聚乙烯吡咯烷酮的研究
聚乙烯吡咯烷酮的hlb值_解释说明以及概述

聚乙烯吡咯烷酮的hlb值解释说明以及概述1. 引言1.1 概述聚乙烯吡咯烷酮是一种多孔性聚合物,具有广泛的应用前景。
它被广泛用作润湿剂、乳化剂和表面活性剂等,在许多工业领域发挥着重要作用。
在聚乙烯吡咯烷酮的应用中,HLB值是一个关键指标,它与聚乙烯吡咯烷酮的表面活性能力密切相关。
1.2 文章结构本文将从三个方面来解释和说明聚乙烯吡咯烷酮的HLB值。
首先,我们将介绍HLB值的定义及其与表面活性剂特性之间的关系。
然后,我们将探讨不同官能团对HLB值的影响以及这些影响对聚乙烯吡咯烷酮性质和应用的意义。
最后,我们将重点关注HLB值在工业中的应用和意义。
1.3 目的本文旨在全面解释说明聚乙烯吡咯烷酮的HLB值,并探讨其对表面活性剂特性、物理性质和工业应用的影响。
通过对HLB值的深入研究,我们可以更好地理解聚乙烯吡咯烷酮在工业上的应用潜力,并为进一步优化其性能提供基础,有助于推动相关领域的发展和创新。
2. 聚乙烯吡咯烷酮的HLB值2.1 HLB值的定义:聚乙烯吡咯烷酮的HLB值是指该化合物在表面活性剂体系中作为非离子型表面活性剂时所具有的亲水性特征。
HLB值是一种表示分子亲水/疏水平衡能力的量化指标,通常以0到20之间的数值来表示。
2.2 聚乙烯吡咯烷酮的性质及应用:聚乙烯吡咯烷酮(Polyvinylpyrrolidone,简称PVP)是一种由N-羟乙基吡咯烷酮单体聚合而成的高分子化合物。
它具有良好的溶解性、稳定性和生物相容性,并且可以与许多无机和有机物质形成络合物或加合物。
因此,在医药、食品、皮肤护理等领域得到了广泛应用。
2.3 影响聚乙烯吡咯烷酮HLB值的因素:聚乙烯吡咯烷酮的HLB值主要受以下因素的影响:a) 聚乙烯吡咯烷酮分子中羟基的数量和位置:更多的羟基意味着更高的HLB值,因为羟基可以增加分子的亲水性。
b) 聚乙烯吡咯烷酮分子中酮基、吡咯环等官能团的结构:不同官能团对HLB值产生不同影响,有些官能团可能增强分子的亲水性,而有些则可能降低亲水性。
聚乙烯吡咯烷酮的多用途

聚乙烯吡咯烷酮的多用途聚乙烯吡咯烷酮(Polyvinylpyrrolidone,简称PVP)是一种多用途的合成聚合物,其在许多领域中具有广泛的应用。
它是由乙烯吡咯烷酮单体聚合而成的,具有独特的物化性质,使得它在医药、化妆品、农业和工业等不同领域都有着重要的作用。
以下将从简单到复杂、由浅入深地探讨聚乙烯吡咯烷酮的多个方面,以帮助您深入了解并全面把握其多样化的用途。
1. 介绍聚乙烯吡咯烷酮的基本性质1.1 化学结构和分子量1.2 物理性质1.3 可溶性和稳定性2. 聚乙烯吡咯烷酮在医药领域的应用2.1 药物载体和缓释系统2.2 药物稳定剂和增溶剂2.3 医用涂层和敷料材料3. 聚乙烯吡咯烷酮在化妆品中的应用3.1 保湿剂和黏合剂3.2 稳定剂和乳化剂3.3 染发剂和护肤品成分4. 聚乙烯吡咯烷酮在农业领域的应用4.1 植物增长调节剂4.2 农药稳定剂和增效剂4.3 土壤调理剂和保水剂5. 聚乙烯吡咯烷酮在工业中的应用5.1 粘合剂和涂料成分5.2 纺织品处理剂5.3 电子产品的抗静电剂总结与回顾:通过对聚乙烯吡咯烷酮的多个应用领域的介绍,我们可以看到它在医药、化妆品、农业和工业中的多功能性和广泛用途。
作为药物载体、保湿剂、植物增长调节剂和粘合剂等方面的应用,聚乙烯吡咯烷酮在不同领域都发挥着重要的作用。
