时,f n (x )=x -x n +11-x-1,则f n ′(x )=[1-(n +1)x n ](1-x )+(x -x n +1)(1-x )2,可得f n ′(2)=-[1-(n +1)2n ]+2-2n +1(1-2)2=(n -1)2n +1.(2)[证明] 因为f n (0)=-1<0,f n ⎪⎭⎫ ⎝⎛32=32132132-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n-1=1-2×n ⎪⎭⎫ ⎝⎛32≥1-2×232⎪⎭⎫ ⎝⎛>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内至少存在一个零点,又f ′n (x )=1+2x +…+nx n -1>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内单调递增,因此f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点a n ,由于f n (x )=x -x n +11-x -1,所以0=f n (a n )=a n -a n +1n1-a n-1,由此可得a n =12+12a n +1n >12,故12<a n <23,所以0<a n -12=12a n +1n <12×132+⎪⎭⎫ ⎝⎛n =13n⎪⎭⎫ ⎝⎛32. 题组训练三 数列与不等式的综合问题1.已知等比数列{a n }满足a n +1+a n =10·4n -1(n ∈N *),数列{b n }的前n 项和为S n ,且b n =log 2a n .(1)求b n ,S n ;(2)设c n =b n +12,证明:c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *).【解】 (1)解 由题意知a 2+a 1=10,a 2+a 3=40,设{a n }的公比为q ,则a 2+a 3a 1+a 2=q (a 1+a 2)a 1+a 2=4,∴q =4.则a 1+a 2=a 1+4a 1=10,解得a 1=2,∴a n =2·4n -1=22n -1.∴b n =log 222n -1=2n -1.∴S n =n (b 1+b n )2=n (1+2n -1)2=n 2.(2)证明 法一∵c n =b n +12=2n -1+12=n ,∴S n +1=(n +1)2.要证明c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1,即证1×2+2×3+…+n ×(n +1)<12(n +1)2,①当n =1时,1×2<12×(1+1)2=2成立.②假设当n =k (k ∈N *)时不等式成立, 即1×2+2×3+…+k ×(k +1)<12(k +1)2,则当n =k +1(k ∈N *)时,要证1×2+2×3+…+k ×(k +1)+(k +1)(k +2)<12(k +2)2,即证(k +1)(k +2)<12(k +2)2-12(k +1)2,即(k +1)(k +2)<k +32,两边平方得k 2+3k +2<k 2+3k +94显然成立,∴当n =k +1(k ∈N *)时,不等式成立. 综上,不等式成立.法二 ∵c n =b n +12=2n -1+12=n ,S n +1=(n +1)2,由基本不等式可知n (n +1)≤n +n +12=n +12,故1×2<1+12,2×3<2+12,…,n (n +1)≤n +12,∴1×2+2×3+3×4+…+n (n +1)<(1+2+3+…+n )+n 2=n 2+2n 2<n 2+2n +12=(n +1)22,即不等式c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *)成立.2.已知数列{a n }满足a 1=1,a n +1=a n 1+a 2n,n ∈N *,记S n ,T n 分别是数列{a n },{a 2n }的前n 项和.证明:当n ∈N *时,(1)a n +1<a n ; (2)T n =1a 2n +1-2n -1;(3)2n -1<S n <2n .【证明】 (1)由a 1=1及a n +1=a n1+a 2n 知,a n >0,故a n +1-a n =a n 1+a 2n -a n =-a 3n1+a 2n <0, ∴a n +1<a n ,n ∈N *. (2)由1a n +1=1a n +a n ,得1a 2n +1=1a 2n +a 2n +2,从而1a 2n +1=1a 2n +a 2n +2=1a 2n -1+a 2n -1+a 2n +2×2=…=1a 21+a 21+a 22+…+a 2n +2n ,又∵a 1=1,∴T n =1a 2n +1-2n -1,n ∈N *. (3)由(2)知,a n +1=1T n +2n +1,由T n ≥a 21=1,得a n +1≤12n +2,∴当n ≥2时,a n ≤12n =22n <2n +n -1=2(n -n -1),由此S n <a 1+2[(2-1)+(3-2)+…+(n -n -1)]=1+2(n -1)<2n ,n ≥2,又∵a 1=1,∴S n <2n .另一方面,由a n =1a n +1-1a n ,得S n =1a n +1-1a 1≥2n +2-1>2n -1.综上,2n -1<S n <2n .【专题训练】1.已知数列{a n }的前n 项和为S n ,且a 2=8, S n =a n +12-n -1.(1)求数列{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫2×3na n a n +1的前n 项和T n .【解】 (1)因为S n =a n +12-n -1,故当n =1时,a 1=a 22-1-1=2;当n ≥2时,2S n =a n +1-2n -2,2S n -1=a n -2(n -1)-2,两式相减可得a n +1=3a n +2; 经检验,当n =1时也满足a n +1=3a n +2,故a n +1+1=3(a n +1),故数列{a n +1}是以3为首项,3为公比的等比数列,故a n +1=3n ,即a n =3n -1.(2)由(1)可知,2×3n a n a n +1=2×3n(3n -1)(3n +1-1) =13n-1-13n +1-1, 故T n =131-1-132-1+132-1-133-1+…+13n -1-13n +1-1=12-13n +1-1.2.已知数列{a n }的前n 项和为S n ,a 1=2,a n +1=S n +2. (1)求数列{a n }的通项公式;(2)已知b n =log 2a n ,求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .【解析】 (1)∵a n +1=S n +2,∴当n ≥2时,a n =S n -1+2,两式相减得,a n +1-a n =S n -S n -1=a n ,则a n +1=2a n ,所以a n +1a n =2(n ≥2),∵a 1=2,∴a 2=S 1+2=4,满足a 2a 1=2,∴数列{a n }是以2为公比、首项为2的等比数列,则a n =2·2n -1=2n ;(2)由(1)得,b n =log 2a n =log 22n =n , ∴1b n b n +1=1n (n +1)=1n -1n +1, ∴T n =⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =1-1n +1=n n +1. 3.已知正项数列{a n }的前n 项和为S n ,且a 1=2,4S n =a n ·a n +1,n ∈N *. (1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a 2n 的前n 项和为T n ,求证:n 4n +4<T n <12.【解析】 (1)∵4S n =a n ·a n +1,n ∈N *, ∴4a 1=a 1·a 2,又a 1=2,∴a 2=4.当n ≥2时,4S n -1=a n -1·a n ,得4a n =a n ·a n +1-a n -1·a n .