二次函数—动点产生的线段最值问题典型例题

合集下载

中考数学:二次函数——线段最大值问题

中考数学:二次函数——线段最大值问题

中考数学:二次函数——线段最大值问题一前提知识:二典型例题:1.如图,已知二次函数y=-x2-2x+3的图象交x轴于A、B两点(A在B左边),交y轴于C点。

(1)求A、B、C三点的坐标和直线AC的解析式;(2)点P是直线AC y=x+3 上方抛物线y=-x2-2x+3上一动点(不与A,C重合)过点P作y轴平行线交直线AC于Q点,求线段PQ的最大值;三变式练习:2.变式1:点P是直线AC y=x+3 上方抛物线y=-x2-2x+3上一动点(不与A,C重合),过点P作x轴平行线交直线AC于M点,求线段PM的最大值;大值:问题2:你能求出△PQH周长的最大值吗?的最大值;积的最大值;积的最大值;四直通中考:1.(2014 ·重庆中考A卷25题)如图,抛物线y= -x2 -2x+3的图象与x轴交于A、B两点(点A在点B左边),与y轴交于点C,点D为抛物线的顶点。

(1)求点A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ ∥AB交抛物线于点Q,过点Q作QN ⊥X轴于点N,若点P在点Q 左边,当矩形PMNQ的周长最大时,求△AEM的面积;26.(8分)如图1,抛物线y=﹣x2+x+与x轴交于A、B两点(点A在点B的左侧),交y轴于点C.将直线AC以点A为旋转中心,顺时针旋转90°,交y轴于点D,交拋物线于另一点E.直线AE的解析式为:y=﹣x﹣(1)点F是第一象限内抛物线上一点,当△F AD的面积最大时,在线段AE上找一点G(不与点A、E 重合),使FG+GE的值最小,求出点G的坐标,并直接写出FG+GE的最小值;(2)如图2,将△ACD沿射线AE方向以每秒个单位的速度平移,记平移后的△ACD为△A′C′D′,平移时间为t秒,当△AC′E为等腰三角形时,求t的值.26.(8分)如图1,抛物线y=﹣x2+x+与x轴交于A、B两点(点A在点B的左侧),交y轴于点C.将直线AC以点A为旋转中心,顺时针旋转90°,交y轴于点D,交拋物线于另一点E.直线AE 的解析式为:y=﹣x﹣(1)点F是第一象限内抛物线上一点,当△F AD的面积最大时,在线段AE上找一点G(不与点A、E 重合),使FG+GE的值最小,求出点G的坐标,并直接写出FG+GE的最小值;(2)如图2,将△ACD沿射线AE方向以每秒个单位的速度平移,记平移后的△ACD为△A′C′D′,平移时间为t秒,当△AC′E为等腰三角形时,求t的值.【分析】(1)由S△F AD=S△F AK﹣S△FDK=求而出点F(,),而FG+GE=FG+GP,过点F作EQ的垂线交AE于点G,此时FG+GE最小,即可求解;(2)分AC′=EC′、AE=EC′、AC′=AE三种情况,求解即可.【解答】解:(1)过点F作FK⊥x轴于点H,交直线AE于点K(如下图),过点D作DM⊥FK于点M,令y=﹣x﹣=0,则点A(﹣1,0),设点F坐标为(x,﹣x2+x+),则点K(x,﹣x﹣),S△F AD=S△F AK﹣S△FDK=FK•AH﹣FK•DM=FK(AH﹣DM)=FK•AO=(﹣x2+x++x+)×1=﹣x2+x+,当x=﹣=时,S△F AD有最大值,此时点F(,),点G是线段AE上一点,作EQ⊥y轴于点Q,作GP⊥EQ于点P,则∠PEG=30°,∴GP=GE,∴FG+GE=FG+GP,过点F作EQ的垂线交AE于点G,此时FG+GE最小,当x=时,y=﹣x﹣=﹣,此时点G(,﹣),FG+GE最小值为:;(2)连接CC′,过点C′作C′F⊥y轴于点F,则C′C=,CF=CC′=t,FC′=CC′=t,∴点C′(t,﹣t),由(1)知点E(4,﹣),∴AE2=,AC′2=t2+4,EC′2=t2﹣t+,①当AC′=EC′时,t2+4=t2﹣t+,解得:t=;②当AC′=AE时,同理可得:t=(舍去负值);③当AE=EC′时,同理可得:t=5;故:t的值为或或5或5.。

二次函数动点及最值问题

二次函数动点及最值问题

一、二次函数中的最值问题:例1:在平面直角坐标系中,全等的两个三角形Rt⊿AOB与Rt A’OC’如图放置,点B、C’的坐标分别为(1,3),(0,1),BO 与A’ C’相交于D,若⊿A’OC’绕点O旋转90°至⊿AOC,如图所示(1)若抛物线过C、A、A’,求此抛物线的解析式及对称轴;∴y=-x2+2x+3(2)、若点P是第一象限内抛物线线上的一动点,问P在何处时△AP A’的面积最大?最大面积是多少?并求出此时的点P的坐标。

(3)、设抛物线的顶点为N,在抛物线上是否存在点P,使△A’AN与△A’AP的面积相等?,若存在,请求出此时点P的坐标,若不存在,请说明理由。

例2、(2012攀枝花)如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点A.C.D均在坐标轴上,且AB=5,sinB=.(1)求过A.C.D三点的抛物线的解析式;(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围;(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A.E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值.解答:解:(1)∵四边形ABCD是菱形,∴AB=AD=CD=BC=5,sinB=sinD=;Rt△OCD中,OC=CD•sinD=4,OD=3;OA=AD﹣OD=2,即:A(﹣2,0)、B(﹣5,4)、C(0,4)、D(3,0);设抛物线的解析式为:y=a(x+2)(x﹣3),得:2×(﹣3)a=4,a=﹣;∴抛物线:y=﹣x2+x+4.(2)由A(﹣2,0)、B(﹣5,4)得直线AB:y1=﹣x﹣;由(1)得:y2=﹣x2+x+4,则:,解得:,;由图可知:当y1<y2时,﹣2<x<5.(3)∵S△APE=AE•h,∴当P到直线AB的距离最远时,S△ABC最大;若设直线L∥AB,则直线L与抛物线有且只有一个交点时,该交点为点P;设直线L:y=﹣x+b,当直线L与抛物线有且只有一个交点时,﹣x+b=﹣x2+x+4,且△=0;求得:b=,即直线L:y=﹣x+;可得点P(,).由(2)得:E(5,﹣),则直线PE:y=﹣x+9;新课标第一网则点F(,0),AF=OA+OF=;∴△PAE的最大值:S△PAE=S△PAF+S△AEF=××(+)=.综上所述,当P(,)时,△PAE的面积最大,为.针对训练:1、(2013宜宾)如图,抛物线y1=x2﹣1交x轴的正半轴于点A,交y轴于点B,将此抛物线向右平移4个单位得抛物线y2,两条抛物线相交于点C.(1)请直接写出抛物线y2的解析式;(2)若点P是x轴上一动点,且满足∠CPA=∠OBA,求出所有满足条件的P点坐标;(3)在第四象限内抛物线y2上,是否存在点Q,使得△QOC中OC边上的高h有最大值?若存在,请求出点Q的坐标及h的最大值;若不存在,请说明理由.解答:解:(1)抛物线y1=x﹣1向右平移4个单位的顶点坐标为(4,﹣1),所以,抛物线y2的解析式为y2=(x﹣4)2﹣1;(2)x=0时,y=﹣1,y=0时,x2﹣1=0,解得x1=1,x2=﹣1,所以,点A(1,0),B(0,﹣1),∴∠OBA=45°,联立,解得,∴点C的坐标为(2,3),∵∠CPA=∠OBA,∴点P在点A的左边时,坐标为(﹣1,0),在点A的右边时,坐标为(5,0),所以,点P的坐标为(﹣1,0)或(5,0);(3)存在.∵点C(2,3),∴直线OC的解析式为y=x,设与OC平行的直线y=x+b,联立,消掉y得,2x2﹣19x+30﹣2b=0,当△=0,方程有两个相等的实数根时,△QOC中OC边上的高h有最大值,此时x1=x2=×(﹣)=,此时y=(﹣4)2﹣1=﹣,∴存在第四象限的点Q(,﹣),使得△QOC中OC边上的高h有最大值,此时△=192﹣4×2×(30﹣2b)=0,解得b=﹣,∴过点Q与OC平行的直线解析式为y=x﹣,令y=0,则x﹣=0,解得x=,设直线与x轴的交点为E,则E(,0),过点C作CD⊥x轴于D,根据勾股定理,OC==,则sin ∠COD==, 解得h 最大=×=.2、如图,抛物线)0(2232≠--=a x ax y 的图象与x 轴交于A 、B 两点,与y 轴交于C 点,已知B 点坐标为()0,4.(1)求抛物线的解析式;(2)试探究ABC ∆的外接圆的圆心位置,并求出圆心坐标;(3)若点M 是线段BC 下方的抛物线上一点,求MBC ∆的面积的最大值,并类型一、最值问题:类型一、最值问题:(2013•泸州)如图,在直角坐标系中,点A 的坐标为(﹣2,0),点B 的坐标为(1,﹣),已知抛物线y=ax 2+bx+c (a ≠0)经过三点A 、B 、O (O 为原点).(1)求抛物线的解析式;(2)在该抛物线的对称轴上,是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由;(3)如果点P 是该抛物线上x 轴上方的一个动点,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号)),﹣﹣(+,解得:﹣,﹣,﹣﹣x(PE(+y)﹣y)﹣((y+(﹣x+x x+()﹣的面积最大,最大值为××,,类型二、探索三角形的存在性。

二次函数 线段最值问题

二次函数  线段最值问题

题型七:线段最值问题【例9】如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.2.抛物线y=﹣x2+bx+c与x轴交与A(1,0),B(﹣3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线与y轴交于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.4.如图,抛物线y=x2+bx+c的对称轴是y轴,点D,P在抛物线上,A(0,2),D(0,1),PC⊥x轴于点C,CB∥AP,交x轴于点B.(1)求抛物线的解析式;(2)若点P是抛物线上的动点,四边形ABCP是什么特殊的四边形?证明你的结论;(3)设点Q是x轴上一动点,当(2)中的四边形ABCP是正方形时,△DQP周长是否存在最小值,若存在,请直接写出△DQP周长最小时点Q的坐标;若不存在,请说明理由.【变式练习】1. 如图,已知抛物线y=ax2+bx+c与y轴交于点A(0,3),与x轴分别交于B(1,0)、C(5,0)两点.(1)求此抛物线的解析式;(2)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A.求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长.2. 如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4)x轴于A、B,交y轴于D,其中B点的坐标为(3,0)(1)求抛物线的解析式(2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线MN∥BD,交线段AD 于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.1. 已知,如图11,二次函数223y ax ax a=+-(0)a≠图象的顶点为H,与x轴交于A、B两点(B在A点右侧),点H、B关于直线l:33y=对称.(1)求A、B两点坐标,并证明点A在直线l上;(2)求二次函数解析式;(3)过点B作直线BK∥AH交直线l于K点,M、N分别为直线AH和直线l上的两个动点,连接HN、OyxAB CNM、MK,求HN NM MK++和的最小值.2.如图.在直角坐标系中,已知点A(0.1.),B(4-.4).将点B绕点A顺时针方向旋转90°得到点C,顶点在坐标原点的抛物线经过点B.(1) 求抛物线的解析式和点C的坐标;(2) 抛物线上一动点P.设点P到x轴的距离为1d,点P到点A的距离为2d,试说明211d d=+;(3) 在(2)的条件下,请探究当点P位于何处时.△PAC的周长有最小值,并求出△PAC的周长的最小值。