其独特的化学结构和物化性质使其成为一种理想的功能性材料。
在撰写本文时,我对聚乙烯吡咯烷酮的多个应用领域进行了深入研究,并为您提供了详细的介绍和分析。
我相信这些信息将帮助您更全面、深刻和灵活地理解聚乙烯吡咯烷酮在不同领域中的多样化用途。
在我的理解中,聚乙烯吡咯烷酮作为一种多用途的合成聚合物,其用途的广泛性和重要性不言而喻。
随着科学技术的发展和不断的研究,聚乙烯吡咯烷酮在更多领域中的应用也必将不断拓展。
我对该物质的前景持乐观态度,并相信它将在更多新兴领域中发挥更大的作用。
以上是对聚乙烯吡咯烷酮多用途的一篇中文文章的撰写。
pvp 聚乙烯吡咯烷酮液相色谱法

PVP聚乙烯吡咯烷酮液相色谱法随着科学技术的不断发展,液相色谱分析方法在化学、生物等领域中得到了广泛的应用。
PVP聚乙烯吡咯烷酮作为一种重要的功能性高分子材料,其分析方法也备受关注。
本文将介绍PVP聚合物的概念、液相色谱的基本原理以及PVP聚合物的液相色谱分析方法,希望能够为相关领域的研究人员提供参考。
一、PVP聚合物概念1. PVP聚合物的定义PVP全称为聚乙烯吡咯烷酮,是一种独特的高分子聚合物,具有极好的生物相容性和生物相似性。
其分子结构中含有大量的吡咯烷酮环,因此PVP聚合物在医药、化妆品、染料、涂料等行业中得到广泛应用。
2. PVP聚合物的特性PVP聚合物具有一系列特殊的物理和化学性质,如溶解度大、对水溶液的界面活性、对多种不同类型物质的溶解能力等。
这些特性使得PVP聚合物在不同领域中展现出非常广泛的应用前景。
二、液相色谱的基本原理1. 液相色谱的概念液相色谱是一种以液体为流动相,将待分离物质溶解在流动相中,通过在固定相上进行分配和再分配的过程,实现对物质分离和分析的一种色谱技术。
2. 液相色谱的基本步骤液相色谱的基本步骤包括样品的进样、色谱柱的分离、检测器的检测和数据的处理。
其中色谱柱的分离是整个液相色谱分析过程的核心,其分离效果直接影响到色谱分析的结果。
三、PVP聚合物的液相色谱分析方法1. PVP聚合物的样品处理在液相色谱分析中,PVP聚合物的样品处理是非常重要的一步。
通常情况下,需要将PVP聚合物样品溶解在适当的溶剂中,经过过滤等处理后,才能够进行后续的分析。
2. 色谱柱的选择在PVP聚合物的液相色谱分析中,选择合适的色谱柱是非常关键的。
一般来说,对于PVP聚合物的分析,常常会选择具有较大孔径和适度保水性的色谱柱,以保证PVP聚合物的有效分离和分析。
3. 流动相的配制流动相的选择和配制对于PVP聚合物的液相色谱分析也是至关重要的。
通常情况下,会选择一些具有一定极性的溶剂作为流动相,并通过适当的混合调配,以实现对PVP聚合物的有效分离。
聚乙烯吡咯烷酮

传统乙炔法工艺路线(Reppe合成法)早在1938年,著名的乙炔化学家 Walter Reppe在实验室中首先合成出PVP。该方法以乙炔为主要的起始原 料,故称乙炔法,是发展至今最为成熟的合成及生产N—乙烯基吡咯烷酮 (NVP)的方法。其工艺大致如下:
3.1 吸附性能与复合作用
PVP是由许多相同结构单元组成的线型聚合物,整个分子有很大的柔 顺性,在水溶液中整个分子具有显著的内部自由度;每个大分子还含有许 多与外相(特别是固体)可能粘接的位置,因此PVP易吸附在许多界面上。 PVP分子结构具有强极性和易形成氢键的酰胺基团,且分子内的O原子、 N原子是典型的配位原子,具有与某些金属生成络合物的能力,使PVP能够 与许多物质,特别是含羟基、羧基、氨基及其他活泼氢原子的化合物生成 固态络合物。
