对勾函数的几点分析
对勾函数的性质及应用

对勾函数的性质及运用一、对勾函数by ax x =+)0,0(>>b a 的图像与性质:1. 界说域:),0()0,(+∞⋃-∞2. 值域:),2[]2,(+∞⋃--∞ab ab3.奇偶性:奇函数,函数图像整体呈两个“对勾”的外形,且函数图像关于原点呈中间对称,即0)()(=-+x f x f4. 图像在一.三象限, 当0x >时,b y ax x =+≥ab 2(当且仅当bx a =取等号),即)(x f 在x=ab时,取最小值ab 2由奇函数性质知:当x<0时,)(x f 在x=ab -时,取最大值ab 2-5.单调性:增区间为(∞+,ab),(ab -∞-,),减区间是(0,ab ),(ab -,0)二、对勾函数的变形情势类型一:函数by ax x =+)0,0(<<b a 的图像与性质1.界说域:),0()0,(+∞⋃-∞2.值域:),2[]2,(+∞⋃--∞ab ab3.奇偶性:奇函数,函数图像整体呈两个“对勾”的外形.4.图像在二.四象限, 当x<0时,)(x f 在x=ab 时,取最小值ab 2;当0x >时,)(x f 在x=ab -时,取最大值ab 2-5.单调性:增区间为(0,ab ),(ab -,0)减区间是(∞+,a b),(a b -∞-,),类型二:斜勾函数by ax x =+)0(<ab①0,0<>b a 作图如下1.界说域:),0()0,(+∞⋃-∞2.值域:R3.奇偶性:奇函数4.图像在二.四象限,无最大值也无最小值.5.单调性:增区间为(-∞,0),(0,+∞). ②0,0><b a 作图如下:1.界说域:),0()0,(+∞⋃-∞2.值域:R3.奇偶性:奇函数4.图像在二.四象限,无最大值也无最小值.5.单调性:减区间为(-∞,0),(0,+∞). 类型三:函数)0()(2>++=ac x c bx ax x f .此类函数可变形为bx c ax x f ++=)(,可由对勾函数x c ax y +=高低平移得到演习1.函数x x x x f 1)(2++=的对称中间为类型四:函数)0,0()(≠>++=k a k x ax x f此类函数可变形为kk x ak x x f -+++=)()(,则)(x f 可由对勾函数x a x y +=阁下平移,高低平移得到演习 1.作函数21)(-+=x x x f 与xx x x f +++=23)(的草图2.求函数421)(-+=x x x f 在),2(+∞上的最低点坐标3. 求函数1)(-+=x xx x f 的单调区间及对称中间类型五:函数)0,0()(2>≠+=b a bx axx f .此类函数界说域为R ,且可变形为x b x axbx a x f +=+=2)( a.若0>a ,图像如下:1.界说域:),(+∞-∞ 2. 值域:]21,21[b a ba ⋅⋅-3. 奇偶性:奇函数.4. 图像在一.三象限.当0x >时,)(x f 在b x =时,取最大值ba2,当x<0时,)(x f 在x=b -时,取最小值b a 2-5. 单调性:减区间为(∞+,b ),(b -∞-,);增区间是],[b b -演习1.函数1)(2+=x xx f 的在区间[)2,+∞上的值域为b. 若0<a ,作出函数图像:1.界说域:),(+∞-∞ 2. 值域:]21,21[ba ba ⋅⋅- 3. 奇偶性:奇函数.4. 图像在一.三象限.当0x >时,)(x f 在b x =时,取最小值ba 2-,当x<0时,)(x f 在x=b -时,取最大值b a 25. 单调性:增区间为(∞+,b ),(b -∞-,);减区间是],[b b -演习1.如2214xa x +=-+()1,2x ∈-,则的取值规模是类型六:函数)0()(2≠+++=a mx c bx ax x f .