二次函数中线段最值问题

二次函数中线段最值问题

二次函数中线段最值问题(一)例1.已知,抛物线y=ax2+bx+c,过A(﹣1,0)、B(3,0)、C(0,﹣3),M为顶点.(1)求抛物线的解析式;y=x2﹣2x﹣3(2)在该抛物线的对称轴上找一点P,使得PA+PC的值最小,并求出P的坐标;练习1.如图,直线y=﹣x+3与x轴、y轴分别交于B、C两点,抛物线y=﹣x2+bx+c经过点B、C,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;y=﹣x2+2x+3,(2)在x轴上找一点E,使EC+ED的值最小,求EC+ED的最小值;练习2.如图,抛物线y=x2+bx﹣3与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;y=x2﹣2x﹣3,(2)点M是对称轴上的一个动点,当△ACM的周长最小时,求点M的坐标.例2.如图,已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C.(1)求此抛物线的解析式;y=x2﹣4x+3(2)若点T为对称轴直线x=2上一点,则TC﹣TB的最大值为.练习3.在平面直角坐标系xOy中,把与x轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线L1:y=x2﹣x﹣2的顶点为D,交x轴于点A、B(点A在点B左侧),交y轴于点C.抛物线L2与L1是“共根抛物线”,其顶点为P.(1)若抛物线L2经过点(2,﹣12),求L2对应的函数表达式;y==2x2﹣6x﹣8.(2)当BP﹣CP的值最大时,求点P的坐标;例3.如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x=,D为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.(1)求抛物线的表达式;y=﹣x2+x+2;(2)当线段DF的长度最大时,求D点的坐标;练习4.如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.(1)求m的值及这个二次函数的关系式;y=x2﹣2x+1.(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x.①求h与x之间的函数关系式,并写出自变量x的取值范围;②线段PE的长h是否存在最大值?若存在,求出它的最大值及此时的x值;若不存在,请说明理由?、练习5.如图,已知二次函数y=﹣x2+bx+c的图象与x轴交于点A、C,与y轴交于点B,直线y=x+3经过A、B两点.(1)求b、c的值.y=﹣x2﹣x+3,(2)若点P是直线AB上方抛物线上的一动点,过点P作PF⊥x轴于点F,交直线AB 于点D,求线段PD的最大值.练习6.如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y轴于点C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的表达式;y=x2+2x﹣3.(2)①若点P仅在线段AO上运动,如图,求线段MN的最大值;例4.如图,已知二次函数图象的顶点坐标为A(1,4),与坐标轴交于B、C、D三点,且B 点的坐标为(﹣1,0).(1)求二次函数的解析式;(y=﹣x2+2x+3)(2)在二次函数图象位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;练习7.如图1,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(﹣5,0)和点B(1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点P是抛物线上A、D之间的一点,过点P作PE⊥x轴于点E,PG⊥y轴,交抛物线于点G,过点G作GF⊥x轴于点F,当矩形PEFG的周长最大时,求点P的横坐标;例5.如图,在平面直角坐标系中,已知点B的坐标为(﹣1,0),且OA=OC=4OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点.(1)求A,C两点的坐标;(2)求抛物线的解析式;y=x2﹣3x﹣4;(3)若点P是直线AC下方的抛物线上的一个动点,作PD⊥AC于点D,当PD的值最大时,求此时点P的坐标及PD的最大值.练习8.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c与x轴交于点A,点B,与y 轴交于点C,其中A(﹣4,0),B(2,0),C(0,﹣4).(1)求该抛物线的函数表达式;(2)点P为直线AC下方抛物线上一点,PD⊥AC,当线段PD的长度最大时,求点P 的坐标;。

二次函数的最值问题(典型例题)

二次函数的最值问题(典型例题)

二次函数的最值问题【例题精讲】题面:当-1≤x ≤2时,函数y =2x 2-4ax +a 2+2a +2有最小值2, 求a 的所有可能取值.【拓展练习】如图,在平面直角坐标系xOy 中,二次函数2y bx c =++的图象与x 轴交于A (-1,0)、B (3,0)两点, 顶点为C .(1)求此二次函数解析式;(2)点D 为点C 关于x 轴的对称点,过点A 作直线l :y =+BD 于点E ,过点B 作直线BK //AD 交直线l 于K 点.问:在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由;(3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.练习一【例题精讲】若函数y=4x2-4ax+a2+1(0≤x≤2)的最小值为3,求a的值.【拓展练习】题面:已知:y关于x的函数y=(k-1)x2-2kx+k+2的图象与x轴有交点.(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k-1)x12+2kx2+k+2= 4x1x2.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值.练习二金题精讲题面:已知函数y=x2+2ax+a2-1在0≤x≤3范围内有最大值24,最小值3,求实数a的值.【拓展练习】题面:当k分别取-1,1,2时,函数y=(k-1)x2 -4x+5-k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.讲义参考答案【例题精讲】答案:3--0或2或4【拓展练习】答案:(1) 2y=-;(2) (2);(3)8练习一答案【例题精讲】答案:a =【拓展练习】答案:(1) k≤2;(2)①k值为-1;②y的最大值为32,最小值为-3.详解:(1)当k=1时,函数为一次函数y= -2x+3,其图象与x轴有一个交点. 当k≠1时,函数为二次函数,其图象与x轴有一个或两个交点,令y=0得(k-1)x2-2kx+k+2=0.△=(-2k)2-4(k-1)(k+2)≥0,解得k≤2.即k≤2且k≠1.综上所述,k的取值范围是k≤2.(2)①∵x1≠x2,由(1)知k<2且k≠1.由题意得(k-1)x12+(k+2)=2kx1(*),将(*)代入(k-1)x12+2kx2+k+2=4x1x2中得:2k(x1+x2)=4x1x2.又∵x1+x2=2kk1-,x1x2=k+2k1-,∴2k•2kk1-=4•k+2k1-,解得:k1= -1,k2=2(不合题意,舍去).∴所求k值为-1.②如图,∵k1= -1,y= -2x2+2x+1= -2(x-12)2+32,且-1≤x≤1,由图象知:当x= -1时,y最小= -3;当x=12时,y最大=32.∴y的最大值为32,最小值为-3.练习二答案课后练习详解【例题精讲】答案:2或-5.详解:配方y=(x+a)2-1,函数的对称轴为直线x= -a,顶点坐标为(-a,-1).①当0≤-a≤3即-3≤a≤0时,函数最小值为-1,不合题意;②当-a<0即a>0时,∵当x=3时,y有最大值;当x=0时,y有最小值,∴9+6a+a2 −1=24,a2 −1=3,解得a=2;③当-a>3即a<-3时,∵当x=3时,y有最小值;当x=0时,y有最大值,∴a2 −1=24,9+6a+a2 −1=3,解得a= -5.∴实数a的值为2或-5.【拓展练习】答案:有最大值,为8.详解:∵当开口向下时函数y=(k-1)x2 -4x+5-k取最大值∴k-1<0,解得k<1.∴当k= -1时函数y=(k-1)x2 -4x+5-k有最大值,当k=1,2时函数没有最大值. ∴当k= -1时,函数y= -2x2-4x+6= -2(x+1)2+8.∴最大值为8.。

二次函数与几何的动点及最值、存在性问题(解析版)

二次函数与几何的动点及最值、存在性问题(解析版)