聚乙烯吡咯烷酮
1 概述
聚乙烯吡咯烷酮(polyvinylpyorrlidone)简称PVP,是一种非离子型高分子 化合物,是N一乙烯基酰胺类聚合物中最具特色,且被研究得最深入、广泛的精细 化学品品种。目前已发展成为非离子、阳离子、阴离子3大类,工业级、医药级、 食品级3种规格,相对分子质量从数千至一百万以上的均聚物、共聚物和交联聚 合物系列产品,并以其优异独特的性能获广泛应用。PVP作为一种合成水溶性高 分子化合物,具有水溶性高分子化合物的一般性质:胶体保护作用、成膜性、粘 结性、吸湿性、增溶或凝聚作用。但其最具特色,因而受到人们重视的是其优异 的溶解性能及生理相容性。在合成高分子中象PVP这样既溶于水,又溶于大部分 有机溶剂、毒性很低、生理相溶性好的并不多见,特别是在医药、食品、化妆品 这些与人们健康密切相关的领域中。
4 N-乙烯基吡咯烷酮的合成
NVP 在常温下是一种无色或者淡黄色、略有气味的透明液体, 易溶于水。分子量:111.143;相对密度:1.04g/mL(25℃);
聚乙烯吡咯烷酮PVP催化水解反应研究

聚乙烯基吡咯烷酮催化水解反应研究张世杰1,2 刘述梅2 赵建青 2 章明秋1 1.中山大学化学与化学工程学院,广州,510275 2.华南理工大学材料科学与工程学院,广州,510640尼龙6纤维(锦纶)具有耐磨、染色性好、比重轻、弹性好等许多优异的性能。
但与棉麻等天然纤维相比,吸湿性较低,穿着舒适性较差,限制了其在服装工业中的应用[1]。
为解决这个问题,人们对共聚、纤维后处理等改性方法[2,3]进行P V P 水解率(%)反应 温 度(℃)Fig.1 Relationship between PVP hydrolysis Fig.2 Influence of reaction time on PVPconversion and reaction temperature hydrolysis conversion and pH value (NaOH / PVP (mol ratio)=1.25,reaction time 3h) (NaOH / PVP (mol ratio)=1.25,30℃)从图1中看出在纳米金属催化剂存在下,随着水解反应温度的提高,原料PVP的水解转化率逐渐增大,当温度超过30℃后逐渐趋于恒定。
从图2中看出NaOH溶液加入后,随着反应时间的延长,PVP逐渐发生开环水解反应,水解率不断提高。
同时溶液碱性降低,当反应进行150min后,水解反应逐渐达到平衡状态,此时PVP水解率最高,溶液pH值最小。
以上现象符合化学反应一般规律。
Fig.4 Localization of C atoms Fig.5 13C-NMR spectra of PVP and PVP hydrolysis product in PVP molecule从图5中看出,纯PVP分子中原有C原子对应的核磁共振峰(定位顺序如图4所示)在PVP水解产物中仍然存在,峰位无明显变化(只有C2原子对应峰向高位移动了0.6ppm),部分峰强度发生了改变,说明PVP发生了部分水解,水解产物中仍然存在PVP对应链节。
聚乙烯吡咯烷酮(PVP)于各领域中应用性研究与其成膜性的简述

综合讨论今天聚乙烯吡咯烷酮(PVP)于各领域中应用性研究与其成膜性的简述霍新豪 赵 萍 刘 瑶 谭晓娜 王 辉(山东英才学院 山东 济南 250100)摘要:聚乙烯吡咯烷酮(PVP)作为一种非离子型高分子化合物,是N-乙烯基酰胺类聚合物中最具特色,被研究得最深、最广泛的精细化学品。