可变形为)0()()()()(2>++++=+++++=at s m x t m x a m x t m x s m x a x f ,则)(x f 可由对勾函数x tax y +=阁下平移,高低平移得到演习 1.函数11)(2+++=x x x x f 由对勾函数x x y 1+=向(填“左”.“右”)平移单位,向(填“上”.“下”)平移单位. 2.已知1->x ,求函数1107)(2+++=x x x x f 的最小值;3.已知1<x ,求函数199)(2--+=x x x x f 的最大值 类型七:函数)0()(2≠+++=a c bx ax mx x f演习1.求函数21)(2++-=x x x x f 在区间),1(+∞上的最大值;若区间改为),4[+∞则)(x f 的最大值为 2.求函数232)(22++++=x x x x x f 在区间),0[+∞上的最大值类型八:函数ax b x x f ++=)(.此类函数可变形为尺度情势:)0()(>-+-++=+-++=a b ax a b a x ax ab a x x f演习1.求函数13)(-+=x x x f 的最小值;2.求函数15)(++=x x x f 的值域;3.求函数32)(++=x x x f 的值域 类型九:函数)0()(22>++=a ax b x x f .此类函数可变形为尺度情势:)()()(22222o a b ax a b a x ax ab a x x f >-+-++=+-++=演习 1.求函数45)(22++=x x x f 的最小值;2. 求函数171)(22++=x x x f 的值域。
对勾函数详细分析

对勾函数详细分析对勾函数,又称为Heaviside函数或者单位阶跃函数,是一种常见的数学函数。
它在控制系统、信号处理和电路分析等领域具有广泛的应用。
在数学上,对勾函数可以通过以下方式定义:H(x)=0,x<0H(x)=1/2,x=0H(x)=1,x>0其中,H(x)表示对勾函数,x为自变量。
从定义可以看出,对勾函数在x小于0时取0,在x等于0时取1/2,在x大于0时取1对勾函数在数学上的精确定义可以依赖于Laplace变换或者Fourier 变换等数学工具,用于解决微积分和微分方程等问题。
在实际应用中,对勾函数通常以数学形式存在,用于描述信号的开关行为。
在控制系统中,对勾函数可以表示系统的阶跃响应。
阶跃响应是指当输入信号为一个单位阶跃函数时,系统所产生的响应。
对勾函数可以帮助分析系统的稳定性、零极点和频率响应等性质。
在信号处理中,对勾函数可以用于描述数字信号的采样和量化过程。
当对一个连续信号进行采样时,可以将采样函数表示为对勾函数。
对勾函数在离散时间中具有单位阶跃响应的特性,可以用于分析信号的频谱和滤波等问题。
在电路分析中,对勾函数可以用于描述开关电路的动态响应。
开关电路通常包含开关元件和电容、电感等被控元件。
对勾函数可以帮助确定电路的稳态和暂态响应,并且可以用于分析电路中的信号传输、噪声和功耗等问题。
此外,对勾函数在概率论和统计学中也有应用。
例如,对勾函数可以用于计算累积分布函数(CDF)和概率密度函数(PDF)。
对勾函数可以将离散随机变量转化为连续随机变量,以进行概率计算和数值模拟等工作。
对勾函数具有一些重要的性质。
首先,它是一个连续函数,但不是光滑函数。
它在x=0处的导数不存在,即导数不连续。
其次,对勾函数是一个奇函数,即H(-x)=1-H(x)。
此外,对勾函数是一个分布函数,满足概率的基本性质,即0≤H(x)≤1总结起来,对勾函数是一个常用的数学函数,具有广泛的应用。
它可以表示系统的阶跃响应,在信号处理和电路分析等领域发挥重要作用。
对勾函数

对勾函数图象性质对勾函数 :数学中一种常见而又特殊的函数。
如图一、对勾函数f(x)=ax+ 的图象与性质对勾函数是数学中一种常见而又特殊的函数。
它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。