由题意知a n ≠0,∴a n +1-a n -1=4. ①当n =2k +1,k ∈N *时,a 2k +2-a 2k =4,即a 2,a 4,…,a 2k 是首项为4,公差为4的等差数列, ∴a 2k =4+(k -1)×4=4k =2×2k ; ②当n =2k ,k ∈N *时,a 2k +1-a 2k -1=4,即a 1,a 3,…,a 2k -1是首项为2,公差为4的等差数列, ∴a 2k -1=2+(k -1)×4=4k -2=2(2k -1). 综上可知,a n =2n ,n ∈N *.(2)证明:∵1a 2n =14n 2>14n (n +1)=14⎪⎭⎫ ⎝⎛+-111n n ,∴T n =1a 21+1a 22+…+1a 2n>14⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =141-1n +1=n 4n +4. 又∵1a 2n =14n 2<14n 2-1=1(2n -1)(2n +1)=12⎪⎭⎫ ⎝⎛+--121121n n ,∴T n =1a 21+1a 22+…+1a 2n <12⎪⎭⎫ ⎝⎛+--+-+-+-12112171515131311n n =12⎪⎭⎫ ⎝⎛+-1211n <12. 即得n 4n +4<T n <12.4.已知数列{a n }与{b n }的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =2(b n +1-b n )恒成立.(1)若A n =n 2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1<13成立,求正实数b 1的取值范围;(3)若a 1=2,b n =2n ,是否存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由. 【解】 (1)因为A n =n 2,所以a n =⎩⎪⎨⎪⎧1,n =1,n 2-(n -1)2,n ≥2, 即a n =2n -1,故b n +1-b n =12(a n +1-a n )=1,所以数列{b n }是以2为首项,1为公差的等差数列,所以B n =n ·2+12·n ·(n -1)·1=12n 2+32n . (2)依题意B n +1-B n =2(b n +1-b n ),即b n +1=2(b n +1-b n ),即b n +1b n=2, 所以数列{b n }是以b 1为首项,2为公比的等比数列,所以a n =B n =1-2n1-2×b 1=b 1(2n -1), 所以b n +1a n a n +1=2nb 1(2n -1)·(2n +1-1), 因为b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+1211211n n 所以b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+12112111n ,所以1b 1⎪⎭⎫ ⎝⎛---+12112111n <13恒成立,即b 1>3⎪⎭⎫ ⎝⎛--+12111n ,所以b 1≥3.(3)由a n +1-a n =2(b n +1-b n )得:a n +1-a n =2n +1,所以当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n +2n -1+…+23+22+2=2n +1-2, 当n =1时,上式也成立,所以A n =2n +2-4-2n , 又B n =2n +1-2,所以A n B n =2n +2-4-2n 2n +1-2=2-n 2n -1, 假设存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t 成等差数列,等价于121-1,s 2s -1,t 2t -1成等差数列, 即2s 2s-1=121-1+t 2t -1,即2s 2s -1=1+t 2t -1,因为1+t 2t -1>1,所以2s 2s -1>1,即2s <2s +1,令h (s )=2s -2s -1(s ≥2,s ∈N *),则h (s +1)-h (s )=2s -2>0所以h (s )递增, 若s ≥3,则h (s )≥h (3)=1>0,不满足2s <2s +1,所以s =2,代入2s 2s -1=121-1+t 2t -1得2t -3t -1=0(t ≥3),当t =3时,显然不符合要求; 当t ≥4时,令φ(t )=2t -3t -1(t ≥4,t ∈N *),则同理可证φ(t )递增,所以φ(t )≥φ(4)=3>0,所以不符合要求.所以,不存在正整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列.。
2020版高考数学新增分大一轮浙江专用版讲义:第七章 数列与数学归纳法7.4 第2课时 含解析

第2课时 数列的综合应用题型一 数列和解析几何的综合问题例1 (2004·浙江)已知△OBC 的三个顶点坐标分别为O (0,0),B (1,0),C (0,2),设P 1为线段BC 的中点,P 2为线段CO 的中点,P 3为线段OP 1的中点,对于每一个正整数n ,P n +3为线段P n P n +1的中点,令P n 的坐标为(x n ,y n ),a n =12y n +y n +1+y n +2.(1)求a 1,a 2,a 3及a n 的值; (2)求证:y n +4=1-y n4,n ∈N *;(3)若记b n =y 4n +4-y 4n ,n ∈N *,求证:{b n }是等比数列. (1)解 因为y 1=y 2=y 4=1,y 3=12,y 5=34,所以a 1=a 2=a 3=2,又由题意可知y n +3=y n +y n +12,所以a n +1=12y n +1+y n +2+y n +3=12y n +1+y n +2+y n +y n +12 =12y n +y n +1+y n +2=a n , 所以{a n }为常数列, 所以a n =a 1=2,n ∈N *.(2)证明 将等式12y n +y n +1+y n +2=2两边除以2得14y n +y n +1+y n +22=1.又因为y n +4=y n +1+y n +22,所以y n +4=1-y n4,n ∈N *.(3)证明 因为b n +1=y 4n +8-y 4n +4 =⎝⎛⎭⎫1-y 4n +44-⎝⎛⎭⎫1-y 4n 4=-14(y 4n +4-y 4n )=-14b n ,又因为b 1=y 8-y 4=-14≠0,所以{b n }是首项为-14,公比为-14的等比数列.思维升华 利用题目中曲线或直线上点的坐标之间的关系,得到数列的递推关系,然后利用数列的递推关系寻求数列通项,从而求解题目.跟踪训练1 (2016·浙江)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n +2|,A n ≠A n+2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n为△A n B n B n +1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列C .{d n }是等差数列D .{d 2n }是等差数列答案 A解析 作A 1C 1,A 2C 2,A 3C 3,…,A n C n 垂直于直线B 1B n ,垂足分别为C 1,C 2,C 3,…,C n , 则A 1C 1∥A 2C 2∥…∥A n C n .∵|A n A n +1|=|A n +1A n +2|,∴|C n C n +1|=|C n +1C n +2|. 设|A 1C 1|=a ,|A 2C 2|=b ,|B 1B 2|=c , 则|A 3C 3|=2b -a ,…,|A n C n |=(n -1)b -(n -2)a (n ≥3),∴S n =12c [(n -1)b -(n -2)a ]=12c [(b -a)n +(2a -b )],∴S n +1-S n =12c [(b -a )(n +1)+(2a -b )-(b -a )n -(2a -b )]=12c (b -a ),∴数列{S n }是等差数列.题型二 数列与不等式的综合问题命题点1 可求通项的裂项放缩例2 已知数列{}a n 满足1a n +1=12a n +12且a 1=4(n ∈N *).