二次函数与几何的动点及最值、存在性问题目录题型01平行y轴动线段最大值与最小值问题题型02抛物线上的点到某一直线的距离问题题型03已知点关于直线对称点问题题型04特殊角度存在性问题题型05将军饮马模型解决存在性问题题型06二次函数中面积存在性问题题型07二次函数中等腰三角形存在性问题题型08二次函数中直角三角形存在性问题题型09二次函数中全等三角形存在性问题题型10二次函数中相似三角形存在性问题题型11二次函数中平行四边形存在性问题题型12二次函数中矩形存在性问题题型13二次函数中菱形存在性问题题型14二次函数中正方形存在性问题二次函数常见存在性问题:(1)等线段问题:将动点坐标用函数解析式以“一母式”的结构表示出来,再利用点到点或点到直线的距离公式列出方程或方程组,然后解出参数的值,即可以将线段表示出来.【说明】在平面直角坐标系中该点在某一函数图像上,设该点的横坐标为m,则可用含m字母的函数解析式来表示该点的纵坐标,简称“设横表纵”或“一母式”.(2)平行y轴动线段最大值与最小值问题:将动点坐标用函数解析式以“一母式”的结构表示出来,再用纵坐标的较大值减去较小值,再利用二次函数的性质求出动线段的最大值或最小值.(3)求已知点关于直线对称点问题:先求出直线解析式,再利用两直线垂直的性质(两直线垂直,斜率之积等于-1)求出已知点所在直线的斜率及解析式,最后用中点坐标公式即可求出对称点的坐标.(4)“抛物线上是否存在一点,使其到某一直线的距离为最值”的问题:常常利用直线方程与二次函数解析式联立方程组,求出切点坐标,运用点到直线的距离公式进行求解.(5)二次函数与一次函数、特殊图形、旋转及特殊角度综合:图形或一次函数与x 轴的角度特殊化,利用与角度有关知识点求解函数图像上的点,结合动点的活动范围,求已知点与动点是否构成新的特殊图形.2.二次函数与三角形综合(1)将军饮马问题:本考点主要分为两类:①在定直线上是否存在点到两定点的距离之和最小;②三角形周长最小或最大的问题,主要运用的就是二次函数具有对称性.(2)不规则三角形面积最大或最小值问题:利用割补法将不规则三角形分割成两个或以上的三角形或四边形,在利用“一母式”将动点坐标表示出来,作线段差,用线段差来表示三角形的底或高,用面积公式求出各部分面积,各部分面积之和就是所求三角形的面积.将三角形的面积用二次函数的结构表示出来,再利用二次函数的性质求出面积的最值及动点坐标.(3)与等腰三角形、直角三角形的综合问题:对于此类问题,我们可以利用两圆一线或两线一圆的基本模型来进行计算.问题分情况找点画图解法等腰三角形已知点A ,B 和直线l ,在l 上求点P ,使△PAB 为等腰三角形以AB为腰分别以点A ,B 为圆心,以AB 长为半径画圆,与已知直线的交点P 1,P 2,P 4,P 5即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB =AP ;②AB =BP ;③BP =AP 列方程解出坐标以AB 为底作线段AB 的垂直平分线,与已知直线的交点P 3即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB =AP ;②AB =BP ;③BP =AP 列方程解出坐标问题分情况找点画图解法直角三角形已知点A ,B 和直线l ,在l 上求点P ,使△PAB 为直角三角形以AB为直角边分别过点A ,B 作AB 的垂线,与已知直线的交点P 1,P 4即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB 2=BP 2+AP 2;②BP 2=AB 2+AP 2;③AP 2=AB 2+BP 2列方程解出坐标以AB 为斜边以AB 的中点Q 为圆心,QA 为半径作圆,与已知直线的交点P 2,P 3即为所求注:其他常见解题思路有:①作垂直,构造“三垂直”模型,利用相似列比例关系得方程求解;②平移垂线法:若以AB 为直角边,且AB 的一条垂线的解析式易求(通常为过原点O 与AB 垂直的直线),可将这条直线分别平移至过点A 或点B 得到相应解析式,再联立方程求解.(4)与全等三角形、相似三角形的综合问题:在没有指定对应点的情况下,理论上有六种情况需要讨论,但在实际情况中,通常不会超过四种,要注意边角关系,积极分类讨论来进行计算.情况一探究三角形相似的存在性问题的一般思路:解答三角形相似的存在性问题时,要具备分类讨论思想及数形结合思想,要先找出三角形相似的分类标准,一般涉及动态问题要以静制动,动中求静,具体如下:①假设结论成立,分情况讨论.探究三角形相似时,往往没有明确指出两个三角形的对应点(尤其是以文字形式出现求证两个三角形相似的题目),或者涉及动点问题,因动点问题中点的位置的不确定,此时应考虑不同的对应关系,分情况讨论;②确定分类标准.在分类时,先要找出分类的标准,看两个相似三角形是否有对应相等的角,若有,找出对应相等的角后,再根据其他角进行分类讨论来确定相似三角形成立的条件;若没有,则分别按三种角对应来分类讨论;③建立关系式,并计算.由相似三角形列出相应的比例式,将比例式中的线段用所设点的坐标表示出来(其长度多借助勾股定理运算),整理可得一元一次方程或者一元二次方程,解方程可得字母的值,再通过计算得出相应的点的坐标.情况二探究全等三角形的存在性问题的思路与探究相似三角形的存在性问题类似,但是除了要找角相等外,还至少要找一组对应边相等.3.二次函数与四边形的综合问题特殊四边形的探究问题解题步骤如下:①先假设结论成立;②设出点坐标,求边长;③建立关系式,并计算.若四边形的四个顶点位置已确定,则直接利用四边形边的性质进行计算;若四边形的四个顶点位置不确定,需分情况讨论:a.探究平行四边形:①以已知边为平行四边形的某条边,画出所有的符合条件的图形后,利用平行四边形的对边相等进行计算;②以已知边为平行四边形的对角线,画出所有的符合条件的图形后,利用平行四边形对角线互相平分的性质进行计算;③若平行四边形的各顶点位置不确定,需分情况讨论,常以已知的一边作为一边或对角线分情况讨论.b.探究菱形:①已知三个定点去求未知点坐标;②已知两个定点去求未知点坐标,一般会用到菱形的对角线互相垂直平分、四边相等的性质列关系式.c.探究正方形:利用正方形对角线互相垂直平分且相等的性质进行计算,一般是分别计算出两条对角线的长度,令其相等,得到方程再求解.d.探究矩形:利用矩形对边相等、对角线相等列等量关系式求解;或根据邻边垂直,利用勾股定理列关系式求解.题型01平行y轴动线段最大值与最小值问题1(2023·广东东莞·一模)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,OA=OC =3,顶点为D.(1)求此函数的关系式;(2)在AC 下方的抛物线上有一点N ,过点N 作直线l ∥y 轴,交AC 与点M ,当点N 坐标为多少时,线段MN 的长度最大?最大是多少?(3)在对称轴上有一点K ,在抛物线上有一点L ,若使A ,B ,K ,L 为顶点形成平行四边形,求出K ,L 点的坐标.(4)在y 轴上是否存在一点E ,使△ADE 为直角三角形,若存在,直接写出点E 的坐标;若不存在,说明理由.【答案】(1)y =x 2+2x -3(2)当N 的坐标为-32,-154 ,MN 有最大值94(3)K -1,4 ,L -1,-4 或K -1,12 ,L -5,12 或K -1,12 ,L 3,12(4)存在,点E 的坐标为0,32 或0,-72或0,-1 或0,-3【分析】(1)由OA =OC =3求得A -3,0 ,C 0,-3 ,再分别代入抛物线解析式y =x 2+bx +c ,得到以b ,c 为未知数的二元一次方程组,求出b ,c 的值即可;(2)求出直线AC 的解析式,再设出M 、N 的坐标,把MN 表示成二次函数,配方即可;(3)根据平行四边形的性质,以AB 为边,以AB 为对角线,分类讨论即可;(4)设出E 的坐标,分别表示出△ADE 的平分,再分每一条都可能为斜边,分类讨论即可.【详解】(1)∵抛物线y =x 2+bx +c 经过点A ,点C ,且OA =OC =3,∴A -3,0 ,C 0,-3 ,∴将其分别代入抛物线解析式,得c =-39-3b +c =0,解得b =2c =-3 .故此抛物线的函数表达式为:y =x 2+2x -3;(2)设直线AC 的解析式为y =kx +t ,将A -3,0 ,C 0,-3 代入,得t =-3-3k +t =0 ,解得k =-1t =-3 ,∴直线AC 的解析式为y =-x -3,设N 的坐标为n ,n 2+2n -3 ,则M n ,-n -3 ,∴MN =-n -3-n 2+2n -3 =-n 2-3n =-n +32 +94,∵-1<0,∴当n =-32时,MN 有最大值,为94,把n =-32代入抛物线得,N 的坐标为-32,-154,当N 的坐标为-32,-154 ,MN 有最大值94;(3)①当以AB 为对角线时,根据平行四边形对角线互相平分,∴KL 必过-1,0 ,∴L 必在抛物线上的顶点D 处,∵y =x 2+2x -3=x +1 2-4,∴K -1,4 ,L -1,-4②当以AB 为边时,AB =KL =4,∵K 在对称轴上x =-1,∴L 的横坐标为3或-5,代入抛物线得L -5,12 或L 3,12 ,此时K 都为-1,12 ,综上,K -1,4 ,L -1,-4 或K -1,12 ,L -5,12 或K -1,12 ,L 3,12 ;(4)存在,由y =x 2+2x -3=x +1 2-4,得抛物线顶点坐标为D -1,-4 ∵A -3,0 ,∴AD 2=-3+1 2+0+4 2=20,设E 0,m ,则AE 2=-3-0 2+0-m 2=9+m 2,DE 2=-1-0 2+-4-m 2=17+m 2+8m ,①AE 为斜边,由AE 2=AD 2+DE 2得:9+m 2=20+17+m 2+8m ,解得:m =-72,②DE 为斜边,由DE 2=AD 2+AE 2得:9+m 2+20=17+m 2+8m ,解得:m =32,③AD 为斜边,由AD 2=ED 2+AE 2得:20=17+m 2+8m +9+m 2,解得:m =-1或-3,∴点E 的坐标为0,32 或0,-72或0,-1 或0,-3 .【点睛】本题主要考查待定系数法求二次函数解析式,二次函数图象与性质,平行四边形的判定与性质以及勾股定理等知识,会运用待定系数法列方程组,两点间距离公式求MN 的长,由平行四边形的性质判定边相等,运用勾股定理列方程.2(2023·河南南阳·统考一模)如图,抛物线与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴的交于点C 0,-4 ,点P 是第三象限内抛物线上的一个动点,设点P 的横坐标为m ,过点P 作直线PD ⊥x 轴于点D ,作直线AC 交PD 于点E .已知抛物线的顶点P 坐标为-3,-254.(1)求抛物线的解析式;(2)求点A 、B 的坐标和直线AC 的解析式;(3)求当线段CP =CE 时m 的值;(4)连接BC ,过点P 作直线l ∥BC 交y 轴于点F ,试探究:在点P 运动过程中是否存在m ,使得CE =DF ,若存在直接写出m 的值;若不存在,请说明理由.【答案】(1)y =14x 2+32x -4(2)A -8,0 ,B 2,0 ,y =-12x -4(3)-4(4)存在,m =2-25或m =-4【分析】(1)运用待定系数法即可求得抛物线的解析式;(2)令y =0,解方程即可求得点A 、B 的坐标,再运用待定系数法即可求得直线AC 的解析式;(3)过点C 作CF ⊥PE 于点F ,根据等腰三角形的性质可得点F 是PE 的中点,设P m ,14m 2+32m -4 ,则E m ,-12m -4 ,可得F m ,18m 2+12m -4 ,再由点F 与点C 的纵坐标相同建立方程求解即可;(4)过C 作CH ⊥PD 于H ,设P m ,14m 2+32m -4 ,由PF ∥BC ,可得直线PF 解析式为y =2x +14m 2-12m -4,进而可得OF =14m 2-12m -4 ,再证得Rt △CHE ≅Rt △DOF HL ,得出∠HCE =∠FDO ,进而推出∠FDO =∠CAO ,即tan ∠FDO =tan ∠CAO ,据此建立方程求解即可.【详解】(1)解:∵抛物线的顶点坐标为-3,-254∴设抛物线的解析式为y =a x +3 2-254,把点C 0,-4 代入,得:-4=9a -254,解得:a =14,∴y =14x +3 2-254=14x 2+32x -4,∴该抛物线的解析式为y =14x 2+32x -4.(2)解:令y =0,得14x 2+32x -4=0,解得:x 1=-8,x 2=2,∴A -8,0 ,B 2,0 ,,设直线AC 的解析式为y =kx +b ,则-8k +b =0b =-4 ,解得:k =-12b =-4 ,∴直线AC 的解析式为y =-12x -4.(3)解:如图,过点C 作CF ⊥PE 于点F ,∵CP =CE ,∴EF =PF ,即点F 是PE 的中点,设P m ,14m 2+32m -4 ,则E m ,-12m -4 ,∴F m ,18m 2+12m -4 ,∵PE ∥y 轴,CF ⊥PE ,∴CF ∥x 轴,∴18m 2+12m -4=-4,解得:m =-4或m =0(不符合题意,舍去),∴m =-4.(4)解:存在m ,使得CE =DF ,理由如下:如图:过C 作CH ⊥PD 于H ,设P m,14m2+32m-4,由B2,0,C0,-4,由待定系数法可得直线BC解析式为y=2x-4,根据PF∥BC,设直线PF解析式为y=2x+c,将P m,14m2+32m-4代入得:1 4m2+32m-4=2m+c,∴c=14m2-12m-4,∴直线PF解析式为y=2x+14m2-12m-4,令x=0得y=14m2-12m-4,∴F0,14m2-12m-4,∴OF=14m2-12m-4,∵∠CHD=∠PDO=∠COD=90°,∴四边形CODH是矩形,∴CH=OD,∵CE=DF,∴Rt△CHE≅Rt△DOF HL,∴∠HCE=∠FDO,∵∠HCE=∠CAO,∴∠FDO=∠CAO,∴tan∠FDO=tan∠CAO,∴OF OD =OCOA,即14m2-12m-4-m=48=12,∴1 4m2-12m-4=-12m或14m2-12m-4=12m,解得:m=-4或m=4或m=2-25或m=2+25,∵P在第三象限,∴m=2-25或m=-4.【点睛】本题属于二次函数综合题,主要考查了待定系数法求函数解析式、二次函数综合应用、等腰三角形性质、矩形判定及性质、相似三角形判定及性质、解直角三角形等知识点,解题的关键是用含m的代数式表示相关点坐标和相关线段的长度.3(2023·山东聊城·统考三模)抛物线y=-x2+bx+c与x轴交于点A3,0,与y轴交于点C0,3,点P 为抛物线上的动点.(2)若P 为直线AC 上方抛物线上的动点,作PH ∥x 轴交直线AC 于点H ,求PH 的最大值;(3)点N 为抛物线对称轴上的动点,是否存在点N ,使直线AC 垂直平分线段PN ?若存在,请直接写出点N 的纵坐标;若不存在,请说明理由.【答案】(1)b =2,c =3(2)PH 取得最大值为94(3)存在,2-2或2+2【分析】(1)将坐标代入解析式,构建方程求解;(2)设PH 交y 轴于点M ,P m ,-m 2+2m +3 ,则PM =m ;待定系数法确定直线AC 的解析式为y =-x +3,从而确定PH =m -m 2-2m =-m 2+3m =-m -32 2+94,解得PH 最大值为94;(3)如图,设PN 与AC 交于点G ,可设直线PN 的解析式为y =x +p ,设点N (1,n ),求得y =x +(n -1);联立y =-x +3y =x +(n -1) ,解得x =-n 2+2y =n 2+1,所以点P 的横坐标为2×-n 2+2 -1=-n +3,纵坐标为2×n2+1 -n =2,由二次函数解析式构建方程-(-n +3)2+2(-n +3)+3=2,解得n =2±2;【详解】(1)∵抛物线y =-x 2+bx +c 与x 轴交于点A 3,0 ,与y 轴交于点C 0,3 ,∴-9+3b +c =0c =3,解得:b =2c =3 ,∴b =2,c =3;(2)设PH 交y 轴于点M ,P m ,-m 2+2m +3 ,∴PM =m ,∵PH ∥x 轴,∴点H 的纵坐标为-m 2+2m +3,设直线AC 的解析式为y =kx +n ,∴3k +n =0n =3 ,解得:k =-1n =3 ,∴直线AC 的解析式为y =-x +3.∴-m 2+2m +3=-x +3,∴x =m 2-2m ,∴H m 2-2m ,-m 2+2m +3 ,∴PH =m -m 2-2m =-m 2+3m =-m -322+94,∴当m =32时,PH 取得最大值为94(3)存在点N ,使直线AC 垂直平分线段PN ,点N 的纵坐标为2-2或2+2如图,设PN 与AC 交于点G ,∵AC 垂直平分PN ,直线AC 的解析式为y =-x +3∴可设直线PN 的解析式为y =x +p 设点N (1,n ),则n =1+p ∴p =n -1,∴y =x +(n -1)联立y =-x +3y =x +(n -1) ,解得x =-n 2+2y =n 2+1∴点P 的横坐标为2×-n 2+2 -1=-n +3,纵坐标为2×n 2+1 -n =2∴-(-n +3)2+2(-n +3)+3=2,解得n =2±2∴点N 的纵坐标为2-2或2+2.【点睛】本题考查利用二次函数解析式及点坐标求待定参数、待定系数法确定函数解析式、二次函数极值及其它二次函数综合问题,利用直线间的位置关系、点线间的位置关系,融合方程的知识求解坐标是解题的关键.题型02抛物线上的点到某一直线的距离问题1(2023·广东梅州·统考二模)探究求新:已知抛物线G 1:y =14x 2+3x -2,将抛物线G 1平移可得到抛物线G 2:y =14x 2.(1)求抛物线G 1平移得到抛物线G 2的平移路径;(2)设T 0,t ,直线l :y =-t ,是否存在这样的t ,使得抛物线G 2上任意一点到T 的距离等于到直线l 的距离?若存在,求出t 的值;若不存在,试说明理由;(3)设H 0,1 ,Q 1,8 ,M 为抛物线G 2上一动点,试求QM +MH 的最小值.参考公式:若点M x 1,y 1 ,N x 2,y 2 为平面上两点,则有MN =x 1-x 22+y 1-y 2 2.【答案】(1)将G 1向左平移-6个单位,向上平移11个单位(2)存在,1(3)9【分析】(1)设G 1向左平移a 个单位,向上平移b 个单位得到函数G 2,列方程组即可求解;(2)设P x 0,x 204为抛物线G 2上的一点,根据题意列方程即可;(3)点H 坐标与(2)中t =1时的T 点重合,过点M 作MA ⊥l ,垂足为A ,如图所示,则有MH =MA ,当且仅当Q ,M ,A 三点共线时QM +MA 取得最小值.【详解】(1).解:设G 1向左平移a 个单位,向上平移b 个单位得到函数G 2,由平移法则可知14(x +a )2+3(x +a )-2+b =14x 2,整理可得14x 2+3+12a x +14a 2+3a -2+b =14x 2,可得方程组3+12a =014a 2+3a -2+b =0,解得a =-6b =11 ;∴平移路径为将G 1向左平移-6个单位,向上平移11个单位;(2)解:存在这样的t ,且t =1时满足条件,设P x 0,x 204为抛物线G 2上的一点,则点P 到直线l 的距离为x 204+t ,点P 到点T 距离为(x 0-0)2+x 204-t2,联立可得:x 204+t =(x 0-0)2+x 204-t2,两边同时平方合并同类项后可得x 20-x 20t =0解得:t =1;(3)解:点H 坐标与(2)中t =1时的T 点重合,作直线l :y =-1,过点M 作MA ⊥直线l ,垂足为A ,如图所示,则有MH =MA ,此时QM +MH =QM +MA ,当且仅当Q ,M ,A 三点共线时QM +MA 取得最小值即QM +MA =QA =8-(-1)=9∴QM +MH 的最小值为9;【点睛】本题考查二次函数综合题,涉及到线段最小值、平移性质等,灵活运用所学知识是关键.2(2023·湖北宜昌·统考一模)如图,已知:点P 是直线l :y =x -2上的一动点,其横坐标为m (m 是常数),点M 是抛物线C :y =x 2+2mx -2m +2的顶点.