(一 ) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+ (接下来写作f(x)=ax+b/x )。
当 a≠0, b≠0时, f(x)=ax+b/x 是正比例函数 f(x)=ax 与反比例函数 f(x)= b/x 叠“加”而成的函数。
这个观点,对于理解它的性质,绘制它的图象,非常重要。
当 a , b 同号时,f(x)=ax+b/x 的图象是由直线y= ax 与双曲线y= b/x 构成,形状酷似双勾。
故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。
如下图所示:a>0 b>0 a<0 b<0对勾函数的图像( ab 同号)当 a ,b 异号时, f(x)=ax+b/x 的图象发生了质的变化。
但是,我们依然可以看作是两个函数“叠加”而成。
(请自己在图上完成:他是如何叠加而成的。
)对勾函数的图像(ab 异号)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。
接下来,为了研究方便,我们规定a>0 , b>0 。
之后当a<0,b<0 时,根据对称就很容易得出结论了。
1(二 ) 对勾函数的顶点对勾函数性质的研究离不开均值不等式。
利用均值不等式可以得到:当 x>0 时,。
当 x<0 时,。
即对勾函数的定点坐标:(三 ) 对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。
(四 ) 对勾函数的单调性y(五 ) 对勾函数的渐进线O Xy=ax由图像我们不难得到:(六 ) 对勾函数的奇偶性:对勾函数在定义域内是奇函数,二、类耐克函数性质探讨函数y ax b,在 a0或b0时为简单的单调函数,不予讨论。
对勾函数详细分析

对勾函数详细分析对勾函数是一种经典的激活函数,在人工神经网络中被广泛使用。
它的主要特点是非线性,能够接受任意实数作为输入,输出范围在0和1之间。
在本文中,我们会详细分析对勾函数的定义、数学性质、应用以及优缺点。
对勾函数的定义为 f(x) = 1 / (1 + exp(-x)),其中 exp(x) 表示自然指数函数。
这个函数的图像是在x轴上下限分别为负无穷大和正无穷大,y轴上下限分别为0和1的S形曲线。
当 x 趋近正无穷大时,f(x) 趋近于1;当 x 趋近负无穷大时,f(x) 趋近于0。
对勾函数的主要数学性质如下:1.非线性:对勾函数是一种非线性函数,这是它被广泛使用的主要原因之一、它可以通过增加网络的复杂度来学习复杂的非线性模式。
2.可微性:对勾函数是连续可导的函数,这使得它可以与其他函数进行组合,形成复杂的神经网络结构。
对勾函数的导数f'(x)可以通过对f(x)进行求导得到,其表达式为f'(x)=f(x)(1-f(x))。
3.单调性:对勾函数是单调递增的,这意味着当输入值增加时,输出值也会增加。
这种单调性有助于网络的学习过程。
对勾函数在人工神经网络中的应用非常广泛,包括但不限于以下几个方面:1.模式识别:对勾函数可以用于二分类问题的模式识别。
例如,在人脸识别中,可以使用对勾函数作为分类器来判断输入图像是人脸还是非人脸。
2.概率估计:对勾函数可以将实数映射到概率值的范围(0到1之间)。
这在机器学习中经常用于估计事件发生的概率。
3.深度学习:对勾函数是目前最流行的神经网络模型,深度神经网络中的常用激活函数。
它可以通过复杂的网络结构来学习高级的非线性模式。
虽然对勾函数有许多优点,但它也有一些缺点。
1.饱和性:当输入值较大或较小时,对勾函数的导数值会趋近于0,导致梯度消失的问题。
这会导致网络训练过程中的梯度更新过小,使得学习过程变得缓慢。
2.输出范围限制:对勾函数的输出范围为0和1之间,这意味着对勾函数不能表示负数的情况。
1 对勾函数的性质及应用