(1)求数列{}a n 的通项公式;(2)设b n =a 2n -a n ,且S n 为{}b n 的前n 项和,证明:12≤S n <15. (1)解 由1a n +1=12a n +12得, 1a n +1-1=12⎝⎛⎭⎫1a n -1, 由a 1=4得1a 1-1=-34,所以数列⎩⎨⎧⎭⎬⎫1a n -1是首项为-34,公比为12的等比数列.所以⎝⎛⎭⎫1a n -1=⎝⎛⎭⎫1a 1-1⎝⎛⎭⎫12n -1=-34⎝⎛⎭⎫12n -1, 即a n =2n+12n +1-3. (2)证明b n =a 2n -a n =3·2n +1(2n +1-3)2, 又S n +1-S n =b n +1=3·2n +2(2n +2-3)2>0,故S n 是关于n 的递增数列,故S n ≥S 1=b 1=a 21-a 1=12.当k ≥2时,b k =a 2k -a k =3·2k +1(2k +1-3)2<3·2k +1(2k +1-3)(2k +1-4)=3·2k(2k +1-3)(2k -2) <3·2k(2k +1-3)(2k-3)=3⎝⎛⎭⎫12k -3-12k +1-3, 故当n ≥2时,S n =b 1+b 2+b 3+…+b n =12+b 2+b 3+…+b n <12+3⎝⎛122-3-123-3+123-3-124-3+…+⎭⎫12n-3-12n +1-3=15-32n +1-3<15. 又n =1时,S 1=12<15,综上有12≤S n <15. 命题点2 可求通项构造放缩例3 (2018·湖州调研)已知数列{a n }满足a 1=25,a n +1=2a n 3-a n ,n ∈N *.(1)求a 2;(2)求⎩⎨⎧⎭⎬⎫1a n 的通项公式;(3)设{a n }的前n 项的和为S n ,求证:65⎣⎡⎦⎤1-⎝⎛⎭⎫23n ≤S n <2113. (1)解 由条件可知a 2=2a 13-a 1=413. (2)解 由a n +1=2a n3-a n, 得1a n +1=32·1a n -12, 即1a n +1-1=32⎝⎛⎭⎫1a n -1,又1a 1-1=32≠0, 所以⎩⎨⎧⎭⎬⎫1a n -1是首项为32,公比为32的等比数列,则1a n -1=32×⎝⎛⎭⎫32n -1=⎝⎛⎭⎫32n,所以1a n =⎝⎛⎭⎫32n +1.(3)证明 由(2)可得 a n =1⎝⎛⎭⎫32n +1≥1⎝⎛⎭⎫32n +⎝⎛⎭⎫32n -1=25·⎝⎛⎭⎫23n -1. 所以S n ≥25+25·⎝⎛⎭⎫231+…+25·⎝⎛⎭⎫23n -1=65⎣⎡⎦⎤1-⎝⎛⎭⎫23n , 故S n ≥65⎣⎡⎦⎤1-⎝⎛⎭⎫23n 成立. 另一方面a n =1⎝⎛⎭⎫32n +1<1⎝⎛⎭⎫32n =⎝⎛⎭⎫23n , S n =a 1+a 2+a 3+…+a n <25+413+⎝⎛⎭⎫233+⎝⎛⎭⎫234+…+⎝⎛⎭⎫23n =4665+89-89·⎝⎛⎭⎫23n -2<4665+89<2113,n ≥3, 又S 1=25<2113,S 2=4665<2113,因此S n <2113,n ∈N *.所以65⎣⎡⎦⎤1-⎝⎛⎭⎫23n ≤S n <2113. 命题点3 不可求通项裂项放缩例4 (2018·杭州模拟)设数列{a n }满足a 1=13,a n +1=a n +a 2nn 2(n ∈N *).(1)证明:a n <a n +1<1(n ∈N *); (2)证明:a n ≥n2n +1(n ∈N *).证明 (1)方法一 易知a n >0,所以a n +1=a n +a 2nn2>a n ,即a k +1=a k +a 2kk 2<a k +a k a k +1k2,k ∈N *,所以1a k -1a k +1<1k 2,k ∈N *,所以,当n ≥3时,1a n =1a 1-∑k =1n -1 ⎝⎛⎭⎫1a k -1a k +1>1a 1-∑k =1n -1 1k 2 >3-⎣⎢⎢⎡⎦⎥⎥⎤1+∑k =2n -1 1k (k -1)=3-⎣⎢⎢⎡⎦⎥⎥⎤1+∑k =2n -1 ⎝⎛⎭⎫1k -1-1k =3-⎝⎛⎭⎫1+1-1n -1=n n -1>1,所以a n <1. 又a 1=13<1,a 2=49<1,所以a n <1(n ∈N *), 所以a n <a n +1<1(n ∈N *).方法二 易知a n >0,所以a n +1=a n +a 2nn 2>a n ,由题意,得1a n +1=1a n +a 2n n2=n 2a n (a n +n 2)=1a n -1a n +n 2. 则1a n -1a n +1=1a n +n 2, 即1a 1-1a 2=1a 1+12,1a 2-1a 3=1a 2+22,…,1a n -1a n +1=1a n +n 2, 累加得,1a 1-1a n +1=1a 1+12+1a 2+22+…+1a n +n 2<112+122+…+1n 2<1+11×2+…+1(n -1)·n =2-1n , 即3-1a n +1<2-1n ,所以a n +1<1.所以a n <a n +1<1(n ∈N *). (2)方法一 当n =1时,a 1=12×1+1=13,显然成立.由a n <1,知a k +1=a k +a 2kk 2<a k +a k k 2,所以a k >k 2k 2+1a k +1,所以a k +1=a k +a 2kk 2>a k +1k 2a k ·k 2k 2+1a k +1=a k +1k 2+1·a k a k +1,所以1a k -1a k +1>1k 2+1,所以,当n ≥2时,1a n =1a 1-∑k =1n -1 ⎝⎛⎭⎫1a k -1a k +1<1a 1-∑k =1n -1 1k 2+1<3-∑k =1n -1 1k (k +1)=3-∑k =1n -1 ⎝⎛⎭⎫1k -1k +1=3-⎝⎛⎭⎫1-1n =2n +1n , 即a n >n2n +1. 所以a n ≥n2n +1(n ∈N *).方法二 当n ≥2时,1a 1-1a n +1=1a 1+12+1a 2+22+…+1a n +n 2>11+12+11+22+…+11+(n -1)2>11×2+12×3+…+1(n -1)·n =1-1n ,即3-1a n >1-1n ,即a n >n2n +1,又n =1时,a 1=13,12×1+1=13,所以a n ≥n2n +1(n ∈N *).命题点4 不可求通项构造放缩例5 (2018·浙江模拟训练冲刺卷)已知数列{a n }满足a 1=0,a n +1=a 2n +a n +1a n +1,n ∈N *.(1)求证:a n +1>a n ,n ∈N *; (2)求证:a n ≥2n -1-1,n ∈N *; (3)求证:n ≥2时,a n ≤2n -3.证明 (1)∵a n +1=a 2n +a n +1a n +1=a n +1a n +1,∴a n +1+1=a n +1+1a n +1,∴(a n +1+1)(a n +1)=(a n +1)2+1>0, 故a n +1+1与a n +1同号. 又a 1+1=1>0, ∴a n +1>0,∴a n +1-a n =1a n +1>0,故a n +1>a n ,n ∈N *.(2)∵a k +1+1=a k +1+1a k +1,k ∈N *,∴(a k +1+1)2=(a k +1)2+1(a k +1)2+2>(a k +1)2+2,k ∈N *, 当n ≥2时,(a n +1)2=[(a n +1)2-(a n -1+1)2]+[(a n -1+1)2-(a n -2+1)2]+…+[(a 2+1)2-(a 1+1)2]+(a 1+1)2>2(n -1)+1=2n -1.又a n +1>0,故当n ≥2时,a n +1>2n -1, 即当n ≥2时,a n >2n -1-1. 又当n =1时,a 1≥2×1-1-1=0, 所以a n ≥2n -1-1,n ∈N *.(3)由(2)知a k +1-a k =1a k +1≤12k -1,k ∈N *,所以当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -1-a n -2)+(a n -a n -1), 即当n ≥2时,a n ≤1+13+15+…+12n -3. 当n ≥3时,12n -3=222n -3<22n -3+2n -5=2n -3-2n -5, 所以当n ≥3时,a n ≤1+13+15+…+12n -3<1+(3-1)+(5-3)+…+(2n -3-2n -5)=2n -3.