(1)求点M 的坐标;(用含m 的式子表示)(2)当点P 在直线l 运动时,抛物线C 始终经过一个定点N ,求点N 的坐标,并判断点N 是否是点M 的最高位置?(3)当点P 在直线l 运动时,点M 也随之运动,此时直线l 与抛物线C 有两个交点A ,B (A ,B 可以重合),A ,B 两点到y 轴的距离之和为d .①求m 的取值范围;②求d 的最小值.【答案】(1)M -m ,-m 2-2m +2(2)N (1,3),点N 是点M 的最高位置(3)①m ≤-52或m ≥32;②d 取得最小值为2【分析】(1)将抛物线解析式写成顶点式即可求解;(2)根据解析式含有m 项的系数为0,得出当x =1时,y =3,即N (1,3),根据二次函数的性质得出-m 2-2m +2=-m +1 2+3的最大值为3,即可得出点N 是点M 的最高位置;(3)①根据直线与抛物线有交点,联立方程,根据一元二次方程根的判别式大于等于0,求得m 的范围,即可求解;②设A ,B 的坐标分别为x 1,y 1 ,x 2,y 2 ,其中x 1<x 2,由①可知x 1,x 2是方程x 2+2mx -x -2m +4=0的两根,根据x 1+x 2=-2m +1,分情况讨论,求得d 是m 的一次函数,进而根据一次函数的性质即可求解.【详解】(1)解:y =x 2+2mx -2m +2=x +m 2-m 2-2m +2,∴顶点M -m ,-m 2-2m +2 ,(2)解:∵y =x 2+2mx -2m +2=x 2+2+2m x -1 ,∴当x =1时,y =3,抛物线C 始终经过一个定点1,3 ,即N (1,3);∵M -m ,-m 2-2m +2 ,-m 2-2m +2=-m +1 2+3,∴M 的纵坐标最大值为3,∴点N 是点M 的最高位置;(3)解:①联立y =x -2y =x 2+2mx -2m +2 ,得x 2+2mx -x -2m +4=0,∵直线l 与抛物线C 有两个交点A ,B (A ,B 可以重合),∴Δ=b 2-4ac =2m -1 2-4-2m +4 ,=4m 2+4m -15≥0,∵4m 2+4m -15=0,解得m 1=-52,m 2=32,∴当4m 2+4m -15≥0时,m ≤-52或m ≥32,②设A ,B 的坐标分别为x 1,y 1 ,x 2,y 2 ,其中x 1<x 2,由①可知x 1,x 2是方程x 2+2mx -x -2m +4=0的两根,∴x1+x 2=-2m +1,当m =-3时,如图所示,y A =0,当-3≤m ≤-52时,y 1≥0,y 2≥0,则d =x 1+x 2 =-2m +1 ,∵-2<0,∴当m =-52时,d 取得最小值为-2×-52 +1=5+1=6,当m ≥32时,d =-x 1+x 2 =--2m +1 =2m -1,∴当m =32时,d 取得最小值为2×32-1=2,综上所述,d 取得最小值为2.【点睛】本题考查了二次函数的性质,一元二次方程与二次函数的关系,熟练掌握二次函数的性质是解题的关键.3(2023·云南楚雄·统考一模)抛物线y =x 2-2x -3交x 轴于A ,B 两点(A 在B 的左边),C 是第一象限抛物线上一点,直线AC 交y 轴于点P .(1)直接写出A ,B 两点的坐标;(2)如图①,当OP =OA 时,在抛物线上存在点D (异于点B ),使B ,D 两点到AC 的距离相等,求出所有满足条件的点D 的横坐标;(3)如图②,直线BP 交抛物线于另一点E ,连接CE 交y 轴于点F ,点C 的横坐标为m ,求FP OP 的值(用含m 的式子表示).【答案】(1)A (-1,0),B (3,0)(2)0或3-41或3+41(3)13m 【分析】(1)令y =0,解方程可得结论;(2)分两种情形:①若点D 在AC 的下方时,过点B 作AC 的平行线与抛物线交点即为D 1.②若点D 在AC 的上方时,点D 1关于点P 的对称点G (0,5),过点G 作AC 的平行线交抛物线于点D 2,D 3,D 2,D 3符合条件.构建方程组分别求解即可;(3)设E 点的横坐标为n ,过点P 的直线的解析式为y =kx +b ,由y =kx +b y =x 2-2x -3 ,可得x 2-(2+k )x -3-b =0,设x 1,x 2是方程x 2-(2+k )x -3-b =0的两根,则x 1x 2=-3-b ,推出x A ⋅x C =x B ⋅x E =-3-b 可得n =-1-b 3,设直线CE 的解析式为y =px +q ,同法可得mn =-3-q 推出q =-mn -3,推出q =-(3+b )-1-b 3 -3=13b 2+2b ,推出OF =13b 2+b ,可得结论.【详解】(1)解:令y =0,得x 2-2x -3=0,解得:x =3或-1,∴A (-1,0),B (3,0);(2)∵OP =OA =1,∴P (0,1),∴直线AC 的解析式为y =x +1.①若点D 在AC 的下方时,过点B 作AC 的平行线与抛物线交点即为D 1.∵B (3,0),BD 1∥AC ,∴直线BD 1的解析式为y =x -3,由y =x -3y =x 2-2x -3,解得x =3y =0 或x =0y =-3 ,∴D 1(0,-3),∴D 1的横坐标为0.②若点D 在AC 的上方时,点D 1关于点P 的对称点G (0,5),过点G 作AC 的平行线l 交抛物线于点D 2,D 3,D 2,D 3符合条件.直线l 的解析式为y =x +5,由y =x +5y =x 2-2x -3 ,可得x 2-3x -8=0,解得:x =3-412或3+412,∴D 2,D 3的横坐标为3-412,3+412,综上所述,满足条件的点D 的横坐标为0,3-412,3+412.(3)设E 点的横坐标为n ,过点P 的直线的解析式为y =kx +b ,由y =kx +b y =x 2-2x -3,可得x 2-(2+k )x -3-b =0,设x 1,x 2是方程x 2-(2+k )x -3-b =0的两根,则x 1x 2=-3-b ,∴x A ⋅x C =x B ⋅x E =-3-b∵x A =-1,∴x C =3+b ,∴m =3+b ,∵x B =3,∴x E =-1-b 3,∴n =-1-b 3,设直线CE 的解析式为y =px +q ,同法可得mn =-3-q∴q =-mn -3,∴q =-(3+b )-1-b 3 -3=13b 2+2b ,∴OF =13b 2+2b ,∴FP OP=13b +1=13(m -3)+1=13m .【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,一元二次方程的根与系数的关系等知识,解题的关键是学会构建一次函数,构建方程组确定交点坐标,学会利用参数解决问题,属于中考压轴题.题型03已知点关于直线对称点问题1(2023·辽宁阜新·统考中考真题)如图,在平面直角坐标系中,二次函数y =-x 2+bx -c 的图象与x 轴交于点A (-3,0)和点B (1,0),与y 轴交于点C .(1)求这个二次函数的表达式.(2)如图1,二次函数图象的对称轴与直线AC :y =x +3交于点D ,若点M 是直线AC 上方抛物线上的一个动点,求△MCD 面积的最大值.(3)如图2,点P 是直线AC 上的一个动点,过点P 的直线l 与BC 平行,则在直线l 上是否存在点Q ,使点B 与点P 关于直线CQ 对称?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)y =-x 2-2x +3;(2)S △MCD 最大=98;(3)Q 1-5,-5 或1+5,5 .【分析】(1)根据抛物线的交点式直接得出结果;(2)作MQ ⊥AC 于Q ,作ME ⊥AB 于F ,交AC 于E ,先求出抛物线的对称轴,进而求得C ,D 坐标及CD 的长,从而得出过M 的直线y =x +m 与抛物线相切时,△MCD 的面积最大,根据x +m =-x 2-2x +3的△=0求得m 的值,进而求得M 的坐标,进一步求得CD 上的高MQ 的值,进一步得出结果;(3)分两种情形:当点P 在线段AC 上时,连接BP ,交CQ 于R ,设P (t ,t +3),根据CP =CB 求得t 的值,可推出四边形BCPQ 是平行四边形,进而求得Q 点坐标;当点P 在AC 的延长线上时,同样方法得出结果.【详解】(1)解:由题意得,y =-(x +3)(x -1)=-x 2-2x +3;(2)解:如图1,作MQ ⊥AC 于Q ,作ME ⊥AB 于F ,交AC 于E ,∵OA =OC =3,∠AOC =90°,∴∠CAO =∠ACO =45°,∴∠MEQ =∠AEF =90°-∠CAO =45°,抛物线的对称轴是直线:x =-3+12=-1,∴y =x +3=-1+3=2,∴D (1,2),∵C (0,3),∴CD =2,故只需△MCD 的边CD 上的高最大时,△MCD 的面积最大,设过点M 与AC 平行的直线的解析式为:y =x +m ,当直线y =x +m 与抛物线相切时,△MCD 的面积最大,由x +m =-x 2-2x +3得,x 2+3x +(m -3)=0,由△=0得,32-4(m -3)=0得,m -3=94,∴x 2+3x +94=0,∴x 1=x 2=-32,∴y =--32 2-2×-32 +3=154,y =x +3=-32+3=32,∴ME =154-32=94,∴MQ =ME ⋅sin ∠MEQ =ME ⋅sin45°=94×22=928,∴S △MCD 最大=12×2×928=98;(3)解:如图2,当点P 在线段AC 上时,连接BP ,交CQ 于R ,∵点B 和点Q 关于CQ 对称,∴CP =CB ,设P (t ,t +3),由CP 2=CB 2得,2t 2=10,∴t 1=-5,t 2=5(舍去),∴P -5,3-5 ,∵PQ ∥BC ,∴CR =BR =1,∴CR =QR ,∴四边形BCPQ 是平行四边形,∵1+(-5)-0=1-5,0+(3-5)-3=-5,∴Q 1-5,-5 ;如图3,当点P 在AC 的延长线上时,由上可知:P 5,3+5 ,同理可得:Q 1+5,5 ,综上所述:Q 1-5,-5 或1+5,5 .【点睛】本题考查了二次函数及其图象的性质,一元二次方程的解法,平行四边形的判定和性质,轴对称的性质等知识,解决问题的关键是分类讨论.2(2023·四川甘孜·统考中考真题)已知抛物线y =x 2+bx +c 与x 轴相交于A -1,0 ,B 两点,与y 轴相交于点C 0,-3 .(1)求b ,c 的值;(2)P 为第一象限抛物线上一点,△PBC 的面积与△ABC 的面积相等,求直线AP 的解析式;(3)在(2)的条件下,设E 是直线BC 上一点,点P 关于AE 的对称点为点P ,试探究,是否存在满足条件的点E ,使得点P 恰好落在直线BC 上,如果存在,求出点P 的坐标;如果不存在,请说明理由.【答案】(1)b =-2,c =-3.(2)y =x +1(3)存在,点P 的坐标为1+21,-2+21 或1-21,-2-21【分析】(1)由待定系数法即可求解;(2)S △PBC =S △ABC 得到AP ∥BC ,即可求解;(3)由题意的:∠AEP =∠AEP ,P E =PE ,即可求解.【详解】(1)由题意,得1-b +c =0,c =-3.∴b =-2,c =-3.(2)由(1)得抛物线的解析式为y =x 2-2x -3.令y =0,则x 2-2x -3=0,得x 1=-1,x 2=3.∴B 点的坐标为3,0 .∵S △PBC =S △ABC ,∴AP ∥BC .∵B 3,0,C 0,-3 ,∵AP∥BC,∴可设直线AP的解析式为y=x+m.∵A(-1,0)在直线AP上,∴0=-1+m.∴m=1.∴直线AP的解析式为y=x+1.(3)设P点坐标为m,n.∵点P在直线y=x+1和抛物线y=x2-2x-3上,∴n=m+1,n=m2-2m-3.∴m+1=m2-2m-3.解得m1=4,m2=-1(舍去).∴点P的坐标为4,5.由翻折,得∠AEP=∠AEP ,P E=PE.∵AP∥BC,∴∠PAE=∠AEP '.∴∠PAE=∠PEA.∴PE=PA=4+12=52.2+5-0设点E的坐标为t,t-3,则PE2=t-42.2+t-3-52=52∴t=6±21.当t=6+21时,点E的坐标为6+21,3+21.设P (s,s-3),由P E=AP,P E=PE=52得:s-6-212,2=522+s-3-3-21解得:s=1+21,则点P 的坐标为1+21,-2+21.当t=6-21时,同理可得,点P 的坐标为1-21,-2-21.综上所述,点P 的坐标为1+21,-2+21.或1-21,-2-21【点睛】本题是二次函数的综合题,主要考查了用待定系数法求一次函数、二次函数的解析式,二次函数的性质,此题题型较好,综合性比较强,用的数学思想是分类讨论和数形结合的思想.3(2023·江苏连云港·连云港市新海实验中学校考二模)如图,“爱心”图案是由抛物线y=-x2+m的一部分及其关于直线y=-x的对称图形组成,点E、F是“爱心”图案与其对称轴的两个交点,点A、B、C、D是该图案与坐标轴的交点,且点D的坐标为6,0.(1)求m 的值及AC 的长;(2)求EF 的长;(3)若点P 是该图案上的一动点,点P 、点Q 关于直线y =-x 对称,连接PQ ,求PQ 的最大值及此时Q 点的坐标.【答案】(1)m =6,AC =6+6(2)52(3)2542,Q -234,-12【分析】(1)用待定系数法求得m 与抛物线的解析式,再求出抛物线与坐标轴的交点坐标,进而求得A 的坐标,根据对称性质求得B ,C 的坐标,即可求得结果;(2)将抛物线的解析式与直线EF 的解析式联立方程组进行求解,得到E ,F 的坐标,即可求得结果;(3)设P (m ,-m 2+6),则Q (m 2-6,-m ),可得PQ =2×m -12 2-252 ,即求m -12 2-252的最值,根据二次函数的最值,即可得到m 的值,即可求得.【详解】(1)把D 6,0 代入y =-x 2+m 得0=-6+m解得m =6∴抛物线的解析式为:y =-x 2+6∴A 0,6根据对称性可得B -6,0 ,C 0,-6∴AC =AO +OC =6+6(2)联立y =-x y =-x 2+6解得x =3y =-3 或x =-2y =2 ∴E -2,2 ,F 3,-3∴EF =-2-3 2+2+3 2=52(3)设P (m ,-m 2+6),则Q (m 2-6,-m )∴PQ =m -m 2-6 2+-m 2+6--m 2整理得PQ =2×m -12 2-254 ∵m -12 2≥0∴当m -12 2=0时,即m =12时,m -12 2-254 有最大值为254∴PQ 的最大值为2542∴12 2-6=-234故Q -234,-12【点睛】本题考查二次函数综合应用,涉及待定系数法求函数解析式,两点间的距离公式,求抛物线与一次函数的交点坐标,二次函数的最值等知识,解题的关键是掌握关于直线y =-x 对称的点坐标的关系.题型04特殊角度存在性问题1(2023·山西忻州·统考模拟预测)如图,抛物线y =18x 2+34x -2与x 轴交于A ,B 两点,与y 轴交于点C .P 是直线AC 下方抛物线上一个动点,过点P 作直线l ∥BC ,交AC 于点D ,过点P 作PE ⊥x 轴,垂足为E ,PE 交AC 于点F .(1)直接写出A ,B ,C 三点的坐标,并求出直线AC 的函数表达式;(2)当线段PF 取最大值时,求△DPF 的面积;(3)试探究在拋物线的对称轴上是否存在点Q ,使得∠CAQ =45°?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)A -8,0 ,B 2,0 ,C 0,-2 .y =-14x -2(2)85(3)存在,-3,3 或-3,-253【分析】(1)对于直线y =18x 2+34x -2,当x =0时,y =-2,即点C 0,-2 ,令18x 2+34x -2=0,则x =2或-8,则点A ,B 的坐标分别为-8,0 ,2,0 即求出三个点的坐标,设直线AC 的表达式为y =kx +b ,利用待定系数法求解即可;(2)设点P 的横坐标为m ,则P m ,18m 2+34m -2 ,F m ,-14m -2 ,表示出PF =-18m 2-m ,求出PF max =2,再表示出点D 到直线PF 的距离d =85,利用S △DPF =12⋅PF ⋅d 进行求解即可;(3)由抛物线的表达式知,其对称轴为x =-3,当点Q 在x 轴上方时,设抛物线的对称轴交x 轴于点N ,交AC 于H ,故点Q 作QT ⊥AC 于点T ,在△AQH 中,∠CAQ =45°,tan ∠QHA =4,用解直角三角形的方法求出QH =174,即可求出Q 点坐标,当点Q Q 在x 轴上方时,直线AQ 的表达式为y =35x +8 ,当∠CAQ =45°时,AQ ⊥AQ ,即可求解.【详解】(1)解:对于抛物线y =18x 2+34x -2,当x =0时,y =-2,即点C 0,-2 ,令18x 2+34x -2=0,则x =2或-8,则点A ,B 的坐标分别为-8,0 ,2,0 ,即点A ,B ,C 三点的坐标分别为-8,0 ,2,0 ,0,-2 ,设直线AC 的表达式为y =kx +b ,则-8k +b =0b =-2 ,解得k =-14b =-2 ,∴直线AC 的函数表达式为y =-14x -2;(2)设点P 的横坐标为m ,则P m ,18m 2+34m -2 ,F m ,-14m -2 ,PF =-14m -2 -18m 2+34m -2 =-18m 2-m ,当m =--12×-18 =-4时,PF 最大,PF max =-18×(-4)2--4 =2,此时,P -4,-3 ,由B 2,0 ,C 0,-2 ,可得直线BC 的函数表达式为y =x -2,设直线l 的函数表达式为y =x +p ,将P -4,-3 代入可得p =1,∴直线l 的函数表达式为y =x +1,由y =-14x -2y =x +1 ,解得x =-125y =-75,∴D -125,-75 ,点D 到直线PF 的距离d =-125--4 =85,∴S △DPF =12⋅PF ⋅d =12×2×85=85.(3)存在,理由:由抛物线的表达式知,其对称轴为x =-3,当点Q 在x 轴上方时,如下图:设抛物线的对称轴交x 轴于点N ,交AC 于H ,故点Q 作QT ⊥AC 于点T ,则∠ACO =∠QHA ,则tan ∠ACO =tan ∠QHA =4,当x =3时,y =-14x -2=-54,则点H -3,-54 ,由点A ,H 的坐标得,AH =5174,在△AQH 中,∠CAQ =45°,tan ∠QHA =4,设TH =x ,则QT =4x ,则QH =17x ,则AH =AT +TH =5x =5174,则x =174,则QH =17x =174,则174-54=3,则点Q -3,3 ;当点Q Q 在x 轴上方时,直线AQ 的表达式为y =35x +8 ,当∠CAQ =45°时,AQ ⊥AQ ,则直线AQ 的表达式为y =-53x +8 ,当x =-3时,y =-5x +8 =-25,。