1 对勾函数的性质及应用对勾函数是一种常见的数学函数形式,在不同领域中有着广泛的应用。
它的性质包括有界性、递增性、连续性和可导性等。
本文将详细介绍对勾函数的性质及其在各领域中的应用。
对勾函数的定义为:\[ f(x) = \begin{cases} 0, & \text{if } x < 0 \\ x, & \text{if } 0 \leq x \leq 1 \\ 1, & \text{if } x > 1 \end{cases} \]首先,对勾函数具有有界性。
在定义域上,函数的取值范围被限定在0和1之间。
当输入小于0时,函数取值为0;当输入大于1时,函数取值为1。
这使得对勾函数在一定范围内有着固定的输出,这种特性在一些问题的建模中非常实用。
其次,对勾函数是递增的。
在定义域内,随着输入的增加,函数的值也会逐渐增加。
当输入从0到1时,函数的值从0逐渐增加到1。
由于递增性,对勾函数常常用来表示随着某个条件的改变,结果的增长或减少的情况。
第三,对勾函数是连续的。
在定义域内,对勾函数没有跳跃或断裂点,可以表示为一条连续的曲线。
这使得对勾函数在各种数学和统计分析中非常方便,例如用于求解连续函数的极值点、最小二乘法估计等。
最后,对勾函数是可导的。
在定义域内的大部分点上,对勾函数都是可导的。
只有在分界点0和1处可能不可导,因为函数在这些点的左右导数可能不相等。
然而,在实际问题中,由于对勾函数在这些点的函数值不连续,导数的存在与否并不会对问题的求解造成太大影响。
对勾函数具有广泛的应用。
下面将分别介绍对勾函数在数学、物理、经济和计算机科学等领域中的应用。
在数学中,对勾函数常用于分段函数的表示。
分段函数是一种函数形式,它在不同的定义域上有着不同的表达式。
由于对勾函数的定义形式简单,且具有可读性,因此常常用来表示分段函数。
例如,在微积分中,对勾函数常用于表示阶梯函数、指示函数等。
在物理学中,对勾函数常用于表示信号的限制和变换。
对勾函数知识点总结

对勾函数知识点总结
一、什么是勾函数
勾函数是一种连续函数,它的函数表达式为:f(x)=1/x。
二、勾函数在数学中的应用
1. 在概率论中,勾函数用于表示受试者和控制者之间的期望。
2. 勾函数也用于测量偏差和抽样误差。
3. 勾函数在统计中可以用于拟合不确定的数据,确定概率分布和数字分布的函数形式。
4. 勾函数还可以用于求解复杂的微积分问题。
5. 在信号处理中,勾函数可以用于表征频谱分析中的尺度变换函数,也可以表征复变振荡器的特性。
三、勾函数的特点
1. 勾函数是个连续函数。
2. 勾函数是一个奇函数。
3. 勾函数在原点处不可导。
4. 勾函数在原点处取极限值为无穷大。
5. 勾函数的图像有一条对称轴,它穿过原点。
6. 从原点开始,勾函数图像呈现“大图式”。
7. 勾函数的曲线实点对称。
8. 勾函数是无穷小的无穷大极限函数。
对勾函数知识点总结

对勾函数知识点总结对勾函数是一种常见的数学函数,也被称为Kronecker delta函数。
它在数学、物理、工程等领域中都有广泛的应用。
本文将对对勾函数的定义、性质和应用进行总结。
一、对勾函数的定义对勾函数是一个二元函数,通常用符号δ(i,j)表示。
它的定义如下:当i=j时,δ(i,j)=1;当i≠j时,δ(i,j)=0。
简单来说,对勾函数在i=j时取值为1,在i≠j时取值为0。
这个函数的定义看起来很简单,但它在实际应用中有着重要的作用。
二、对勾函数的性质1. 对勾函数是对称的,即δ(i,j)=δ(j,i)。
2. 对勾函数满足线性性质,即对于任意的实数a和b,有δ(i,j)=aδ(i,j)+bδ(i,j)。
3. 对勾函数在矩阵运算中有着重要的作用。
例如,对于一个n阶方阵A,可以定义一个n阶单位矩阵I,其中I(i,j)=δ(i,j)。
这样,矩阵A和I的乘积就等于A本身。
三、对勾函数的应用1. 矩阵运算对勾函数在矩阵运算中有着广泛的应用。