又a 2=1≤2×2-3,所以n ≥2时,a n ≤2n -3.思维升华 数列与不等式的综合问题把数列知识与不等式的内容整合在一起,形成了关于证明不等式、求不等式中参数的取值范围、求数列中的最大(小)项、比较数列中项的大小等问题.而数列的条件可能是等差数列、等比数列,甚至是一个递推公式等,求解方法既要用到不等式知识(如比较法、放缩法、基本不等式法等),又要用到数列的基础知识. 跟踪训练2 (2016·浙江)设数列{a n }满足⎪⎪⎪⎪a n -a n +12≤1,n ∈N *.(1)证明:|a n |≥2n -1(|a 1|-2),n ∈N *;(2)若|a n |≤⎝⎛⎭⎫32n ,n ∈N *,证明:|a n |≤2,n ∈N *. 证明 (1)由⎪⎪⎪⎪a n -a n +12≤1得|a n |-12|a n +1|≤1,故|a n |2n -|a n +1|2n +1≤12n ,n ∈N *, 所以|a 1|21-|a n |2n =⎝⎛⎭⎫|a 1|21-|a 2|22+⎝⎛⎭⎫|a 2|22-|a 3|23+…+⎝ ⎛⎭⎪⎫|a n -1|2n -1-|a n |2n ≤121+122+…+12n -1<1,n ≥2. 因此|a n |≥2n -1(|a 1|-2),n =1时也成立.(2)任取n ∈N *,由(1)知,对于任意m ∈N *,m >n ,|a n |2n -|a m |2m =⎝ ⎛⎭⎪⎫|a n |2n -|a n +1|2n +1+⎝ ⎛⎭⎪⎫|a n +1|2n +1-|a n +2|2n +2+…+⎝ ⎛⎭⎪⎫|a m -1|2m -1-|a m |2m ≤12n +12n +1+…+12m -1<12n -1, 故|a n |<⎝⎛⎭⎫12n -1+|a m |2m ·2n ≤⎣⎡⎦⎤12n -1+12m ·⎝⎛⎭⎫32m ·2n =2+⎝⎛⎭⎫34m ·2n . 从而对于任意m >n ,均有|a n |<2+⎝⎛⎭⎫34m ·2n.① 由m 的任意性得|a n |≤2.否则,存在n 0∈N *, 有02,n a >取正整数000342log 2n n a m ->且m 0>n 0,则003402log 23322244n a m n n n a -⎛⎫⎛⎫⋅<⋅=- ⎪⎪⎝⎭⎝⎭,与①式矛盾.综上,对于任意n ∈N *,均有|a n |≤2.1.设a >3,数列{a n }中,a 1=a ,a n +1=a 2n2a n -3,n ∈N *.(1)求证:a n >3,且a n +1a n<1,(2)当a ≤4时,证明:a n ≤3+15n -1.证明 (1) ∵a n +1-3=a 2n2a n -3-3=(a n -3)22⎝⎛⎭⎫a n -32,又∵a n +1-32=a 2n2a n -3-32=⎝⎛⎭⎫a n -322+942⎝⎛⎭⎫a n -32,∴⎝⎛⎭⎫a n +1-32⎝⎛⎭⎫a n -32=⎝⎛⎭⎫a n -322+942>0, ∴a n +1-32与a n -32同号.∵a 1-32=a -32,a >3,∴a 1-32>0,∴a n -32>0.∴a n +1-3=(a n -3)22⎝⎛⎭⎫a n -32>0,∴a n +1>3,∴a n >3. ∴a n +1a n =a n 2a n -3=12-3a n <1. (2)∵a n +1-3=(a n -3)22a n -3,∴a n +1-3a n -3=a n -32a n -3. 由(1)知3<a n ≤a 1=a , ∴3<a n ≤4,设a n -3=t ,则0<t ≤1.故a n +1-3a n -3=t 2t +3=12+3t≤15,∴当n ≥2时,a 2-3a 1-3·a 3-3a 2-3·a 4-3a 3-3·…·a n -3a n -1-3≤⎝⎛⎭⎫15n -1,∴a n -3a 1-3≤⎝⎛⎭⎫15n -1, ∴a n -3≤(a 1-3)·⎝⎛⎭⎫15n -1≤⎝⎛⎭⎫15n -1, ∴a n ≤3+⎝⎛⎭⎫15n -1.又当n =1时,a 1=a ≤4满足上式, ∴a n ≤3+15n -1成立.2.(2018·温州市适应性考试)数列{a n },{b n }的每一项都是正数,a 1=8,b 1=16,且a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列,n =1,2,3,…. (1)求a 2,b 2的值,并求数列{a n },{b n }的通项公式;(2)证明:对一切正整数n ,有1a 1-1+1a 2-1+1a 3-1+…+1a n -1<27.(1)解 由2b 1=a 1+a 2,可得a 2=2b 1-a 1=24. 由a 22=b 1b 2,可得b 2=a 22b 1=36.因为a n ,b n ,a n +1成等差数列, 所以2b n =a n +a n +1.①因为b n ,a n +1,b n +1成等比数列, 所以a 2n +1=b n b n +1,因为数列{a n },{b n }的每一项都是正数, 所以a n +1=b n b n +1,② 于是当n ≥2时,a n =b n -1b n .③将②,③代入①式,可得2b n =b n -1+b n +1, 因此数列{b n }是首项为4,公差为2的等差数列, 所以b n =b 1+(n -1)d =2n +2, 于是b n =4(n +1)2. 由③式,可得当n ≥2时,a n =b n -1b n =4n 2·4(n +1)2=4n (n +1).当n =1时,a 1=8,满足该式子,所以对一切正整数n ,都有a n =4n (n +1). (2)证明 由题意知,所证明的不等式为17+123+147+…+14n 2+4n -1<27,首先证明14n 2+4n -1<27⎝⎛⎭⎫1n -1n +1(n ≥2).14n 2+4n -1<27⎝⎛⎭⎫1n -1n +1⇔14n 2+4n -1<27n 2+7n⇔7n 2+7n <8n 2+8n -2⇔n 2+n -2>0⇔(n -1)·(n +2)>0, 所以当n ≥2时, 17+123+…+14n 2+4n -1 <17+27⎣⎡⎦⎤⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1 =17+27⎝⎛⎭⎫12-1n +1 <17+27×12=27. 当n =1时,17<27.综上所述,对一切正整数n ,有1a 1-1+1a 2-1+1a 3-1+…+1a n -1<27.3.已知数列{a n }满足a 1=1,a n +1=12a n +1(n ∈N *).(1)证明:数列⎩⎨⎧⎭⎬⎫⎪⎪⎪⎪a n -12为递减数列; (2)记S n 为数列{|a n +1-a n |}的前n 项和,证明:S n <53(n ∈N *).证明 (1)由题意知a n >0,故⎪⎪⎪⎪a n +1-12⎪⎪⎪⎪a n -12=12a n +1<1, 所以数列⎩⎨⎧⎭⎬⎫⎪⎪⎪⎪a n -12为递减数列. (2)因为a 1=1,a 2=13,所以当n ≥3时,⎪⎪⎪⎪a n -12<16, 所以13<a n <23(n ≥3),故13≤a n <23(n ≥2). 因为|a n +2-a n +1||a n +1-a n |=22a n +3≤611(n ≥2),当n =1时,也满足上式,故|a n +1-a n |≤|a 2-a 1|·⎝⎛⎭⎫611n -1, 所以S n =|a 2-a 1|+|a 3-a 2|+…+|a n +1-a n | ≤|a 2-a 1|·1-⎝⎛⎭⎫611n1-611<2215<53(n ∈N *).4.(2018·金华十校调研)已知数列{x n }满足x n ∈(0,1)(n ∈N *),函数f (x )=ln ⎝ ⎛⎭⎪⎫1+x 1-x 在点(x n ,f (x n))处的切线与x 轴交点的横坐标为x n +1. (1)证明:当x ∈(0,1)时,f (x )>2x ; (2)证明:x n +1<x 3n ; (3)若x 1∈(0,a ),a ∈(0,1),求证:对任意的正整数m ,都有12*11log log log ()23n n n m n x x x a a a n -⎛⎫⋅⋅⋅<⋅∈ ⎪⎝⎭N +++++.