2021届中考数学专题复习训练——二次函数 专题4二次函数综合之线段最值,成比

2021届中考数学专题复习训练——二次函数 专题4二次函数综合之线段最值,成比

类型一:线段最值问题【经典例题1改编】抛物线y=-x 2+bx +c 与直线y=-x +5一个交点A (2,m ),另一个交点B 在x 轴上,点P 是线段AB 上异于A 、B 的一个动点,过点P 做x 轴的垂线,交抛物线于点E ;(1)求抛物线的解析式;(2)是否存在这样的点P ,使线段PE 长度最大?若存在求出最大值及此时点P 的坐标,若不存在说明理由;(3)在y 轴右侧,当EP 平行于y 轴时,设点E 的横坐标为m ,当点E 到y 轴的距离等于线段EP 的长时,求m 的值;【解析】(1)A(2,-3),抛物线解析式y=-x 2+6x -5(2)设点P 的横坐标为m ,E(m ,-m 2+6m -5),P(m ,-m+5)∴EP=y E -y P=(-m 2+6m -5)-(-m +5)=-m 2+7m -10=-(m -27)2+49 当m=27时,EP 长度有最大值49,此时,P(27,23) (3)根据题意分两种情况∴当0<x <2或x >5时,EP=m 2-7m +10,所以m=m 2-7m +10,即m 2-8m +10=0,解得m1=4+6,m2=4-6;∴当2<x<5时,EP=-m2+7m-10,所以m=-m2+7m-10,即m2-6m+10=0,此方程无解。

综上,m1=4+6,m2=4-6【经典例题2】如图所示,抛物线y=ax2+bx-3(a≠0)与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C,直线y= -x与抛物线交于E,F两点.(1)求抛物线的解析式;(2)P是直线EF下方抛物线上的一个动点,作PH∴EF于点H,求PH的最大值;【解析】(1)抛物线的表达式为:y=a(x+3)(x−1)=a(x2+2x−3),即−3a=−3,解得:a=1,故抛物线的表达式为:y=x2+2x−3;(2)过点P作PM∴y轴交直线EF于点M,设点P(x ,x 2+2x −3)、点M(x ,−x ),则PH=22PM=22(−x −x 2−2x +3), 当x =−23时,PH 的最大值为:8221;【经典例题3】已知抛物线l 1:y 1=ax 2−2的顶点为P ,交x 轴于A. B 两点(A 点在B 点左侧),且sin∴ABP=55. (1)求抛物线l 1的函数解析式;(2)过点A 的直线交抛物线于点C ,交y 轴于点D ,若∴ABC 的面积被y 轴分为1:4两个部分,求直线AC 的解析式;【解析】(1)当x =0时,y 1=ax 2-2=-2∴顶点P (0,-2),OP=2∴∴BOP=90° ∴sin∴ABP=BP OP =55 ∴BP=5OP=25 ∴OB=442022=-=-OP BP∴B (4,0),代入抛物线l 1得:16a -2=0,解得:a =81 ∴抛物线l 1的函数解析式为y 1=81x 2-2 (2)∴知抛物线l 1交x 轴于A 、B 两点∴A 、B 关于y 轴对称,即A (-4,0)∴AB=8设直线AC 解析式:y=kx +b点A 代入得:-4k +b =0∴b =4k∴直线AC :y=kx +4k ,D (0,4k )∴S ∴AOD =S ∴BOD =21×4×|4k |=8|k | ∴81x 2-2=kx +4k 整理得:x 2-8kx -32k -16=0∴x 1+x 2=8k∴x 1=-4∴x C =x 2=8k +4,y C =k (8k +4)+4k =8k 2+8k∴C (8k +4,8k 2+8k )∴S ∴ABC =21AB•|y C |=32|k 2+k | ∴若k >0,则S ∴AOD :S 四边形OBCD =1:4∴S ∴AOD =51S ∴ABC ∴8k =51×32(k 2+k ) 解得:k 1=0(舍去),k 2=41 ∴直线AC 解析式为y=41x +1 ∴若k <0,则S ∴AOD =S ∴BOD =-8k ,S ∴ABC =-32(k 2+k )∴-8k =51×[-32(k 2+k )] 解得:k 1=0(舍去),k 2=41(舍去) 综上所述,直线AC 的解析式为y=41x +1.【经典例题4】如图1,在平面直角坐标系中,直线y=x +4与抛物线y=21-x 2+bx +c (b ,c 是常数)交于A. B 两点,点A 在x 轴上,点B 在y 轴上。

