九年级数学上册知识点----正方形

合集下载

北师大版九年级数学上册知识点总结

北师大版九年级数学上册知识点总结

(1)1.菱形的性质与判定菱形的定义: 有一组邻边相等的平行四边形叫做菱形。

菱形的性质: ①菱形的四条边相等。

②菱形的对角线互相垂直。

③菱形具有平行四边形的一切性质。

(3)菱形的判定: ①有一组邻边相等的平行四边形是菱形。

③四条边都相等的四边形是菱形。

2、矩形的性质与判定矩形的定义: 有一个角是直角的平行四边形叫做矩形。

矩形的性质: ①矩形的四个角都是直角。

②矩形的对角线相等。

③矩形具有平行四边形的一切性质。

矩形的判定: ①有一个角是直角的平行四边形是矩形。

②对角线相等的平行四边形是矩形。

③有三个角是直角的四边形是矩形。

3、正方形的性质与判定正方形的定义: ①有一组邻边相等, 并且有一个角是直角的平行四边形叫做正方形。

正方形的性质: ①正方形的四个角都是直角, 四条边相等。

正方形的判定: ①有一组邻边相等, 并且有一个角是直角的平行四边形是正方形。

②对角线相等的菱形是正方形。

③对角线垂直的矩形是正方形。

④有一个叫是直角的菱形是正方形。

第二章一元二次方程1.认识一元二次方程(1)整式方程及一元二次方程的概念整式方程: 方程两边都是关于未知数的整式;一元二次方程:只含有一个未知数x的整式方程, 并且都可以化作ax2+bx+c=0(a,b,c为常数, a≠0)的形式。

(2)一元二次方程的一般式及各系数含义一般式: ax2+bx+c=0(a,b,c为常数, a≠0), 其中, a是二次项系数, b是一次项系数, c是常数项。

(3)一元二次方程解的估算:当某一x的取值使得这个方程中的ax2+bx+c的值无限接近于0时, x的值即可看做一元二次方程ax2+bx+c=0的近似解2.配方法将一元二次方程转化为(x+m)2=n的形式, 它的一边是一个完全平方式, 另一边是一个常数。