证明 (1)设g (x )=ln(1+x )-ln(1-x )-2x ,则g ′(x )=2x 21-x 2,故当x ∈(0,1)时,g ′(x )>0,函数g (x )在(0,1)上单调递增, 所以g (x )>g (0)=0,即f (x )>2x . (2)由f ′(x )=11+x +11-x =21-x 2,知曲线在点(x n ,f (x n ))处的切线方程为 y =21-x 2n(x -x n )+f (x n ). 令y =0,有x n +1=x n +12f (x n )(x 2n -1), 则x n +1=12(x 2n -1)ln 1+x n 1-x n +x n .由(1)及x 2n -1<0知, x n +1<12(2x n )·(x 2n -1)+x n =x 3n . (3)令0log (1,2)log .n k n x k x a b k m b a ⋅⋅⋅+==,,,= 因为x n +k <x 3n +k -1, 且a ∈(0,1),x n ∈(0,1), 所以log a x n +k >log a x 3n +k -1, 从而有31log log n k n k k x x b a a +-<=+=13b k -1<⎝⎛⎭⎫132b k -2<…<⎝⎛⎭⎫13k b 0,所以1log log log n n n m x x x a a a ⋅⋅⋅+++++=b 0+b 1+…+b m<b 0⎣⎡⎦⎤1+13+⎝⎛⎭⎫132+…+⎝⎛⎭⎫13m =32b 0⎣⎡⎦⎤1-⎝⎛⎭⎫13m +1<32b 0. 要证1211log log log ,23n n n m n x x x a a a ++-⎛⎫++⋅⋅⋅+<⋅ ⎪⎝⎭只需证32b 0<12·⎝⎛⎭⎫13n -2,即证b 0<⎝⎛⎭⎫13n -1,即证log x n a <⎝⎛⎭⎫13n -1, 即证x n <a 3n -1,由(2)及x 1∈(0,a )可得2113333121.n n n n n x x xxa ----<<<⋅⋅⋅<<综上即可证得.5.已知正项数列{a n }满足a 1=3,a 2n +1=a n +2,n ∈N *.求证:(1)数列{a n }是单调递减数列; (2)|a n +1-2|<14|a n -2|,n ∈N *;(3)|a 1-2|+2|a 2-2|+3|a 3-2|+…+n |a n -2|<169,n ∈N *. 证明 (1)由a 2n +1=a n +2,得a 2n +2=a n +1+2, 两式相减,得a 2n +2-a 2n +1=a n +1-a n ,即(a n +2-a n +1)(a n +2+a n +1)=a n +1-a n , 因为a n >0,所以a n +2+a n +1>0, 所以a n +2-a n +1与a n +1-a n 同号.由a 22=a 1+2=5,得a 2=5,a 2-a 1=5-3<0, 所以a n +1-a n <0, 即a n +1<a n ,故数列{a n }是递减数列.(2)由a 2n +1=a n +2,得a 2n +1-4=a n -2,即(a n +1+2)(a n +1-2)=a n -2, 所以|a n +1-2|=|a n -2|a n +1+2,由(a n +1+2)(a n +1-2)=a n -2,知a n +1-2与a n -2同号, 由a 1-2=3-2>0,知a n -2>0,即a n >2, 故a n +1+2>4.所以1a n +1+2<14,所以|a n +1-2|<14|a n -2|,n ∈N *.(3)由(2)知,当n ≥2时,有|a n -2|=|a 1-2|×|a 2-2||a 1-2|×|a 3-2||a 2-2|×…×|a n -2||a n -1-2|<14n -1|a 1-2|=14n -1,所以当n ≥2时,有|a 1-2|+2|a 2-2|+3|a 3-2|+…+n |a n -2|<1+24+342+…+n 4n -1,令S n =1+24+342+…+n4n -1,则14S n =14+242+343+…+n4n , 所以34S n =1+14+142+143+…+14n -1-n 4n=1-14n1-14-n 4n =43-43×4n -n 4n <43, 所以S n <169,故|a 1-2|+2|a 2-2|+3|a 3-2|+…+n |a n -2|<169,n ≥2. 又当n =1时,|a 1-2|=1<169. 综上,|a 1-2|+2|a 2-2|+3|a 3-2|+…+n |a n -2|<169,n ∈N *.6.已知数列{a n }满足a 1=1,a n +1=a n 1+a 2n (n ∈N *). (1)证明:当n ≥1,n ∈N *时,2n +2≤a n≤1;(2)设S n 为数列{a n }的前n 项和,证明:S n ≤2n -1(n ∈N *). 证明 (1)由已知条件易知a n >0,a 2=a 11+a 21=12, 且1a n +1=1a n +a n ,(*) 所以1a n +1>1a n >0,所以a n +1<a n ,即数列{a n }是递减数列, 故a n ≤a 1=1.当n ≥2,n ∈N *时,a n ≤a 2=12.又由(*)知,1a n +1=1a n +a n ≤1a n +12(n ≥2),…,1a 3≤1a 2+12,累加可得1a n ≤1a 2+12(n -2)=12n +1,即a n ≥2n +2,n ≥2,n ∈N *.经验证:当n =1时,a 1=1≥21+2=23也成立.所以当n ≥1,n ∈N *时,2n +2≤a n≤1. (2)将(*)式平方可得1a 2n +1=1a 2n +a 2n+2,累加可得1a 2n =1a 21+a 21+a 22+…+a 2n -1+2(n -1)≥2+2(n -1)=2n (n ≥2), 所以a n ≤22n <2n +n -1=2(n -n -1),n ≥2.所以当n ≥2,n ∈N *时,S n =a 1+a 2+…+a n <1+2(2-1+3-2+…+n -n -1)=2n +1-2, 只需证2n +1-2≤2n -1, 即证2n +1≤2n -1+2,两边平方整理得2n +1+22n ≤2n +1+222n -1,即n ≤2n -1, 两边再次平方即证n ≥1,显然成立.经验证:当n =1时,S 1=1≤2×1-1=1也成立. 故S n ≤2n -1(n ∈N *).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 数列的综合应用题型一 数列和解析几何的综合问题例1 (2004·浙江)已知△OBC 的三个顶点坐标分别为O (0,0),B (1,0),C (0,2),设P 1为线段BC 的中点,P 2为线段CO 的中点,P 3为线段OP 1的中点,对于每一个正整数n ,P n +3为线段P n P n +1的中点,令P n 的坐标为(x n ,y n ),a n =12y n +y n +1+y n +2.(1)求a 1,a 2,a 3及a n 的值; (2)求证:y n +4=1-y n4,n ∈N *;(3)若记b n =y 4n +4-y 4n ,n ∈N *,求证:{b n }是等比数列. (1)解 因为y 1=y 2=y 4=1,y 3=12,y 5=34,所以a 1=a 2=a 3=2, 又由题意可知y n +3=y n +y n +12,所以a n +1=12y n +1+y n +2+y n +3=12y n +1+y n +2+y n +y n +12 =12y n +y n +1+y n +2=a n , 所以{a n }为常数列, 所以a n =a 1=2,n ∈N *.(2)证明 将等式12y n +y n +1+y n +2=2两边除以2得14y n +y n +1+y n +22=1.又因为y n +4=y n +1+y n +22,所以y n +4=1-y n4,n ∈N *. (3)证明 因为b n +1=y 4n +8-y 4n +4 =⎝⎛⎭⎪⎫1-y 4n +44-⎝⎛⎭⎪⎫1-y 4n 4=-14(y 4n +4-y 4n )=-14b n ,又因为b 1=y 8-y 4=-14≠0,所以{b n }是首项为-14,公比为-14的等比数列.思维升华利用题目中曲线或直线上点的坐标之间的关系,得到数列的递推关系,然后利用数列的递推关系寻求数列通项,从而求解题目.