已发展成为非离子、阳离子、阴离子3大类,工业级、医药级、食品级3种规格,并以其优异独特的性能获得广泛应用。
(PVP)具有水溶性高分子化合物的一般性质,胶体保护作用、成膜性、粘结性、吸湿性、增溶或凝聚作用。
本文主要对其在各个领域中的应用性进行分析总结并在目前对现有产品及领域分析的基础上对其成膜性进行简述。
PVP作为一种合成水溶性高分子化合物,具有水溶性高分子化合物的一般性质,在合成高分子中像PVP这样既溶于水,又溶于大部分有机溶剂、毒性很低、生理相溶性好的并不多见,特别是在医药、食品、化妆品这些与人们健康密切相关的领域中,随着其原料丁内酯价格的降低,近年来其作用逐渐开发,以下将对其在各领域的作用展开总结分析。
关键词:聚乙烯吡咯烷酮;非离子型;高分子化合物中图分类号:TQ028.1 文献标识码:B 文章编号:1002-3917(2021)06-0269-01 医药卫生领域相关应用分析PVP有优良的生理惰性,不参与人体新陈代谢,又具有优良的生物相容性,对皮肤、粘膜、眼等不形成任何刺激。
医药级PVP为国际倡导的三大药用新辅料之一,可用做片剂、颗粒剂的粘结剂、注射剂的助溶剂、胶囊的助流剂;眼药的去毒剂,延效剂,润滑剂和包衣成膜剂,液体制剂的分散剂和酶及热敏药物的稳定剂,还可用做低温保存剂。
用于隐形眼镜、可增加其亲水性和润滑性。
从生物学的观点来看,PVP的分子结构特色类似于用简单的蛋白质模型的那种结构,甚至于它的水溶性对某些小分子的配合能力以及能够被某些蛋白质的沉淀剂硫酸铵、三氯乙酸、单宁酸和酚类所沉淀等特性也和蛋白质相溶。
以致于使PVP被广泛地用作药物制剂的辅料,如用作制剂的粘结剂、共沉淀剂、作为注射液中的助溶剂或结晶生成阻止剂、包衣或成膜剂、延缓剂、缓释剂药物的可控释放可延长药物的作用时间、人工玻璃体和角膜、外科包扎带、PVP碘消毒剂。
聚乙烯吡咯烷酮行业现状分析报告

国内外政策法规对聚乙烯吡咯烷酮行业的发展都起到了重要的推动作用,但具体影响因国家、地区和时间等因素 而异。
未来政策法规发展趋势预测
环保要求更加严格
未来国家将继续加大对环保的投入和监管力 度,推动聚乙烯吡咯烷酮行业实现绿色可持 续发展。
市场准入更加规范
未来国家将继续完善市场准入制度,提高行业的进 入门槛,促进聚乙烯吡咯烷酮行业的健康发展。
THANKS
谢谢您的观看
未来环保与可持续发展趋势预测
总结词
未来聚乙烯吡咯烷酮行业将更加注重环保和可持续发 展,预测将出现以下趋势。
详细描述
随着环保政策的加强和消费者对环保产品的需求增加 ,聚乙烯吡咯烷酮行业将更加注重环保和可持续发展 。未来可能出现以下趋势:企业将加强技术创新和设 备更新,提高生产效率和资源利用率;行业将逐步建 立和完善环保标准和监管机制;企业将加强与科研机 构合作,推动绿色技术的研发和应用;同时,企业也 将加强社会责任和公众参与意识,推动行业的可持续 发展。
03
生产工艺与技术水平
聚乙烯吡咯烷酮生产工艺流程介绍
原料准备
选用高品质的原料,如 聚乙烯和吡咯烷酮单体
等。
聚合反应
在催化剂的作用下,将 原料进行聚合反应,生
成聚乙烯吡咯烷酮。
分离与纯化
通过离心、洗涤、干燥 等步骤,分离出聚合物 并去除未反应的原料。
造粒与包装
将聚合物造粒并包装成 产品。
国内外技术水平对比分析
解决方案