二次函数中的线段最值问题(解析版)-2023年中考数学重难点解题大招复习讲义-函数

二次函数中的线段最值问题(解析版)-2023年中考数学重难点解题大招复习讲义-函数

例题精讲【例1】.如图,已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B左侧),与y 轴交于点C,连接BC,点P是线段BC上方抛物线上一点,过点P作PM⊥BC于点M,求线段PM的最大值.解:过P点作PQ∥y轴交BC于Q,如图,当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则B(3,0),A(﹣1,0),当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线BC的解析式为y=kx+b,把B(3,0),C(0,3)代入得,,解得,∴直线BC的解析式为y=﹣x+3,∵OB=OC=3,∴△OBC为等腰直角三角形,∴∠OCB=45°,∵PQ∥y轴,∴∠PQM=45°,∵PM⊥BC,∴△PMQ为等腰直角三角形,∴PM=PQ,设P(t,﹣t2+2t+3)(0<t<3),则Q(t,﹣t+3),∴PQ=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∴PM=(﹣t2+3t)=﹣(t﹣)2+,当t=时,PM的最大值为.变式训练【变1-1】.如图,抛物线y=x2+bx+c经过点B(3,0)、C(0,﹣2),直线L:y=﹣x ﹣交y轴于点E,且与抛物线交于A、D两点,P为抛物线上一动点(不与A、D重合).(1)求抛物线的解析式;(2)当点P在直线L下方时,过点P作PN∥y轴交L于点N,求PN的最大值.(3)当点P在直线L下方时,过点P作PM∥x轴交L于点M,求PM的最大值.解:(1)把B(3,0),C(0,﹣2)代入y=x2+bx+c得,,∴∴抛物线的解析式为:y=x2﹣x﹣2;(2)设P(m,m2﹣m﹣2),∵PN∥y轴,N在直线AD上,∴N(m,﹣m﹣),∴PN=﹣m﹣﹣m2+m+2=﹣m2+m+.∴当m=时,PN的最大值是;(3)设P(m,m2﹣m﹣2),∵PM∥x轴,M在直线AD上,M与P纵坐标相同,把y=m2﹣m﹣2,代入y=﹣x﹣中,得x=﹣m2+2m+2∴M(﹣m2+2m+2,m2﹣m﹣2)∴PM=﹣m2+2m+2﹣m=﹣m2+m+2∴当m=时,PM的最大值是.【变1-2】.如图,抛物线y=+mx+n与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)线段BC上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值.解:(1)抛物线y=﹣+mx+n与x轴交于A,B两点,与y轴交于点C,A(﹣1,0),C(0,2).∴,解得:,故抛物线解析式为:y=﹣x2+x+2;(2)令y=0,则﹣x2+x+2=0,解得x1=﹣1,x2=4,∴B(4,0),设直线BC的解析式为y=kx+b,∴,解得,∴直线BC的解析式为y=﹣x+2,设P(m,﹣m+2);则Q(m,﹣m2+m+2),则PQ=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m=﹣(m﹣2)2+2,此时PQ的最大值为2.【例2】.已知:如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D.(1)求此函数的关系式;(2)在对称轴上找一点P,使△BCP的周长最小,求出P点坐标;(3)在AC下方的抛物线上有一点N,过点N作直线l∥y轴,交AC与点M,当点N坐标为多少时,线段MN的长度最大?最大是多少?解:(1)如图1,∵OA=OC=3,∴A(﹣3,0),C(0,﹣3),∵抛物线y=x2+bx+c经过点A(﹣3,0),C(0,﹣3),∴将A(﹣3,0),C(0,﹣3),分别代入抛物线y=x2+bx+c,得,解得.故此抛物线的函数关系式为:y=x2+2x﹣3;(2)如图,连接AP,BP,BC,AC,AC与抛物线对称轴交于点P′,∵抛物线的解析式为:y=x2+2x﹣3,∴抛物线的对称轴为直线x=﹣1,∵B是抛物线与x轴的另一个交点,A(﹣3,0),∴B(1,0),∴BC===,∵点A,B关于抛物线对称轴对称,∴AP=BP,∴PB+PC的最小值即为PA+PC的最小值,此时PA+PC+BC最小,即△BCP的周长最小,∴当P、A、C三点共线时,△BCP的周长最小,即P在P′所在的位置,设直线AC的解析式为y=kx+b1,∴,解得:,∴直线AC的解析式为:y=﹣x﹣3,∴当x=﹣1时,y=﹣2,∴点P的坐标为(﹣1,﹣2);(3)如图3,设N(t,t2+2t﹣3),则M(t,﹣t﹣3),∴MN=﹣t﹣3﹣(t2+2t﹣3)=﹣t2﹣3t=﹣(t+)2+,∵﹣1<0,∴当t=﹣,即点N的坐标为(﹣,)时,线段MN的长度最大,最大值为.变式训练【变2-1】.如图1,在平面直角坐标系中,已知B点坐标为(1,0),且OA=OC=3OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点,其中D点是该抛物线的顶点.(1)求抛物线的解析式;(2)判断△ADC的形状并且求△ADC的面积;(3)如图2,点P是该抛物线第三象限部分上的一个动点,过P点作PE⊥AC于E点,当PE的值最大时,求此时P点的坐标及PE的最大值.解:(1)∵B点坐标为(1,0),∴OB=1,又∵OA=OC=3OB,∴OA=OC=3,∴A(﹣3,0),C(0,﹣3),将A,B,C三点代入解析式得,,解得,∴抛物线的解析式为:y=x2+2x﹣3;(2)由(1)知抛物线的解析式为y=x2+2x﹣3,∴对称轴为直线x=﹣=﹣1,当x=﹣1时,y=(﹣1)2+2×(﹣1)﹣3=﹣4,∴D点的坐标为(﹣1,﹣4),∴|AD|==2,|AC|==3,|CD|==,∵|AD|2=|AC|2+|CD|2,∴△ACD是直角三角形,S△ABC=|AC|•|CD|=×=3;(3)设直线AC的解析式为y=sx+t,代入A,C点坐标,得,解得,∴直线AC的解析式为y=﹣x﹣3,如右图,过点P作y轴的平行线交AC于点H,∵OA=OC,∴∠OAC=∠OCA=45°,∵PH∥y轴,∴∠PHE=∠OCA=45°,设点P(x,x2+2x﹣3),则点H(x,﹣x﹣3),∴PH=﹣x﹣3﹣(x2+2x﹣3)=﹣x2﹣3x,∴PE=PH•sin∠PHE=(﹣x2﹣3x)×=﹣(x+)2+,∴当x=﹣时,PE有最大值为,此时P点的坐标为(﹣,﹣).【变2-2】.如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P 在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在点Q,且点Q在第一象限,使△BDQ中BD边上的高为?若存在,直接写出点Q的坐标;若不存在,请说明理由.解:(1)由二次函数顶点C(1,4),设y=a(x﹣1)2+4,将B(3,0)代入得:4a+4=0,∴a=﹣1,∴y=﹣(x﹣1)2+4=﹣x2+2x+3,答:二次函数的解析式为y=﹣x2+2x+3;(2)在y=﹣x2+2x+3中,令x=0得y=3,∴D(0,3),设直线BD解析式为y=kx+3,将B(3,0)代入得:3k+3=0,解得k=﹣1,∴直线BD解析式为y=﹣x+3,设P(m,﹣m+3),则M(m,﹣m2+2m+3),∴PM=﹣m2+2m+3+m﹣3=﹣m2+3m=﹣(m﹣)2+,∵﹣1<0,∴当m=时,PM取最大值,最大值为;(3)存在点Q,使△BDQ中BD边上的高为,理由如下:过Q作QG∥y轴交BD于点G,交x轴于点E,作QH⊥BD于H,如图:设Q(x,﹣x2+2x+3),则G(x,﹣x+3),∴QG=|﹣x2+2x+3﹣(﹣x+3)|=|﹣x2+3x|,∵OB=OD,∴∠OBD=45°,∴∠BGE=45°=∠QGH,∴△QGH是等腰直角三角形,当△BDQ中BD边上的高为时,即QH=HG=,∴QG=2,∵点Q在第一象限,QG=|﹣x2+3x|,∴﹣x2+3x=2,解得x=1或x=2,∴Q(1,4)或(2,3),综上可知存在满足条件的点Q,坐标为(1,4)或(2,3).1.已知抛物线的顶点A(﹣1,4),且经过点B(﹣2,3),与x轴分别交于C,D两点.(1)求直线OB和该抛物线的解析式;(2)如图1,点M是抛物线上的一个动点,且在直线OB的上方,过点M作x轴的平行线与直线OB交于点N,求MN的最大值;(3)如图2,AE∥x轴交x轴于点E,点P是抛物线上A、D之间的一个动点,直线PC、PD与AE分别交于F、G,当点P运动时,求tan∠PCD+tan∠PDC的值.解:(1)设直线OB的解析式为y=kx,∵B(﹣2,3),∴﹣2k=3,∴k=﹣,∴直线OB的解析式为y=﹣x,∵抛物线的顶点为A(﹣1,4),∴设抛物线对应的函数表达式为y=a(x+1)2+4.将B(﹣2,3)代入y=a(x+1)2+4,得:3=a+4,解得:a=﹣1,∴抛物线对应的函数表达式为y=﹣(x+1)2+4,即y=﹣x2﹣2x+3.(2)设M(t,﹣t2﹣2t+3),MN=s,则N的横坐标为t﹣s,纵坐标为﹣(t﹣s),∵,∴x1=﹣2,x2=,∵点M是直线OB的上方抛物线上的点,∴﹣2<t<,∵MN∥x轴,∴﹣t2﹣2t+3=﹣(t﹣s),∴s=﹣+2=﹣,∵﹣2<t<,∴当t=﹣时,MN的最大值为;(3)解:过点P作PQ∥y轴交x轴于Q,设P(t,﹣t2﹣2t+3),则PQ=﹣t2﹣2t+3,CQ=t+3,DQ=1﹣t,∴tan∠PCD+tan∠PDC=,=,=,=1﹣t+t+3,=4.2.如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值;(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.解:(1)将点B(3,0)、C(0,3)代入抛物线y=x2+bx+c中,得:,解得:,∴抛物线的解析式为y=x2﹣4x+3.(2)设点M的坐标为(m,m2﹣4m+3),设直线BC的解析式为y=kx+3,把点B(3,0)代入y=kx+3中,得:0=3k+3,解得:k=﹣1,∴直线BC的解析式为y=﹣x+3.∵MN∥y轴,∴点N的坐标为(m,﹣m+3).∵抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为x=2,∴点(1,0)在抛物线的图象上,∴1<m<3.∵线段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m=﹣+,∴当m=时,线段MN取最大值,最大值为.(3)假设存在.设点P的坐标为(2,n).当m=时,点N的坐标为(,),∴PB==,PN=,BN==.△PBN为等腰三角形分三种情况:①当PB=PN时,即=,解得:n=,此时点P的坐标为(2,);②当PB=BN时,即=,解得:n=±,此时点P的坐标为(2,﹣)或(2,);③当PN=BN时,即=,解得:n=,此时点P的坐标为(2,)或(2,).综上可知:在抛物线的对称轴l上存在点P,使△PBN是等腰三角形,点P的坐标为(2,)、(2,﹣)、(2,)、(2,)或(2,).3.已知,如图,抛物线与x轴交点坐标为A(1,0),C(﹣3,0),(1)如图1,已知顶点坐标D为(﹣1,4)或B点(0,3),选择适当方法求抛物线的解析式;(2)如图2,在抛物线的对称轴DH上求作一点M,使△ABM的周长最小,并求出点M 的坐标;(3)如图3,将图2中的对称轴向左移动,交x轴于点P(m,0)(﹣3<m<﹣1),与抛物线,线段BC的交点分别为点E、F,用含m的代数式表示线段EF的长度,并求出当m为何值时,线段EF最长.解:(1)由抛物线的顶点D的坐标(﹣1,4)可设其解析式为y=a(x+1)2+4,将点C(﹣3,0)代入,得:4a+4=0,解得a=﹣1,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)连接BC,交DH于点M,此时△ABM的周长最小,当y=0时,﹣(x+1)2+4=0,解得x=﹣3或x=1,则A(1,0),C(﹣3,0),当x=0时,y=3,则B(0,3),设直线BC的解析式为y=kx+b,将B(0,3),C(﹣3,0)代入得,解得:,∴直线BC解析式为y=x+3,当x=﹣1时,y=﹣1+3=2,所以点M坐标为(﹣1,2);(3)由题意知E(m,﹣m2﹣2m+3),F(m,m+3),则EF=EP﹣FP=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m=﹣(m+)2+,∴当m=﹣时,线段EF最长.4.在平面直角坐标系中,直线y=mx﹣2m与x轴,y轴分别交于A,B两点,顶点为D的抛物线y=﹣x2+2mx﹣m2+2与y轴交于点C.(1)如图,当m=2时,点P是抛物线CD段上的一个动点.①求A,B,C,D四点的坐标;②当△PAB面积最大时,求点P的坐标;(2)在y轴上有一点M(0,m),当点C在线段MB上时,①求m的取值范围;②求线段BC长度的最大值.解:(1)∵直线y=mx﹣2m与x轴,y轴分别交于A,B两点,∴A(2,0),B(0,﹣2m);∵y=﹣(x﹣m)2+2,∴抛物线的顶点为D(m,2),令x=0,则y=﹣m2+2,∴C(0,﹣m2+2).①当m=2时,﹣2m=﹣4,﹣m2+2=﹣2,∴B(0,﹣4),C(0,﹣2),D(2,2).②由上可知,直线AB的解析式为:y=2x﹣4,抛物线的解析式为:y=﹣x2+4x﹣2.如图,过点P作PE∥y轴交直线AB于点E,设点P的横坐标为t,∴P(t,﹣t2+4t﹣2),E(t,2t﹣4).∴PE=﹣t2+4t﹣2﹣(2t﹣4)=﹣t2+2t+2,∴△PAB的面积为:×(2﹣0)×(﹣t2+2t+2)=﹣(t﹣1)2+3,∵﹣1<0,∴当t=1时,△PAB的面积的最大值为3.此时P(1,1).(2)由(1)可知,B(0,﹣2m),C(0,﹣m2+2),①∵y轴上有一点M(0,m),点C在线段MB上,∴需要分两种情况:当m≥﹣m2+2≥﹣2m时,可得≤m≤1+,当m≤﹣m2+2≤﹣2m时,可得﹣3≤m≤1﹣,∴m的取值范围为:≤m≤1+或﹣3≤m≤1﹣.②当≤m≤1+时,∵BC=﹣m2+2﹣(﹣2m)=﹣m2+2m+2=﹣(m﹣1)2+3,∴当m=1时,BC的最大值为3;当m≤﹣m2+2≤﹣2m时,即﹣3≤m≤1﹣,∴BC=﹣2m﹣(﹣m2+2)=m2﹣2m﹣2=(m﹣1)2﹣3,当m=﹣3时,点M与点C重合,BC的最大值为13.∴当m=﹣3时,BC的最大值为13.5.如图1,抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,且CO =BO,连接BC.(1)求抛物线的解析式;(2)如图2,抛物线的顶点为D,其对称轴与线段BC交于点E,求线段DE的长度;(3)如图3,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,连接CP,CD,抛物线上是否存在点P,使△CDE∽△PCF,如果存在,求出点P的坐标,如果不存在,请说明理由.解:(1)在抛物线y=ax2+bx+3中,令x=0,得y=3,∴C(0,3),∴CO=3,∵CO=BO,∴BO=3,∴B(3,0),∵A(﹣1,0),∴,解得:,∴抛物线的解析式为:y=﹣x2+2x+3;(2)设直线BC的解析式为y=kx+b,∵B(3,0),C(0,3),∴,解得:,∴直线BC的解析式为y=﹣x+3,∵抛物线y=﹣x2+2x+3的顶点D坐标为(1,4),∴当x=1时,y=﹣1+3=2,∴E(1,2),∴DE=2;(3)∵PF∥DE,∴∠CED=∠CFP,当=时,△PCF∽△CDE,由D(1,4),C(0,3),E(1,2),利用勾股定理,可得CE==,DE=4﹣2=2,设点P坐标为(t,﹣t2+2t+3),点F坐标为(t,﹣t+3),∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,CF==t,∴=,∵t≠0,∴t=2,当t=2时,﹣t2+2t+3=﹣22+2×2+3=3,∴点P坐标为(2,3).6.如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x轴的正半轴和y轴的正半轴上.抛物线y=﹣x2+bx+c经过A,C两点,与x轴交于另一个点D.(1)①求点A,B,C的坐标;②求b,c的值.(2)若点P是边BC上的一个动点,连结AP,过点P作PM⊥AP,交y轴于点M(如图2所示).当点P在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m 的代数式表示n,并求出n的最大值.解:(1)①四边形OABC是边长为3的正方形,∴A(3,0),B(3,3),C(0,3);②把A(3,0),C(0,3)代入抛物线y=﹣x2+bx+c中得:,解得:;(2)∵AP⊥PM,∴∠APM=90°,∴∠APB+∠CPM=90°,∵∠B=∠APB+∠BAP=90°,∴∠BAP=∠CPM,∵∠B=∠PCM=90°,∴△MCP∽△PBA,∴=,即=,∴3n=m(3﹣m),∴n=﹣m2+m=﹣(m﹣)2+(0≤m≤3),∵﹣<0,∴当m=时,n的值最大,最大值是.7.已知二次函数y=x2﹣x﹣2的图象和x轴相交于点A、B,与y轴相交于点C,过直线BC 的下方抛物线上一动点P作PQ∥AC交线段BC于点Q,再过P作PE⊥x轴于点E,交BC于点D.(1)求直线AC的解析式;(2)求△PQD周长的最大值;(3)当△PQD的周长最大时,在y轴上有两个动点M、N(M在N的上方),且MN=1,求PN+MN+AM的最小值.解:(1)对于二次函数y=x2﹣x﹣2,令x=0得y=﹣2,令y=0,得x2﹣x﹣2=0,解得x=﹣1或2,∴A(﹣1,0),B(2,0),C(0,﹣2),设直线AC的解析式为y=kx+b,则有,解得,∴直线AC的解析式为y=﹣2x﹣2.