跟踪训练1 (2016·浙江)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n+2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列 C .{d n }是等差数列 D .{d 2n }是等差数列答案 A解析 作A 1C 1,A 2C 2,A 3C 3,…,A n C n 垂直于直线B 1B n ,垂足分别为C 1,C 2,C 3,…,C n , 则A 1C 1∥A 2C 2∥…∥A n C n .∵|A n A n +1|=|A n +1A n +2|,∴|C n C n +1|=|C n +1C n +2|. 设|A 1C 1|=a ,|A 2C 2|=b ,|B 1B 2|=c , 则|A 3C 3|=2b -a ,…,|A n C n |=(n -1)b -(n -2)a (n ≥3),∴S n =12c [(n -1)b -(n -2)a ]=12c [(b -a)n +(2a -b )],∴S n +1-S n =12c [(b -a )(n +1)+(2a -b )-(b -a )n -(2a -b )]=12c (b -a ),∴数列{S n }是等差数列.题型二 数列与不等式的综合问题命题点1 可求通项的裂项放缩 例2已知数列{}a n 满足1a n +1=12a n +12且a 1=4(n ∈N *). (1)求数列{}a n 的通项公式;(2)设b n =a 2n -a n ,且S n 为{}b n 的前n 项和,证明:12≤S n <15.(1)解 由1a n +1=12a n +12得, 1a n +1-1=12⎝ ⎛⎭⎪⎫1a n -1,由a 1=4得1a 1-1=-34,所以数列⎩⎨⎧⎭⎬⎫1a n -1是首项为-34,公比为12的等比数列.所以⎝ ⎛⎭⎪⎫1a n -1=⎝ ⎛⎭⎪⎫1a 1-1⎝ ⎛⎭⎪⎫12n -1=-34⎝ ⎛⎭⎪⎫12n -1,即a n =2n +12n +1-3.(2)证明 b n =a 2n -a n =3·2n +1(2n +1-3)2,又S n +1-S n =b n +1=3·2n +2(2n +2-3)2>0,故S n 是关于n 的递增数列, 故S n ≥S 1=b 1=a 21-a 1=12. 当k ≥2时,b k =a 2k -a k =3·2k +1(2k +1-3)2<3·2k +1(2k +1-3)(2k +1-4)=3·2k(2k +1-3)(2k-2)<3·2k(2k +1-3)(2k-3)=3⎝ ⎛⎭⎪⎫12k -3-12k +1-3, 故当n ≥2时,S n =b 1+b 2+b 3+…+b n =12+b 2+b 3+…+b n <12+3⎝⎛122-3-123-3+123-3-124-3+…+⎭⎪⎫12n-3-12n +1-3=15-32n +1-3<15. 又n =1时,S 1=12<15,综上有12≤S n <15. 命题点2 可求通项构造放缩例3 (2018·湖州调研)已知数列{a n }满足a 1=25,a n +1=2a n 3-a n ,n ∈N *.(1)求a 2;(2)求⎩⎨⎧⎭⎬⎫1a n 的通项公式;(3)设{a n }的前n 项的和为S n ,求证:65⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫23n ≤S n <2113.(1)解 由条件可知a 2=2a 13-a 1=413.(2)解 由a n +1=2a n3-a n ,得1a n +1=32·1a n -12, 即1a n +1-1=32⎝ ⎛⎭⎪⎫1a n -1,又1a 1-1=32≠0,所以⎩⎨⎧⎭⎬⎫1a n -1是首项为32,公比为32的等比数列,则1a n -1=32×⎝ ⎛⎭⎪⎫32n -1=⎝ ⎛⎭⎪⎫32n, 所以1a n =⎝ ⎛⎭⎪⎫32n+1.(3)证明 由(2)可得a n =1⎝ ⎛⎭⎪⎫32n +1≥1⎝ ⎛⎭⎪⎫32n +⎝ ⎛⎭⎪⎫32n -1=25·⎝ ⎛⎭⎪⎫23n -1. 所以S n ≥25+25·⎝ ⎛⎭⎪⎫231+…+25·⎝ ⎛⎭⎪⎫23n -1=65⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫23n , 故S n ≥65⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫23n 成立.另一方面a n =1⎝ ⎛⎭⎪⎫32n +1<1⎝ ⎛⎭⎪⎫32n =⎝ ⎛⎭⎪⎫23n ,S n =a 1+a 2+a 3+…+a n<25+413+⎝ ⎛⎭⎪⎫233+⎝ ⎛⎭⎪⎫234+…+⎝ ⎛⎭⎪⎫23n=4665+89-89·⎝ ⎛⎭⎪⎫23n -2<4665+89<2113,n ≥3, 又S 1=25<2113,S 2=4665<2113,因此S n <2113,n ∈N *.所以65⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫23n ≤S n <2113.命题点3 不可求通项裂项放缩例4(2018·杭州模拟)设数列{a n }满足a 1=13,a n +1=a n +a 2n n 2(n ∈N *).(1)证明:a n <a n +1<1(n ∈N *); (2)证明:a n ≥n2n +1(n ∈N *).证明 (1)方法一 易知a n >0,所以a n +1=a n +a 2nn2>a n ,即a k +1=a k +a 2k k 2<a k +a k a k +1k2,k ∈N *,所以1a k -1a k +1<1k2,k ∈N *,所以,当n ≥3时, 1a n =1a 1-k =1n -1⎝ ⎛⎭⎪⎫1ak-1a k +1>1a 1-k =1n -11k2>3-⎣⎢⎡⎦⎥⎤1+k =2n -11k (k -1)=3-⎣⎢⎡⎦⎥⎤1+k =2n -1⎝ ⎛⎭⎪⎫1k -1-1k =3-⎝⎛⎭⎪⎫1+1-1n -1=nn -1>1,所以a n <1. 又a 1=13<1,a 2=49<1,所以a n <1(n ∈N *), 所以a n <a n +1<1(n ∈N *).方法二 易知a n >0,所以a n +1=a n +a 2nn 2>a n ,由题意,得1a n +1=1a n +a 2n n2=n 2a n (a n +n 2)=1a n -1a n +n 2. 则1a n -1a n +1=1a n +n 2, 即1a 1-1a 2=1a 1+12,1a 2-1a 3=1a 2+22,…,1a n -1a n +1=1a n +n 2, 累加得,1a 1-1a n +1=1a 1+12+1a 2+22+…+1a n +n 2<112+122+…+1n 2<1+11×2+…+1(n -1)·n=2-1n,即3-1a n +1<2-1n,所以a n +1<1.所以a n <a n +1<1(n ∈N *). (2)方法一 当n =1时,a 1=12×1+1=13,显然成立.由a n <1,知a k +1=a k +a 2kk 2<a k +a k k2,所以a k >k 2k 2+1a k +1,所以a k +1=a k +a 2kk 2>a k +1k 2a k ·k 2k 2+1a k +1=a k +1k 2+1·a k a k +1,所以1a k -1a k +1>1k 2+1,所以,当n ≥2时,1a n =1a 1-k =1n -1⎝ ⎛⎭⎪⎫1a k -1a k +1<1a 1-k =1n -11k 2+1<3-k =1n -11k (k +1)=3-k =1n -1⎝ ⎛⎭⎪⎫1k -1k +1=3-⎝ ⎛⎭⎪⎫1-1n =2n +1n , 即a n >n2n +1.所以a n ≥n2n +1(n ∈N *).方法二 当n ≥2时,1a 1-1a n +1=1a 1+12+1a 2+22+…+1a n +n 2>11+12+11+22+…+11+(n -1)2>11×2+12×3+…+1(n -1)·n =1-1n , 即3-1a n >1-1n ,即a n >n 2n +1,又n =1时,a 1=13,12×1+1=13,所以a n ≥n2n +1(n ∈N *).命题点4 不可求通项构造放缩例5(2018·浙江模拟训练冲刺卷)已知数列{a n }满足a 1=0,a n +1=a 2n +a n +1a n +1,n ∈N *.