例如,在线性代数中,可以使用对勾函数来定义矩阵的转置、逆矩阵等运算。
2. 离散信号处理对勾函数在离散信号处理中也有着重要的应用。
例如,在数字信号处理中,可以使用对勾函数来表示离散时间信号的采样。
3. 物理学对勾函数在物理学中也有着广泛的应用。
例如,在量子力学中,可以使用对勾函数来表示量子态之间的内积。
对勾函数是一种非常重要的数学函数,它在数学、物理、工程等领域中都有着广泛的应用。
对勾函数的定义、性质和应用都需要我们深入学习和掌握。
(完整版)对勾函数详细分析

对勾函数的性质及应用一、对勾函数b y ax x =+)0,0(>>b a 的图像与性质:1. 定义域:),0()0,(+∞⋃-∞2. 值域:),2[]2,(+∞⋃--∞ab ab3. 奇偶性:奇函数,函数图像整体呈两个“对勾”的形状,且函数图像关于原点呈中心对称,即0)()(=-+x f x f 4. 图像在一、三象限, 当0x >时,by ax x=+≥ab 2(当且仅当b x a ,即)(x f 在x=a b 时,取最小值ab 2由奇函数性质知:当x<0时,)(x f 在x=ab -时,取最大值ab 2-5. 单调性:增区间为(∞+,ab ),(a b -∞-,),减区间是(0,a b ),(a b -,0)二、对勾函数的变形形式 类型一:函数by ax x=+)0,0(<<b a 的图像与性质 1.定义域:),0()0,(+∞⋃-∞ 2.值域:),2[]2,(+∞⋃--∞ab ab3.奇偶性:奇函数,函数图像整体呈两个“对勾”的形状.4.图像在二、四象限, 当x<0时,)(x f 在x=ab 时,取最小值ab 2;当0x >时,)(x f 在x=ab -时,取最大值ab 2-5.单调性:增区间为(0,a b ),(a b -,0)减区间是(∞+,ab ),(a b -∞-,),类型二:斜勾函数by ax x =+)0(<ab①0,0<>b a 作图如下1.定义域:),0()0,(+∞⋃-∞2.值域:R3.奇偶性:奇函数4.图像在二、四象限,无最大值也无最小值.5.单调性:增区间为(-∞,0),(0,+∞).②0,0><b a 作图如下:1.定义域:),0()0,(+∞⋃-∞2.值域:R3.奇偶性:奇函数4.图像在二、四象限,无最大值也无最小值.5.单调性:减区间为(-∞,0),(0,+∞).类型三:函数)0()(2>++=ac xcbx ax x f 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对勾函数的几点分析
对勾函数是一种类似于反比例函数的一般函数,又被称为“双勾函数”、"勾函数"等。
也被形象称为“耐克函数”
奇偶性与单调性
当x>0时,f(x)=
x b ax +
有最小值(这里为了研究方便,规定a>0,b>0),即当a
b x =的时候
奇函数。
令a b k =
,那么:
增区间:{x|x≤-k}和{x|x≥k};
减区间:{x|-k≤x<0}和{x|0<x≤k}
变化趋势:在y 轴左边,增减,在y 轴右边,减增,是两个勾。
渐近线:耐克函数的图像是分别以y 轴和y=ax 为渐近线的两支双曲线。
对勾函数:图像,性质,单调性
均值不等式,
导数求解,
其它解法
对于这个函数f(x)=x b ax +
,
(1)它的单调性与奇偶性有何应用?而值域问题恰好与单
调性密切相关,所以命题者首先想到的问题应该与值域有关;
(2)函数与方程之间有密切的联系,所以命题者自然也会想到函数与方程思想的运用;
(3)众所周知,双曲线中存在很多定值问题,所以很容易就想到定值的存在性问题。
因此就由特殊引出了一般结论;继续拓展下去,用所猜想、探索的结果来解决较为复杂的函数最值问题。
高考例题:
已知函数 y=x+a/x 有如下性质:如果常数a>0,那么该函数在 (0,√a] 上是减函数,在 ,
[√a,+∞ )上是增函数.