采用环保型的生产工艺,提高设备效率,减少能源消耗和污染物排放。例如,采用新型的 反应器技术,改善反应条件,降低废气排放。同时,建立废水处理装置和固体废弃物处理 设施,确保废水达标排放和固体废弃物妥善处理。
聚乙烯吡咯烷酮的研究

药用高分子材料学综述12药学陈章捷学号:201210082073聚乙烯吡咯烷酮的研究陈章捷12药学[摘要]目的:对聚乙烯吡咯烷酮的研究进行综述。
方法:通过查阅国内相关文献,对聚乙烯吡咯烷酮进行各方面的研究。
结果:初步了解聚乙烯吡咯烷酮的合成、性质、应用、前景。
结论:为聚乙烯吡咯烷酮更好的应用提供参考。
关键词:聚乙烯吡咯烷酮;合成;性质;应用;前景1 前言聚乙烯吡咯烷酮(polyvinyl pyrrolidone)简称PVP,是一种非离子型高分子化合物,是N-乙烯基酰胺类聚合物中最具特色,且被研究得最深、广泛的精细化学品品种。
已发展成为非离子、阳离子、阴离子3大类,工业级、医药级、食品级3种规格,相对分子质量从数千至一百万以上的均聚物、共聚物和交联聚合物系列产品,并以其优异独特的性能获得广泛应用。
2 合成2.1 NVP的合成[1-2]2.1.1 乙炔法由乙炔和甲醇合成丁炔二醇,加氢生成1,4-丁烯二醇,脱氢生成7-丁内酯(GBL),再和氨合成吡咯烷酮,吡咯烷酮和乙炔反应生成N一乙烯基毗咯烷酮。
2.1.2 NHP脱水法由γ-丁内酯(GBL)和乙醇胺(MEA)在催化剂和较高温度下反应生成N-羟乙基-1O-羟丁酰胺(HHBA),闭环脱水得NHP( N-羟乙基-吡咯烷酮),再脱水生成NVP。
2.1.3 琥珀酸法琥珀酸在高温高压下和乙醇胺、氢直接在催化剂作用下制得NHP,再脱水生成NVP。
2.1.4 乙炔和乙烯基醚法在二氧六环中用汞盐作催化剂进行乙烯基交换,可制得NYP。
2.1.5 琥珀酸酐和MEA反应法制得(-OCCH2CH2CO-)2NCH2CH2OH,而后在稀硫酸溶液中以铅电极电解还原成NVP。
2.1.6 乙烯和吡咯烷酮钯的催化法直接乙烯基化反应制得NVP。
以上方法,工业上成熟的路线是乙炔法。
2.2 PVP的合成N-乙烯基吡咯烷酮可以均聚,在140℃以上由热引发本体聚合;由过氧化物引发的水溶液聚合、悬浮聚合.也可共聚NVP广泛地用作共聚单体以改变某些价格较低的聚合物的性质,提高亲水性,增加对金属、玻璃、尼龙等基材的粘接性,提高软化点,改进乳化能力和染色能力等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
药用高分子材料学综述12药学陈章捷学号:2聚乙烯吡咯烷酮的研究陈章捷12药学[摘要]目的:对聚乙烯吡咯烷酮的研究进行综述。
方法:通过查阅国内相关文献,对聚乙烯吡咯烷酮进行各方面的研究。
结果:初步了解聚乙烯吡咯烷酮的合成、性质、应用、前景。
结论:为聚乙烯吡咯烷酮更好的应用提供参考。
关键词:聚乙烯吡咯烷酮;合成;性质;应用;前景1 前言聚乙烯吡咯烷酮(polyvinyl pyrrolidone)简称PVP,是一种非离子型高分子化合物,是N-乙烯基酰胺类聚合物中最具特色,且被研究得最深、广泛的精细化学品品种。
已发展成为非离子、阳离子、阴离子3大类,工业级、医药级、食品级3种规格,相对分子质量从数千至一百万以上的均聚物、共聚物和交联聚合物系列产品,并以其优异独特的性能获得广泛应用。
2 合成2.1 NVP的合成[1-2]2.1.1 乙炔法由乙炔和甲醇合成丁炔二醇,加氢生成1,4-丁烯二醇,脱氢生成7-丁内酯(GBL),再和氨合成吡咯烷酮,吡咯烷酮和乙炔反应生成N一乙烯基毗咯烷酮。