(1)求证:a n +1>a n ,n ∈N *; (2)求证:a n ≥2n -1-1,n ∈N *; (3)求证:n ≥2时,a n ≤2n -3.证明 (1)∵a n +1=a 2n +a n +1a n +1=a n +1a n +1,∴a n +1+1=a n +1+1a n +1, ∴(a n +1+1)(a n +1)=(a n +1)2+1>0, 故a n +1+1与a n +1同号. 又a 1+1=1>0, ∴a n +1>0, ∴a n +1-a n =1a n +1>0, 故a n +1>a n ,n ∈N *. (2)∵a k +1+1=a k +1+1a k +1,k ∈N *, ∴(a k +1+1)2=(a k +1)2+1(a k +1)2+2>(a k +1)2+2,k ∈N *,当n ≥2时,(a n +1)2=[(a n +1)2-(a n -1+1)2]+[(a n -1+1)2-(a n -2+1)2]+…+[(a 2+1)2-(a 1+1)2]+(a 1+1)2>2(n -1)+1=2n -1. 又a n +1>0,故当n ≥2时,a n +1>2n -1, 即当n ≥2时,a n >2n -1-1. 又当n =1时,a 1≥2×1-1-1=0, 所以a n ≥2n -1-1,n ∈N *. (3)由(2)知a k +1-a k =1a k +1≤12k -1,k ∈N *, 所以当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -1-a n -2)+(a n -a n -1), 即当n ≥2时,a n ≤1+13+15+…+12n -3.当n ≥3时,12n -3=222n -3<22n -3+2n -5=2n -3-2n -5,所以当n ≥3时,a n ≤1+13+15+…+12n -3<1+(3-1)+(5-3)+…+(2n -3-2n -5)=2n -3. 又a 2=1≤2×2-3,所以n ≥2时,a n ≤2n -3.思维升华数列与不等式的综合问题把数列知识与不等式的内容整合在一起,形成了关于证明不等式、求不等式中参数的取值范围、求数列中的最大(小)项、比较数列中项的大小等问题.而数列的条件可能是等差数列、等比数列,甚至是一个递推公式等,求解方法既要用到不等式知识(如比较法、放缩法、基本不等式法等),又要用到数列的基础知识. 跟踪训练2(2016·浙江)设数列{a n }满足⎪⎪⎪⎪⎪⎪a n -a n +12≤1,n ∈N *. (1)证明:|a n |≥2n -1(|a 1|-2),n ∈N *;(2)若|a n |≤⎝⎛⎭⎪⎫32n ,n ∈N *,证明:|a n |≤2,n ∈N *.证明 (1)由⎪⎪⎪⎪⎪⎪a n -a n +12≤1得|a n |-12|a n +1|≤1, 故|a n |2n -|a n +1|2n +1≤12n ,n ∈N *, 所以|a 1|21-|a n |2n =⎝ ⎛⎭⎪⎫|a 1|21-|a 2|22+⎝ ⎛⎭⎪⎫|a 2|22-|a 3|23+…+⎝ ⎛⎭⎪⎫|a n-1|2n -1-|a n |2n ≤121+122+…+12n -1<1,n ≥2.因此|a n |≥2n -1(|a 1|-2),n =1时也成立.(2)任取n ∈N *,由(1)知,对于任意m ∈N *,m >n ,|a n |2n -|a m |2m =⎝ ⎛⎭⎪⎫|a n |2n -|a n +1|2n +1+⎝ ⎛⎭⎪⎫|a n +1|2n +1-|a n +2|2n +2+…+⎝ ⎛⎭⎪⎫|a m-1|2m -1-|a m |2m ≤12n +12n +1+…+12m -1<12n -1,故|a n |<⎝⎛⎭⎪⎫12n -1+|a m |2m ·2n ≤⎣⎢⎡⎦⎥⎤12n -1+12m ·⎝ ⎛⎭⎪⎫32m ·2n =2+⎝ ⎛⎭⎪⎫34m ·2n . 从而对于任意m >n ,均有|a n |<2+⎝ ⎛⎭⎪⎫34m ·2n.①由m 的任意性得|a n |≤2.否则,存在n 0∈N *, 有02,n a >取正整数000342log 2n n a m ->且m 0>n 0,则00340002log 23322244n n a m n n n a -⎛⎫⎛⎫⋅<⋅=- ⎪⎪⎝⎭⎝⎭,与①式矛盾.综上,对于任意n ∈N *,均有|a n |≤2.1.设a >3,数列{a n }中,a 1=a ,a n +1=a 2n 2a n -3,n ∈N *.(1)求证:a n >3,且a n +1a n<1, (2)当a ≤4时,证明:a n ≤3+15n -1.证明 (1) ∵a n +1-3=a 2n2a n -3-3=(a n -3)22⎝ ⎛⎭⎪⎫a n -32,又∵a n +1-32=a 2n2a n -3-32=⎝ ⎛⎭⎪⎫a n -322+942⎝ ⎛⎭⎪⎫a n -32,∴⎝⎛⎭⎪⎫a n +1-32⎝ ⎛⎭⎪⎫a n -32=⎝ ⎛⎭⎪⎫a n -322+942>0,∴a n +1-32与a n -32同号.∵a 1-32=a -32,a >3,∴a 1-32>0,∴a n -32>0.∴a n +1-3=(a n -3)22⎝ ⎛⎭⎪⎫a n -32>0,∴a n +1>3,∴a n >3. ∴a n +1a n =a n 2a n -3=12-3a n<1. (2)∵a n +1-3=(a n -3)22a n -3,∴a n +1-3a n -3=a n -32a n -3. 由(1)知3<a n ≤a 1=a , ∴3<a n ≤4,设a n -3=t ,则0<t ≤1. 故a n +1-3a n -3=t 2t +3=12+3t≤15,∴当n ≥2时,a 2-3a 1-3·a 3-3a 2-3·a 4-3a 3-3·…·a n -3a n -1-3≤⎝ ⎛⎭⎪⎫15n -1, ∴a n -3a 1-3≤⎝ ⎛⎭⎪⎫15n -1, ∴a n -3≤(a 1-3)·⎝ ⎛⎭⎪⎫15n -1≤⎝ ⎛⎭⎪⎫15n -1,∴a n ≤3+⎝ ⎛⎭⎪⎫15n -1.又当n =1时,a 1=a ≤4满足上式, ∴a n ≤3+15n -1成立.2.(2018·温州市适应性考试)数列{a n },{b n }的每一项都是正数,a 1=8,b 1=16,且a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列,n =1,2,3,….(1)求a 2,b 2的值,并求数列{a n },{b n }的通项公式; (2)证明:对一切正整数n ,有1a 1-1+1a 2-1+1a 3-1+…+1a n -1<27. (1)解 由2b 1=a 1+a 2,可得a 2=2b 1-a 1=24.由a 22=b 1b 2,可得b 2=a 22b 1=36.因为a n ,b n ,a n +1成等差数列, 所以2b n =a n +a n +1.①因为b n ,a n +1,b n +1成等比数列, 所以a 2n +1=b n b n +1,因为数列{a n },{b n }的每一项都是正数, 所以a n +1=b n b n +1,② 于是当n ≥2时,a n =b n -1b n .③将②,③代入①式,可得2b n =b n -1+b n +1, 因此数列{b n }是首项为4,公差为2的等差数列, 所以b n =b 1+(n -1)d =2n +2, 于是b n =4(n +1)2. 由③式,可得当n ≥2时,a n =b n -1b n =4n 2·4(n +1)2=4n (n +1).当n =1时,a 1=8,满足该式子,所以对一切正整数n ,都有a n =4n (n +1). (2)证明 由题意知,所证明的不等式为17+123+147+…+14n 2+4n -1<27,首先证明14n 2+4n -1<27⎝ ⎛⎭⎪⎫1n -1n +1(n ≥2).14n 2+4n -1<27⎝ ⎛⎭⎪⎫1n -1n +1⇔14n 2+4n -1<27n 2+7n⇔7n 2+7n <8n 2+8n -2⇔n 2+n -2>0⇔(n -1)·(n +2)>0,所以当n ≥2时,17+123+…+14n 2+4n -1<17+27⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=17+27⎝ ⎛⎭⎪⎫12-1n +1<17+27×12=27.