(2))∵B(2,0),C(0,﹣2),∴直线BC的解析式为y=x﹣2,OB=OC=2,∴∠OCB=∠OBC=45°,∵PE⊥x轴,∴∠DEB=90°,∴∠EDB=∠QDP=∠EBD=45°,∵PQ∥AC,∴∠PQC=∠ACQ,∴∠PQD,∠PDQ是定值,∴PD最长时,△PDQ的最长最大,设P(m,m2﹣m﹣2),则D(m,m﹣2),∴PD=m﹣2﹣(m2﹣m﹣2)=﹣m2+2m=﹣(m﹣1)2+1,∵﹣1<0,∴m=1时,PD的值最大,PD最大值为1,此时P(1,﹣2),D(1,﹣1),∴直线PQ的解析式为y=﹣2x,由,解得,∴Q(,﹣),∴PD=1,PQ=,DQ=,∴△PDQ的最长的最大值为1++.(3)如图2中,作PP′∥y轴,使得PP′=MN=1,连接AP′交y轴于M,此时PN+NM+AM的值最小.由(2)可知P(1,﹣2),∴P′(1,﹣1),∵A(﹣1,0),∴直线AP′的解析式为y=﹣x﹣,∴M(0,﹣),N(0,﹣),∴AM==,PN==,∴AM+MN+PN的最小值为+1.8.如图,抛物线y=ax2﹣3ax﹣4a(a<0)与x轴交于A,B两点,直线y=x+经过点A,与抛物线的另一个交点为点C,点C的横坐标为3,线段PQ在线段AB上移动,PQ =1,分别过点P、Q作x轴的垂线,交抛物线于E、F,交直线于D,G.(1)求抛物线的解析式;(2)当四边形DEFG为平行四边形时,求出此时点P、Q的坐标;(3)在线段PQ的移动过程中,以D、E、F、G为顶点的四边形面积是否有最大值,若有求出最大值,若没有请说明理由.解:(1)∵点C的横坐标为3,∴y=×3+=2,∴点C的坐标为(3,2),把点C(3,2)代入抛物线,可得2=9a﹣9a﹣4a,解得:a=,∴抛物线的解析式为y=;(2)设点P(m,0),Q(m+1,0),由题意,点D(m,m+)m,E(m,),G(m+1,m+1),F(m+1,),∵四边形DEFG为平行四边形,∴ED=FG,∴()﹣(m+)=()﹣(m+1),即=,∴m=0.5,∴P(0.5,0)、Q(1.5,0);(3)设以D、E、F、G为顶点的四边形面积为S,由(2)可得,S=()×1÷2=(﹣m2+m+)=,∴当m=时,S最大值为,∴以D、E、F、G为顶点的四边形面积有最大值,最大值为.9.如图所示,二次函数y=ax2﹣x+c的图象经过点A(0,1),B(﹣3,),A点在y 轴上,过点B作BC⊥x轴,垂足为点C.(1)求直线AB的解析式和二次函数的解析式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)点N是二次函数图象上一点(点N在AB上方),是否存在点N,使得BM与NC 相互垂直平分?若存在,求出所有满足条件的N点的坐标;若不存在,说明理由.解:(1)设直线AB的解析式为:y=kx+b,∴,∴,∴直线AB的解析式为:y=﹣x+1;把A(0,1),B(﹣3,)代入y=ax2﹣x+c得,,∴二次函数的解析式为:y=﹣x2﹣x+1;(2)设点N的坐标为(m,﹣m2﹣m+1)(﹣3<m<0),则点M的坐标为(m,﹣m+1),∴MN=﹣m2﹣m+1﹣(﹣m+1)=﹣m2﹣m+1=﹣(m+)2+,∴当m=﹣时,MN取最大值,最大值为;(3)假设存在,设点N的坐标为(m,﹣m2﹣m+1)(﹣3<m<0),连接BN、CM,如图所示.若要BM与NC相互垂直平分,只需四边形BCMN为菱形即可.∵点B坐标为(﹣3,),点C的坐标为(﹣3,0),∴BC=.∵四边形BCMN为菱形,∴MN=﹣m2﹣m=BC=,解得:m1=﹣2,m2=﹣1.当m=﹣2时,点N的坐标为(﹣2,),∴BN==,BC=,BN≠BC,故m=﹣2(舍去);当m=﹣1时,点N的坐标为(﹣1,4),∴BN==,BC=,BN=BC,∴点N(﹣1,4)符合题意.故存在点N,使得BM与NC相互垂直平分,点N的坐标为(﹣1,4).10.如图所示,抛物线y=ax2+bx﹣3交x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图,直线BC下方的抛物线上有一点D,过点D作DE⊥BC于点E,作DF平行x轴交直线BC点F,求△DEF周长的最大值;(3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面内一点,若点P 是抛物线上一点,且位于抛物线对称轴的右侧,是否存在以点P、M、N、Q为顶点且以PM为边的正方形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.解:(1)∵抛物线y=ax2+bx﹣3交x轴交于A(﹣1,0),B(3,0)两点,∴解得:∴抛物线的解析式为y=x2﹣2x﹣3(2)∵抛物线y=x2﹣2x﹣3与y轴交于点C∴点C坐标为(0,﹣3)∴直线BC解析式为:y=x﹣3∵点B(3,0),点C(0,﹣3)∴OB=OC=3,∴∠OBC=∠OCB=45°∵DF∥AB,∴∠EFD=45°=∠OBC,∵DE⊥BC,∴∠EFD=∠EDF=45°,∴DE=EF,∴DF=EF,∴EF=DE=DF,∴△DEF周长=DE+EF+DF=(1+)DF,设点D(a,a2﹣2a﹣3),则F(a2﹣2a,a2﹣2a﹣3)∴DF=a﹣a2+2a=﹣a2+3a=﹣(a﹣)2+∴当a=时,DF有最大值为,即△DEF周长有最大值为(1+)×=,(3)存在,如图1,过点M作GH⊥OC,过点P作PH⊥GH,连接MN,PM,∵抛物线的解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4∴点M(1,4)∵以点P、M、N、Q为顶点且以PM为边的正方形,∴PM=MN,∠PMN=90°,∴∠PMH+∠NMG=90°,且∠PMH+∠MPH=90°,∴∠NMG=∠MPH,且MN=PM,∠H=∠NGM=90°,∴△MNG≌△PMH(AAS)∴GM=PH=1,∴点P的纵坐标为﹣3,∴﹣3=x2﹣2x﹣3∴x=0(不合题意舍去),x=2,∴点P的横坐标为2,如图2,过点P作GH⊥AB,过点N作NG⊥GH,过点M作MH⊥GH,易证:△NGP≌△PHM,可得NG=PH,GP=MH,设点P横坐标为a,(a>1)∴NG=PH=a,∴点P纵坐标为﹣4+a,∴﹣4+a=a2﹣2a﹣3∴x=(不合题意舍去),x=综上所述:点P的横坐标为2或11.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE 长度的最大值;(2)在抛物线上是否存在点Q,使得△BDQ中BD边上的高为.若存在,请求出点Q的坐标;若不存在,请说明理由;(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由.解:(1)令y=0,解得x=﹣1或x=3,∴A(﹣1,0),B(3,0);将C点的横坐标x=2代入y=x2﹣2x﹣3得y=﹣3,则C(2,﹣3),设直线AC的表达式为y=kx+b,则,解得,∴直线AC的函数解析式是y=﹣x﹣1,设P点的横坐标为x(﹣1≤x≤2),则P、E的坐标分别为:P(x,﹣x﹣1),E(x,x2﹣2x﹣3),∵P点在E点的上方,PE=(﹣x﹣1)﹣(x2﹣2x﹣3)=﹣x2+x+2,∴当x=时,PE的最大值=;(2)存在,点Q的坐标为:(﹣1,0)或(4,5);令x=0,则y=x2﹣2x﹣3=﹣3,即D(0,﹣3),由B(3,0),D(0,﹣3)得到直线BD的解析式是y=x﹣3,如上图,过点Q作QE⊥BD交BD的延长线于点E,则QE=2,过点Q作QN⊥x轴于点N,交BD于点H,由直线BD的表达式知,∠HBN=45°=∠QHE,则QH=QE==4,设点Q(m,m,m2﹣2m﹣3),则点H(m,m﹣3),则QH=|y Q﹣y H|=4,即m2﹣2m﹣3﹣(m﹣3)=±4,解得m=﹣1或4,∴Q的坐标为:(﹣1,0)或(4,5);(3)存在,点F的坐标为(1,0)或(﹣3,0)或(4+,0)或(4﹣,0),理由:设点F的坐标为(x,0),点G的坐标为(m,m2﹣2m﹣3),而点A、C的坐标分别为(﹣1,0)、(2,﹣3),①当AC为平行四边形的对角线时,由中点坐标公式得:,解得(舍去),故点F的坐标为(1,0);②当AF为平行四边形的对角线时,由中点坐标公式得解得,即点F的坐标为(4+,0)或(4﹣,0);③当AG为平行四边形的对角线时,由中点坐标公式得,解得(舍去),故点F的坐标为(﹣3,0),综上,点F的坐标为(1,0)或(﹣3,0)或(4+,0)或(4﹣,0).12.已知抛物线y=ax2+2x+c(a≠0)与x轴交于点A(﹣1,0)和点B,与直线y=﹣x+3交于点B和点C,M为抛物线的顶点,直线ME是抛物线的对称轴.(1)求抛物线的解析式及点M的坐标.(2)点P为直线BC上方抛物线上一点,设d为点P到直线CB的距离,当d有最大值时,求点P的坐标.(3)若点F为直线BC上一点,作点A关于y轴的对称点A',连接A'C,A'F,当△FA'C 是直角三角形时,直接写出点F的坐标.解:(1)直线y=﹣x+3过点B和点C,则点B、C的坐标分别为:(3,0)、(0,3),抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣2a=2,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3,函数的对称轴为:x=1,当x=1时,y=4,故点M(1,4);(2)过点P作y轴的平行线交BC于点H,过点P作PD⊥BC于点D,OC=OB=3,则∠DPH=∠CBA=45°,设点P(x,﹣x2+2x+3),则点H(x,﹣x+3),d=PD=PH=(﹣x2+2x+3+x﹣3)=(﹣x2+3x),∵<0,故d有最大值,此时x=,则点P(,);(3)点A关于y轴的对称点A'(1,0),设点F(m,3﹣m),而点C(0,3),A′C2=10,A′F2=(m﹣1)2+(3﹣m)2,FC2=2m2,由题目知,∠A′CF≠90°,则当△FA'C是直角三角形时,分以下两种情况:当CF为斜边时,即10+(m﹣1)2+(3﹣m)2=2m2,解得:m=;当A′C为斜边时,同理可得:m=2,故点F的坐标为:(,)或(2,1).13.如图①,已知抛物线C1:y=a(x+1)2﹣4的顶点为C,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.(1)求点C的坐标及a的值;(2)如图②,抛物线C2与C1关于x轴对称,将抛物线C2向右平移4个单位,得到抛物线C3.C3与x轴交于点B、E,点P是直线CE上方抛物线C3上的一个动点,过点P 作y轴的平行线,交CE于点F.①求线段PF长的最大值;②若PE=EF,求点P的坐标.解:(1)顶点C为(﹣1,﹣4).∵点B(1,0)在抛物线C1上,∴0=a(1+1)2﹣4,解得,a=1;(2)①∵C2与C1关于x轴对称,∴抛物线C2的表达式为y=﹣(x+1)2+4,抛物线C3由C2平移得到,∴抛物线C3为y=﹣(x﹣3)2+4=﹣x2+6x﹣5,∴E(5,0),设直线CE的解析式为:y=kx+b,则,解得,∴直线CE的解析式为y=x﹣,设P(x,﹣x2+6x﹣5),则F(x,x﹣),∴PF=(﹣x2+6x﹣5)﹣(x﹣)=﹣x2+x﹣=﹣(x﹣)2+,∴当x=时,PF有最大值为;②若PE=EF,∵PF⊥x轴,∴x轴平分PF,∴﹣x2+6x﹣5=﹣x+,解得x1=,x2=5(舍去)∴P(,).14.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a>0)与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,PM⊥BC于点M,PN∥y轴交BC于点N.求线段PM的最大值和此时点P的坐标;(3)点E为x轴上一动点,点Q为抛物线上一动点,是否存在以CQ为斜边的等腰直角三角形CEQ?若存在,请直接写出点E的坐标;若不存在,请说明理由.解:(1)将A(﹣1,0),B(3,0)代入函数y=ax2+bx﹣3(a>0)中,得,解得,∴解析式为y=x2﹣2x﹣3,故抛物线解析式为y=x2﹣2x﹣3;(2)当x=0时,y=3,∴C(0,﹣3),∵B(3,0),∴∠OCB=∠OBC=45°,∵PN∥y轴,∴∠MNP=45°,∵PM⊥BC,∴PM=PN,则当PN最大时,PM也最大,设BC的解析式为y=mx+n,∴,解得,∴BC解析式为y=x﹣3,设P(x,x2﹣2x﹣3),N(x,x﹣3),∴PN=x﹣3﹣(x2﹣2x﹣3)=﹣(x﹣)2+,当x=时,PN最大,则PM=PN=×=,∴P(,),故PM最大值为,P点坐标为(,﹣);(3)存在,点E的坐标为(﹣5,0),(,0),(0,0),(,0).∵CEQ是以CQ为斜边的等腰直角三角形,∴设Q(x,x2﹣2x﹣3),①如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M 和点N,∵∠CEQ=90°,∴∠QEM+∠CEN=90°,∵∠QEM+∠MQE=90°,∴∠EQM=∠CEN,∵∠CNE=∠QME=90°,EC=EQ,∴△EMQ≌△CNE(AAS),∴CN=EM=x2﹣2x﹣3,MQ=EN=3,∴|x Q|+MQ=CN,﹣x+3=x2﹣2x﹣3,解得x=﹣2,x=3(舍去),∴OE=CM=2+3=5,E(﹣5,0),②如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M 和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴﹣x+x2﹣2x﹣3=3,解得x=,x=(舍去),∴OE=CM=,E(,0),③如图,点E和点O重合,点Q和点B重合,此时E(0,0),④如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴x+3=x2﹣2x﹣3,解得x=,x=(舍去),∴OE=CM=,E(,0),综上所述,点E的坐标为(﹣5,0),(,0),(0,0),(,0).15.已知抛物线C:y=ax2+bx+c(a>0,c<0)的对称轴为x=4,C为顶点,且A(2,0),C(4,﹣2)【问题背景】求出抛物线C的解析式.【尝试探索】如图2,作点C关于x轴的对称点C′,连接BC′,作直线x=k交BC′于点M,交抛物线C于点N.①连接ND,若四边形MNDC′是平行四边形,求出k的值.②当线段MN在抛物线C与直线BC′围成的封闭图形内部或边界上时,请直接写出线段MN的长度的最大值.【拓展延伸】如图4,作矩形HGOE,且E(﹣3,0),H(﹣3,4),现将其沿x轴以1个单位每秒的速度向右平移,设运动时间为t,得到矩形H′G′O′E′,连接AC′,若矩形H′G′O′E′与直线AC′和抛物线C围成的封闭图形有公共部分,请求出t的取值范围.解:【问题背景】A(2,0),对称轴为x=4,则点B(6,0),则抛物线的表达式为:y=a(x﹣2)(x﹣6),将点C的坐标代入上式得:﹣2=a(4﹣2)•(4﹣6),解得:a=,故抛物线的表达式为:…①;【尝试探索】①点C′(4,2),由点B、C′的坐标可得,直线BC′的表达式为:y=﹣x+6…②,四边形MNDC′是平行四边形,则MN=DC′=2,设点N的坐标为:(x,k2﹣4k+6),则点M(k,﹣k+6),即|k2﹣4k+6﹣(﹣k+6)|=2,解得:k=3或3,故k的值为:;②联立①②并解得:x=0或6,故抛物线C与直线BC′围成的封闭图形对应的k值取值范围为:0≤k≤6,MN=(﹣k+6)﹣(k2﹣4k+6)=﹣k2+3k,∵0,故MN有最大值,最大值为;【拓展延伸】由点A、C′的坐标得,直线AC′表达式为:y=x﹣2…③,联立①③并解得:x=2或8,即封闭区间对应的x取值范围为:2≤x≤8,(Ⅰ)当t=2时,矩形过点A,此时矩形H′G′O′E′与直线AC′和抛物线C围成的封闭图形有公共部分,(Ⅱ)当H′E′与对称轴右侧抛物线有交点时,此时y=H′E′=4,即x2﹣4x+6=4,解得:x=4(舍去4﹣2),即x=4+2,则t=3+4+2=7+2,故t的取值范围为:2≤t≤.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数——动点产生的线段最值问题
【例1】如图,在直角坐标系中,点A,B,C 的坐标分别为(-1,0),(3,0),(0,3),过A,B,C 三点的抛物线的对称轴为直线l . (1)求抛物线的解析式及顶点D 的坐标;
(2)点E 是抛物线的对称轴上的一个动点,求当AE+CE 最小时点E 的坐标; (3)点P 是x 轴上的一个动点,求当PD+PC 最小时点P 的坐标;
(4)点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有QB QC -最大?并求出
最大值.
解:(1)设抛物线的解析式为:y=ax 2
+bx+c , ∵抛物线经过A 、B 、C 三点,
∴09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:123a b c =-⎧⎪
=⎨⎪=⎩
, ∴抛物线的解析式为:y=-x 2
+2x+3. ∵y=-x 2
+2x+3= 2
(1)4x --+,
∴该抛物线的对称轴为直线x=1,顶点D 的坐标为(1,4). (2)∵点A 关于抛物线的对称轴的对称点为B ,则AE=BE , 要使AE+CE 最小,即BE+CE 最小,则B 、E 、C 三点共线 如图,连接BC 交抛物线的对称轴于点E , 解法一:设直线BC 的解析式为y=kx+n ,
则303k n n +=⎧⎨=⎩
,解得13k n =-⎧⎨=⎩
∴3y x =-+.当x=1时,3132x -+=-+=,∴点E 的坐标为(1,2) 解法二:设抛物线的对称轴交x 轴于点F . ∵E F ∥y 轴,∴∠BEF =∠BCO ,∠BFE =∠BOC ∴△BFE ∽△BOC