2.1.2 NHP脱水法由γ-丁内酯(GBL)和乙醇胺(MEA)在催化剂和较高温度下反应生成N-羟乙基-1O-羟丁酰胺(HHBA),闭环脱水得NHP( N-羟乙基-吡咯烷酮),再脱水生成NVP。
2.1.3 琥珀酸法琥珀酸在高温高压下和乙醇胺、氢直接在催化剂作用下制得NHP,再脱水生成NVP。
2.1.4 乙炔和乙烯基醚法在二氧六环中用汞盐作催化剂进行乙烯基交换,可制得NYP。
2.1.5 琥珀酸酐和MEA反应法制得(-OCCH2CH2CO-)2NCH2CH2OH,而后在稀硫酸溶液中以铅电极电解还原成NVP。
2.1.6 乙烯和吡咯烷酮钯的催化法直接乙烯基化反应制得NVP。
以上方法,工业上成熟的路线是乙炔法。
2.2 PVP的合成N-乙烯基吡咯烷酮可以均聚,在140℃以上由热引发本体聚合;由过氧化物引发的水溶液聚合、悬浮聚合.也可共聚NVP广泛地用作共聚单体以改变某些价格较低的聚合物的性质,提高亲水性,增加对金属、玻璃、尼龙等基材的粘接性,提高软化点,改进乳化能力和染色能力等。
反应可以本体、溶液成乳液状态进行,溶剂包括水、苯、甲苯、丙酮等,引发剂为偶氨二异丁腈。
均聚物PVP的相对分子质量可以从1000到1000000不等,可形成不同规格的系列产品,以满足不同的应用要求。
3 性质3.1 物理性质[3-4]3.1.1 溶解性和互溶性PVP除不溶于乙醚、丙酮、松节油、脂肪烃脂环烃等少数溶剂外,可溶于各种醇、胺、酰胺、卤代烃、硝基烷烃及低分子脂肪酸,还能与大多数无机盐和少量芳烃、酯相溶。
PVP的一个显著特征是其极易溶于水。
3.1.2 成膜性和粘接性PVP溶液可以浇铸成透明光亮的薄膜,且有一定的挺度。
PVP薄膜还具有优良的粘接性能,可作为纸张、玻璃和金属的粘接剂。
然而PVP薄膜有较强的吸湿性,其吸水率顺序:羧甲基纤维素>PVP>聚乙烯醇。
但PVP薄膜的吸湿性可通过与其它树脂共聚或混溶改性来改善。
3.2 化学性质[3-4]3.2.1 化学稳定性PVP有较好的热稳定性。
在空气中加热.低于l30~140℃时无明显变化。
温度超过150℃.PVP 将发生交联反应。
有惰性气体保护时PVP能承受较高温度而在一定时间内不发生明显的降解。
PVP对强碱较敏感,两种水溶液混合加热时,将很快发生凝胶化作用.生成不溶于水的凝胶。
3.2.2 表面活性PVP的表面活性表现在:PVP具有增溶作用,在印染工业染色时作染料的增溶剂,和用于增加某些基本不溶于水而有药理活性的物质的水溶性;分散作用,可使溶液中的有色物质、悬浮液、乳液分散均匀并保持稳定;吸附作用,易吸附在许多界面并在一定程度上降低界面表面张力。
还表现有湿润、稳泡、去污等作用,而广泛地应用于日用化工产品中。
4 应用4.1 在日用化工中的应用[5-11]4.1.1 化妆品PVP的C-N-C=O基团与蛋白质的肽键性质相似,对头发和皮肤都有良好的保护作用,其单体NVP与醋酸乙烯的共聚物可用作多种护发用品的成膜剂和定型剂。
NVP 与长链α-烯烃共聚生成具有表面活性的成膜剂,具有抗水和防潮等特性;形成的薄膜具有水溶性,且透明清晰、光亮硬挺,已经取代以往使用的天然虫喷发胶。
PVP具有良好的保湿性能,在乳液中具有保护胶体的作用,可用作脂肪性和非脂肪性膏体的稳定剂。
PVP用在唇膏、眼影、睫毛油中可降低色素及某些成分对皮肤的刺激。