当n =1时,17<27.综上所述,对一切正整数n ,有1a 1-1+1a 2-1+1a 3-1+…+1a n-1<27.3.已知数列{a n }满足a 1=1,a n +1=12a n +1(n ∈N *).(1)证明:数列⎩⎨⎧⎭⎬⎫⎪⎪⎪⎪⎪⎪a n -12为递减数列;(2)记S n 为数列{|a n +1-a n |}的前n 项和,证明:S n <53(n ∈N *).证明 (1)由题意知a n >0,故⎪⎪⎪⎪⎪⎪a n +1-12⎪⎪⎪⎪⎪⎪a n -12=12a n +1<1,所以数列⎩⎨⎧⎭⎬⎫⎪⎪⎪⎪⎪⎪a n -12为递减数列.(2)因为a 1=1,a 2=13,所以当n ≥3时,⎪⎪⎪⎪⎪⎪a n -12<16,所以13<a n <23(n ≥3), 故13≤a n <23(n ≥2). 因为|a n +2-a n +1||a n +1-a n |=22a n +3≤611(n ≥2), 当n =1时,也满足上式,故|a n +1-a n |≤|a 2-a 1|·⎝ ⎛⎭⎪⎫611n -1, 所以S n =|a 2-a 1|+|a 3-a 2|+…+|a n +1-a n |≤|a 2-a 1|·1-⎝ ⎛⎭⎪⎫611n 1-611<2215<53(n ∈N *). 4.(2018·金华十校调研)已知数列{x n }满足x n ∈(0,1)(n ∈N *),函数f (x )=ln ⎝ ⎛⎭⎪⎫1+x 1-x 在点(x n ,f (x n ))处的切线与x 轴交点的横坐标为x n +1.(1)证明:当x ∈(0,1)时,f (x )>2x ;(2)证明:x n +1<x 3n ;(3)若x 1∈(0,a ),a ∈(0,1),求证:对任意的正整数m ,都有12*11log log log ()23n n n m n x x x a a a n -⎛⎫⋅⋅⋅<⋅∈ ⎪⎝⎭N +++++. 证明 (1)设g (x )=ln(1+x )-ln(1-x )-2x ,则g ′(x )=2x 21-x 2, 故当x ∈(0,1)时,g ′(x )>0,函数g (x )在(0,1)上单调递增, 所以g (x )>g (0)=0,即f (x )>2x .(2)由f ′(x )=11+x +11-x =21-x 2, 知曲线在点(x n ,f (x n ))处的切线方程为y =21-x 2n(x -x n )+f (x n ). 令y =0,有x n +1=x n +12f (x n )(x 2n -1), 则x n +1=12(x 2n -1)ln 1+x n 1-x n+x n .由(1)及x 2n -1<0知, x n +1<12(2x n )·(x 2n -1)+x n =x 3n .(3)令0log (1,2)log .n k n x k x a b k m b a ⋅⋅⋅+==,,,=因为x n +k <x 3n +k -1,且a ∈(0,1),x n ∈(0,1),所以log a x n +k >log a x 3n +k -1,从而有31log log n k n k k x x b a a +-<=+=13b k -1<⎝ ⎛⎭⎪⎫132b k -2<…<⎝ ⎛⎭⎪⎫13k b 0,所以1log log log n n n m x x x a a a ⋅⋅⋅+++++=b 0+b 1+…+b m<b 0⎣⎢⎡⎦⎥⎤1+13+⎝ ⎛⎭⎪⎫132+…+⎝ ⎛⎭⎪⎫13m=32b 0⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13m +1<32b 0.要证1211log log log ,23n n n m n x x x a a a ++-⎛⎫++⋅⋅⋅+<⋅ ⎪⎝⎭只需证32b 0<12·⎝ ⎛⎭⎪⎫13n-2,即证b 0<⎝ ⎛⎭⎪⎫13n -1,即证log x n a <⎝ ⎛⎭⎪⎫13n -1,即证x n <a 3n -1,由(2)及x 1∈(0,a )可得2113333121.n n n n n x x x x a ----<<<⋅⋅⋅<<综上即可证得.5.已知正项数列{a n }满足a 1=3,a 2n +1=a n +2,n ∈N *.求证:(1)数列{a n }是单调递减数列;(2)|a n +1-2|<14|a n -2|,n ∈N *;(3)|a 1-2|+2|a 2-2|+3|a 3-2|+…+n |a n -2|<169,n ∈N *.证明 (1)由a 2n +1=a n +2,得a 2n +2=a n +1+2,两式相减,得a 2n +2-a 2n +1=a n +1-a n ,即(a n +2-a n +1)(a n +2+a n +1)=a n +1-a n ,因为a n >0,所以a n +2+a n +1>0,所以a n +2-a n +1与a n +1-a n 同号.由a 22=a 1+2=5,得a 2=5,a 2-a 1=5-3<0,所以a n +1-a n <0,即a n +1<a n ,故数列{a n }是递减数列.(2)由a 2n +1=a n +2,得a 2n +1-4=a n -2,即(a n +1+2)(a n +1-2)=a n -2,所以|a n +1-2|=|a n -2|a n +1+2,由(a n +1+2)(a n +1-2)=a n -2,知a n +1-2与a n -2同号,由a 1-2=3-2>0,知a n -2>0,即a n >2,故a n +1+2>4.所以1a n +1+2<14,所以|a n +1-2|<14|a n -2|,n ∈N *.(3)由(2)知,当n ≥2时,有|a n -2|=|a 1-2|×|a 2-2||a 1-2|×|a 3-2||a 2-2|×…×|a n -2||a n -1-2|<14n -1|a 1-2|=14n -1,所以当n ≥2时,有|a 1-2|+2|a 2-2|+3|a 3-2|+…+n |a n -2|<1+24+342+…+n4n -1,令S n =1+24+342+…+n4n -1,则14S n =14+242+343+…+n4n ,所以34S n =1+14+142+143+…+14n -1-n4n=1-14n 1-14-n 4n =43-43×4n -n4n <43,所以S n <169,故|a 1-2|+2|a 2-2|+3|a 3-2|+…+n |a n -2|<169,n ≥2.又当n =1时,|a 1-2|=1<169.综上,|a 1-2|+2|a 2-2|+3|a 3-2|+…+n |a n -2|<169,n ∈N *.6.已知数列{a n }满足a 1=1,a n +1=a n 1+a 2n(n ∈N *).(1)证明:当n ≥1,n ∈N *时,2n +2≤a n ≤1;(2)设S n 为数列{a n }的前n 项和,证明:S n ≤2n -1(n ∈N *).证明 (1)由已知条件易知a n >0,a 2=a 11+a 21=12,且1a n +1=1a n+a n ,(*)所以1a n +1>1a n>0,所以a n +1<a n ,即数列{a n }是递减数列,故a n ≤a 1=1.当n ≥2,n ∈N *时,a n ≤a 2=12.又由(*)知,1a n +1=1a n +a n ≤1a n +12(n ≥2),…,1a 3≤1a 2+12,累加可得1a n ≤1a 2+12(n -2)=12n +1,即a n ≥2n +2,n ≥2,n ∈N *.经验证:当n =1时,a 1=1≥21+2=23也成立.所以当n ≥1,n ∈N *时,2n +2≤a n ≤1.(2)将(*)式平方可得1a 2n +1=1a 2n+a 2n +2,累加可得1a 2n =1a 21+a 21+a 22+…+a 2n -1+2(n -1)≥2+2(n -1)=2n (n ≥2), 所以a n ≤22n <2n +n -1=2(n -n -1),n ≥2.所以当n ≥2,n ∈N *时,S n =a 1+a 2+…+a n <1+2(2-1+3-2+…+n -n -1)=2n +1-2, 只需证2n +1-2≤2n -1,即证2n +1≤2n -1+2,两边平方整理得2n+1+22n≤2n+1+222n-1,即n≤2n-1,两边再次平方即证n≥1,显然成立.经验证:当n=1时,S1=1≤2×1-1=1也成立.故S n≤2n-1(n∈N*).。