BF EF
BO CO =, ∴3133EF
-=, ∴2EF =
∴点E 的坐标为(1,2)
(3)作出点C 关于x 轴的对称点为C′,则C′(0,-3),OC′=3,
F
E
如图,连接C′D 交x 轴于点P ,
∵点C 关于x 轴的对称点为C′,则PC=P C′,
要使PD+PC 最小,即PD+P C′最小,则D 、P 、C′三点共线 设直线C′D 的解析式为y=kx+n , 则43k n n +=⎧⎨
=-⎩,解得7
3
k n =⎧⎨=⎩
∴73y x =-.当y=0时,073x =-,∴3
7
x = ∴点P 的坐标为(
3
7
,0) (4)∵点A 关于抛物线的对称轴的对称点为B ,则QB=QA , 要使QB QC
-最大,即QA QC
-最大,则A 、C 、Q 三点共线
如图,连接AC 交抛物线的对称轴于点Q , 解法一:设直线AC 的解析式为y=kx+n ,
则03k n n -+=⎧⎨=⎩,解得3
3k n =⎧⎨=⎩
∴33y x =+.当x=1时,333136x +=⨯+=, ∴点Q 的坐标为(1,6)
解法二:设抛物线的对称轴交x 轴于点F . ∵QF ∥y 轴,∴∠ACO =∠AQF ,∠AOC =∠AFQ ∴△AOC ∽△AFQ

AO CO AF QF =, ∴1311QF =+, ∴6QF =
∴点Q 的坐标为(1,6) ∴221310QB QC
QA QC
AC -=-==+=
即当点Q 的坐标为(1,6)时,QB QC -有最大值,最大值为10.
Q
F
- - C ′
P
【作业1】(2011菏泽)如图,抛物线y=
2
1x 2
+bx ﹣2与x 轴交于A ,B 两点,与y 轴交于C 点,且A (-1,0). (1)求抛物线的解析式及顶点D 的坐标; (2)判断△ABC 的形状,证明你的结论;
(3)点M (m ,0)是x 轴上的一个动点,当MC+MD 的值最小时,求m 的值.
解:(1)∵点A (﹣1,0)在抛物线y=2
1x 2
+bx ﹣2上, ∴21×(﹣1 )2
+b×(﹣1)﹣2=0,解得b=-2
3 ∴抛物线的解析式为y=21x 2﹣2
3
x ﹣2.
y=21x 2﹣23x ﹣2=21( x 2
﹣3x ﹣4 )=21(x ﹣23)2﹣8
25, ∴顶点D 的坐标为 (23,﹣8
25
).
(2)当x=0时y=﹣2,∴C(0,﹣2),OC=2. 当y=0时,21x 2﹣2
3
x ﹣2=0,∴x 1=﹣1,x 2=4,∴B (4,0)
∴OA=1,OB=4,AB=5.
∵AB 2
=25,AC 2
=OA 2
+OC 2
=5,BC 2
=OC 2
+OB 2
=20, ∴AC 2
+BC 2
=AB 2
.∴△ABC 是直角三角形.
(3)作出点C 关于x 轴的对称点C′,则C′(0,2),OC′=2,
连接C′D 交x 轴于点M ,根据轴对称性及两点之间线段最短可知,MC+MD 的值最小. 解法一:设抛物线的对称轴交x 轴于点E . ∵ED∥y 轴,∴∠OC′M=∠EDM,∠C′OM=∠DEM ∴△C′OM∽△DE M . ∴
ED
C O EM OM '=,∴8
25223=-m m , ∴m=4124
解法二:设直线C′D 的解析式为y=kx+n ,
则⎪⎩⎪
⎨⎧-=+=8252
32
n k n ,解得n=2,1241-=k
E
∴212
41
+-=x y . ∴当y=0时,-41
24
,4124,021241=
∴==+m x x
【作业2】2011四川广安)如图所示,在平面直角坐标系中,四边形ABCD 是直角梯形,BC ∥
AD ,∠BAD = 90°,BC 与y 轴相交于点M ,且M 是BC 的中点,A 、B 、D 三点的坐标分别是A (-
1,0),B ( -1,2),D ( 3,0),连接DM ,并把线段DM 沿DA 方向平移到ON ,若抛物线y =ax 2
+bx +c 经过点D 、M 、N . (1)求抛物线的解析式.
(2)抛物线上是否存在点P .使得PA =PC .若存在,求出点P 的坐标;若不存在.请说明理由. (3)设抛物线与x 轴的另—个交点为E .点Q 是抛物线的对称轴上的一个动点,
当点Q 在什么位置时有QE QC -最大?并求出最大值. 解:(1)由题意可得M (0,2),N (-3,2),
∴ 2,293,093.c a b c a b c =⎧⎪=-+⎨⎪=++⎩ 解得:1,91,
32.
a b c ⎧
=-⎪⎪

=-⎨⎪
=⎪⎪⎩
∴211
2
93y x x =--+
(2)∵PA =PC , ∴P 为AC 的垂直平分线上,依题意,AC 的垂直平分线经过(-1,2)、(1,0),
其所在的直线为y =-x +1.
根据题意可列方程组21,11
2.93y x y x x =-+⎧⎪
⎨=--+⎪⎩
解得:1132x y ⎧=+⎪⎨=--⎪
⎩2232x y ⎧=-⎪⎨
=-+⎪⎩∴P 1
(32+--)、P 2
(32--+).
(3)如图所示,延长DC 交抛物线的对称轴于点Q ,根据题意可知此时点Q 满足条件. 由题意可知C (1,2),D (3,0),可求得CD 所在的直线的解析式为3y x =-+.
抛物线211
293
y x x =-
-+的对称轴为直线 1.5x =-. ∵点Q 在直线x =-1.5上,又在直线3y x =-+上.
∴Q (-1 .5,4.5),QE =QD . ∴
QE QC QD QC CD -=-==
=.
即当点Q 的坐标为(-1.5,4.5)时,QE QC -
有最大值, 最大值为。

相关文档
最新文档