(1)如果函数 y=x+(2^b)/x (x>0)的值域为 [6,+∞),求b 的值;
(2)研究函数 y=x^2+c/x^2 (常数c >0)在定义域内的单调性,并说明理由;
(3)对函数y =x+a/x 和y =x^2+a/x^2(常数a >0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x) =(x^2+1/x)^n+(1/x^2+x)^n (x 是正整数)在区间[½ ,2]上的最大值和最小值(可利用你的研究结论)
当x>0时,f(x)=ax+b/x 有最小值;当x<0时,f(x)=ax+b/x 有最大值
f(x)=x+1/x
首先你要知道他的定义域是x 不等于0
当x>0,
由均值不等式有:
f(x)=x+1/x>=2根号(x*1/x)=2
当x=1/x取等
x=1,有最小值是:2,没有最大值。
当x<0,-x>0
f(x)=-(-x-1/x)
<=-2
当-x=-1/x取等。
x=-1,有最大值,没有最小值。
值域是:(负无穷,-2)并(2,正无穷)
--------------
证明函数f(x)=ax+b/x,(a>0,b>0)在x>0上的单调性设x1>x2且x1,x2∈(0,+∝) 则f(x1)-f(x2)=(ax1+b/x1) -(ax2+b/x2)=a(x1-x2)-b(x1-x2)/x1x2 =(x1-x2)(ax1x2-b)/x1x2 因为x1>x2,则x1-x2>0 当x∈(0,√(b/a))时,x1x2<b/a 则ax1x2-b<b-b=0 所以f(x1)-f(x2)<0,即x∈(0,√(b/a))时,f(x)=ax+b/x单调递减;当x∈(√(b/a),+∞)时,x1x2>b/a 则ax1x2-b>b-b=0 所以f(x1)-f(x2)>0,即x∈(√(b/a),+∞)时,f(x)=ax+b/x单调递增。
重点(窍门)
其实对勾函数的一般形式是:
f(x)=x+a/x(a>0)
定义域为(-∞,0)∪(0,+∞)
值域为(-∞,-2根号a)∪(2根号a,+∞)
当x>0,有x=根号a,有最小值是2根号a
当x<0,有x=-根号a,有最大值是:-2根号a
对钩函数的解析式为y=x+a/x(其中a>0),设x1<x2,则f(x1)-f(x2)=x1+a/x1-(x2+a/x2)=(x1-x2)+a(x2-x1)/(x1x2)=(x1-x2)(x1x2-a)/(x1x2) 下面分情况讨论
(1)当x1<x2<-根号a时,x1-x2<0,x1x2-a>0,x1x2>0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以函数在(-∞,-根号a)上是增函数
(2)当-根号a<x1<x2<0时,x1-x2<0,x1x2-a<0,x1x2>0,所以f(x1)-f(x2)>0,即f(x1)>f(x2),所以函数在(-根号a,0)上是减函数
(3)当0<x1<x2<根号a时,x1-x2<0,x1x2-a<0,x1x2>0,所以f(x1)-f(x2)>0,即f(x1)>f(x2),所以函数在(0,根号a)上是减函数
(4)当根号a<x1<x2时,x1-x2<0,x1x2-a>0,x1x2>0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以函数在(根号a,+∞)上是增函数
解题时常利用此函数的单调性求最大值与最小值。