PVP用于牙膏可以去除牙齿上的烟垢和其他污物,且具有洁白牙齿、预防牙蚀斑、治愈牙龈炎和口腔疾病的良好功效。
4.1.2 洗涤用品PVP具有优良的抗污垢再沉淀性能,将其用于洗涤剂中,洗涤织物时可以防止串色,防止合成洗涤剂对皮肤的刺激性;尤其对合成纤维,此性能比羧甲基纤维素(CMC)类洗涤剂更突出。
PVP与过氧化氢固体复合物配入洗涤剂中具有漂白、杀灭病菌的作用。
PVP用在皂类中可提高块皂的粘结强度提高皂片的强度及泡沫稳定性,在卫生皂中可与杀菌剂形成配合物从而降低对皮肤的刺激性。
在制备洗手液时加入聚维酮,能有效去除污垢和细菌,且能保护皮肤防止受刺激。
4.2 在食品工业中的应用[5-11]聚乙烯吡咯烷酮可用于非营养型甜味佐料的浓缩与稳定,以及对维他命和矿物质成分的浓缩提取。
还可用作各种食品的包装材料,采用PVP有利于包衣过程的自动化生产,可降低包衣成型时间。
4.3 在纺织染整工业中的应用[5-11]PVP与许多有机染料有很强的亲和力,主要是由于PVP分子中的内酰胺结构与染料中的羟基、氨基等有机官能团结合。
它可与聚丙烯腈、酯、尼龙和纤维性材料等疏水性合成纤维结合,大大提高其染色力和亲水性。
PVP还可用作织物的抗尘污剂、剥色剂、染料快速还原剂和颜料的缓冲剂和分散剂。
PVP与尼龙接枝共聚后,生产的织物改善了抗湿皱性能和防潮性,而且在PVP存在下,大多数染料变得易溶解于水,增加了染料的染色能力,并使染整的纤维光泽鲜艳、持久。
4.4 医药[12-17]4.4.1 在口服固体射剂中用作粘合剂由于其在水中和通常使用的有机溶剂中可溶,使它实际上能在各种配方中使用。
4.4.2 用作固体分散剂为提高难溶性药物的生物利用度和稳定性,可采用固体分散技术,即将水不溶性药物以极细的微粒或分子状态分散于水溶性固态载体中,当把这种混合物或经熔融的凝固体放在液体中时,可溶性载体立即溶解,而药物则以极细的微粒释放出来,这样释放的微粒与未经分散者相比能提高溶出度达数倍以上。
4.4.3 用作薄膜包衣材料通常规格的PVP作为药用成膜材料,其柔韧性较理想。
但PVP常与其它成膜材料如丙烯酸树脂、虫胶、甲基或乙基纤维素、醋酸纤维素等合用,以强其抗潮性能。
在配制浆液时,要单独用亲水性溶媒溶解,最好用它来增加混合浆液的粘度。
已证明它能应用于水和有机溶剂两种系统。
4.4.4 在缓释控释制剂中的应用此类片剂的亲水性骨架材料遇水即形成凝胶屏障,控制药物通过凝胶层缓慢向外扩散释放,改变骨架材料与药物用量的比例等可调节释药速率。
4.4.5 制备稳定的维生素制剂高度稳定的油溶性维生素(A、D、E)可以在氢化油或蜡中制备固体溶液,随后以极细的小珠形式分散在一种含有增塑剂的凝腔中。
即使长期暴鼯在相对高温的空气中,这类产品仍然相当稳定。
4.4.6 在口服液体制剂中用作稳定剂PVP K-90在口服液体剂型中具有广泛的应用。
可用于得到均匀和稳定的产品。
4.4.7 在眼科及其它药剂领域的应用①1%~2%浓度的K 90可用于缓和对眼的刺激;②能增强隐形眼镜清洁液的效果;③与HPMC、甲基纤维索或聚乙烯醇相比,在处方中使用苯扎氯铵时,很少出现相容性问题;④剥放入的隐形眼镜的粘结损害极低;⑤与其它聚合物相比,对0.1%托吡卡胺具有最高的生物相容性;⑥用于人工泪液,优于聚乙烯醇;⑦在长效眼膜中可作为控释层的致孔剂。
4.5 其它[5-11]PVP可用于防护胶体和卤化银的悬浮剂的制造,在卤化银显影过程中,使用PVP做助剂,可避免双色斑点的产生。
PVP是非常稳定的酸性胶凝剂,它对盐浓度敏感,在含水性粘土区域,它在使用高盐浓度的聚合物驱油中特别适用。
PVP与其它有机物配成水溶液注入油井下,可提高油田的采油率。
随着研究的不断深入,未来PVP的发展将会开拓全新的应用领域。
5 前景[18-20]国外对PVP的研究和生产已有50多年的历史,我国PVP的生产和应用起步较晚,在产品的生产开发和应用研究方面与国外相比存在较大差距。
目前国内年消费量约为3000t,每年还需从国外进口大量PVP产品以弥补国内供需缺口。
总之,随着经济的迅猛发展和科技水平的不断提高,新领域、新课题逐渐被人们所研发与开拓,PVP在国内的需求量将持续增长。
因此,利用国内外先进的生产技术与设备、建成一套颇具规模的PVP装置及产品的深加工体系,必将为企业提高经济效益、创造经济价值、拓宽生产领域、发展替代产业产生深远的影响。
参考文献[1]张华.聚乙烯吡咯烷酮的合成及应用[J].化工时刊.2002.(4):34-36.[2] 黎四芳,石称华,林海青.聚乙烯吡略烷酮的制备研究[J].化学世界.1999.(4):201-204.[3] 龙宇升,康正,廖列文,等.聚乙烯吡咯烷酮的性质及测定[J].广州化学.1999.27(2):33-35.[4] 王文祥.PVP的制备、性质及应用[J].黎明化工.1995.(3):33-36.[5] 蒋毅民,陈小兰.用途广泛的聚乙烯吡咯烷酮[J].化学工程师.1994.(3):36-38.[6] 杨晓慧,曹钨,段淑娥.聚乙烯基吡咯烷酮的合成及应用[J].西安联合大学学报.2001.4(4):47-51.[7] 汪立德.聚乙烯吡咯烷酮及其应用的进展[J].现代化工.1995.(9):21-25.[8] 韩惠芳,崔英德,蔡立彬.聚乙烯吡咯烷酮的应用[J].精细石油化工进展.2003.4(11):43-48.[9] 马婷芳,史铁均.聚乙烯吡咯烷酮的性能、合成及应用[J].应用化工.2002.31(3):16-19.[10] 汪多仁. 聚乙烯吡咯烷酮的合成与应用[J].牙膏工业.2000.(2):13-16.[11] 汪多仁. 聚乙烯吡咯烷酮的合成及其在日化工业中的应用[J].甘肃化工.2000.(1):9-12.[12] 沈慧凤,任麒.聚乙烯吡咯烷酮系列辅料在药剂上的应用[J].中国医药工业杂志.1995.26(12):554-557.[13] 侯惠民,朱金屏,熊金美,等.PVP PVA为辅料的胃漂浮缓释片研究Ⅱ地尔硫蕈胃漂浮缓释片[J].中国医药工业杂志.1991.22(4):156-158.[14] 孙彬彬,张含晖.新型药用辅料PVP[J].浙江化工.2005.36(10):31-32.[15] 沈海霞,黄兴华,周训胜,等.聚乙烯吡咯烷酮在医药领域中的应用.海峡药学.2003.15(6):92-94.[16] 卢文胜. 聚乙烯吡咯烷酮K30在甲硝唑片制备中的应用.中南药学.2005.3(6):354-355.[17] 吴文娟,陈任宏,俞红.聚乙烯吡咯烷酮对药物与β-环糊精包合作用的影响[J].广东药学院学报.2001.17(1):10-14.[18] 白玉杰.聚乙烯基吡咯烷酮(PVP)的生产应用与市场前景[J].化学工程师.2003.(4):38-39.[19] 徐兆瑜.聚乙烯吡咯烷酮和N-甲基吡咯烷酮的应用进展[J].化工技术与开发.2004.33(3):19-23.[20] 苗蔚荣,陈萍.聚乙烯吡咯烷酮的发展概况[J].1995.32(4):27-29.。