当n≥0时, 两边同时开平方, 转化为一元一次方程, 便可以求出它的根。

(1)直接开平方法的定义利用平方根的定义直接开平方求一元二次方程的解的方法叫直接开平方法。

九年级上册数学特殊四边形知识点

九年级上册数学特殊四边形知识点

九年级上册数学特殊四边形知识点在九年级数学课堂上,我们学习了许多有趣的数学知识,包括特殊的四边形形状。

这些特殊的四边形不仅仅是几何图形中的一部分,而且在实际生活中也经常出现。

本文将介绍一些九年级上册数学课程中学习到的特殊四边形知识点。

首先,我们来谈谈正方形。

正方形是一种具有特殊性质的四边形,它的四条边长度相等,四个角均为直角。

正方形也是矩形的一种特殊情况。

正方形中最重要的性质是,对角线长度相等,且对角线互相平分。

正方形可以在生活中经常见到,比如蓝色的邮筒就是正方形。

其次,矩形也是我们数学课程中学习到的重要特殊四边形之一。

矩形是一种有四个直角的四边形,它的对边相等。

虽然矩形的对角线长度并不一定相等,但是它们相交的交点是对角线的中点。

矩形在建筑设计中得到广泛应用,比如建筑物的窗户或者门等。

接下来,我们来讨论平行四边形。

平行四边形是一种特殊的四边形,它的对边是平行的。

平行四边形的对边长度相等,并且对边之间的夹角相等。

平行四边形也具有一些重要的性质,比如它的对角线不相交,并且对角线等分。

除了上述的特殊四边形,我们还学习了梯形和菱形。

梯形是一种具有两对平行边的四边形。

梯形的对角线不相交,且梯形的两个对边不等长。

梯形在日常生活中也很常见,比如路边的标志牌上的形状就有些类似梯形。

菱形是另一种有趣的四边形形状。

它的四个边长度相等,且对角线相等且互相垂直。

在菱形中,每条边都等于其他三条边的长度的一半。

菱形在珠宝首饰设计中常常用到,比如耳环或者项链上的吊坠。

最后,我们来谈谈关于这些特殊四边形之间的关系。

在数学中,我们将正方形、矩形和菱形都归类为平行四边形的特殊情况。

也就是说,平行四边形是一个更大的范畴,包括了以上提到的这些特殊情况。

总结起来,九年级上册数学课程中学习的特殊四边形知识点广泛且实用。

通过了解这些特殊四边形的性质和应用,我们可以更好地理解和应用数学知识,提高解决实际问题的能力。

无论是在日常生活中还是在职业发展中,这些数学知识都能帮助我们更好地理解和解决问题。

北师大九年级数学上册

北师大九年级数学上册

北师大九年级数学上册一、章节知识点总结。

1. 特殊平行四边形。

- 矩形。

- 定义:有一个角是直角的平行四边形是矩形。

- 性质:- 四个角都是直角。

- 对角线相等。

- 既是轴对称图形(对称轴有两条,对边中点连线所在直线)又是中心对称图形(对称中心是对角线交点)。

- 判定:- 有一个角是直角的平行四边形是矩形。

- 对角线相等的平行四边形是矩形。

- 有三个角是直角的四边形是矩形。

- 菱形。

- 定义:有一组邻边相等的平行四边形是菱形。

- 性质:- 四条边都相等。

- 对角线互相垂直,且每条对角线平分一组对角。

- 是轴对称图形(对称轴是两条对角线所在直线),也是中心对称图形。

- 判定:- 有一组邻边相等的平行四边形是菱形。

- 对角线互相垂直的平行四边形是菱形。

- 四条边都相等的四边形是菱形。

- 正方形。

- 定义:有一组邻边相等且有一个角是直角的平行四边形是正方形。

- 性质:- 四条边都相等,四个角都是直角。

- 对角线相等且互相垂直平分,每条对角线平分一组对角。

- 既是轴对称图形(有四条对称轴,两条对角线所在直线和两组对边中点连线所在直线)又是中心对称图形。

- 判定:- 有一组邻边相等的矩形是正方形。

- 有一个角是直角的菱形是正方形。

2. 一元二次方程。

- 定义:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程,一般形式为ax^2+bx + c=0(a≠0)。

- 解法:- 直接开平方法:对于形如x^2=k(k≥slant0)的方程,x=±√(k)。

- 配方法:将方程ax^2+bx + c = 0(a≠0)通过配方转化为(x+(b)/(2a))^2=frac{b^2-4ac}{4a^2}的形式,然后求解。

- 公式法:对于一元二次方程ax^2+bx + c = 0(a≠0),其解为x=frac{-b±√(b^2)-4ac}{2a}(b^2-4ac≥slant0)。

数学北师大版九年级上册1.3正方形的性质和判定教案

数学北师大版九年级上册1.3正方形的性质和判定教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“正方形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了正方形的基本概念、性质和判定方法,以及它在日常生活中的应用。通过实践活动和小组讨论,我们加深了对正方形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
数学北师大版九年级上册1.3正方形的性质和判定教案
一、教学内容
本节课选自北师大版九年级上册第一章第三节的正方形的性质和判定。教学内容主要包括以下方面:
1.正方形的定义:通过前一节矩形和菱形的性质,引导学生探究正方形的定义,即四条边相等且四个角都是直角的矩形。
2.正方形的性质:
(1)对边平行且相等;
(2)对角相等,且均为直角;
2.教学难点
-正方形性质的推导:学生需要理解并推导出正方形的各种性质,如对角线相等、垂直、平分等,这需要较强的逻辑推理能力。
-正方形判定的灵活应用:学生需要能够根据不同情况灵活应用判定方法,这对于部分学生来说可能存在难度。
-解决实际问题中的正方形应用:将正方形的性质和计算方法应用于实际问题,如求解正方形边长或面积,需要学生具备一定的数学建模能力。
(3)对角线互相垂直、平分且相等;

新北师大版初中数学九年级上册第1章 特殊平行四边形《第3课 正方形的性质与判定》

新北师大版初中数学九年级上册第1章 特殊平行四边形《第3课 正方形的性质与判定》
满足什么条件的菱形是正方形? 定理:有一个角是直角的菱形是正方形.
请证明你的结论,并与同伴交流.
正方形的判定( 随堂练习1)
定理:有一个角是直角的菱形是正方形.
已知:四边形ABCD是菱形,∠A=900. A
D
求证:四边形ABCD是正方形.
证明:
∵四边形ABCD是菱形,∠A=900,
B
C
∴AB=BC,∠C=∠A=900,∠B=1800-∠A=900.
CG=DG=
1
2 CD,DH=AH=
1
AC
2
∴AE=BE2=BF=CF=CG=DG2=HG=AH
∴△AHE≌△BEF≌△CFG≌△DHG
A
E
B
13 2
H
F
D
G
C
∴EF=FG=GH=HE∴四边形EFGH是菱形
∵∠1=∠2=45°∴∠3=90 °
∴四边形EFGH是正方形
(1)以菱形或矩形各边的中点为顶点可以组成一个什 么图形?先猜一猜,再证明.如果以平行四边形各边 的中点为顶点呢?
例1.如图 1-18,在正方形 ABCD
中,E 为 CD 边上一点,F 为 BC 延长线上一点,且 CE = CF.BE
M
与 DF 之间有怎样的关系?请说明
理由.
解:BE = DF,且 BE⊥DF. 理由如下:
(2)延长 BE 交 DF 于点 M. ∵ △BCE ≌ △DCF,∴ ∠ CBE = ∠ CDF. ∵ ∠ DCF = 90°,∴ ∠ CDF + ∠ F = 90°. ∴ ∠ CBE + ∠ F = 90°. ∴ ∠ BMF = 90°.∴ BE⊥DF.
北师大版九年级数学(上)
第一章 特殊平行四边形

九年级数学上册第三单元重要知识点总结

九年级数学上册第三单元重要知识点总结

九年级数学上册第三单元重要知识点总

正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。

2、正方形的判定定理:
l 有一个角是直角的菱形是正方形。

l 有一组邻边相等的矩形是正方形。

l 有一个角是直角且有一组邻边相等的平行四边形是正方形。

l 对角线相等的菱形是正方形。

l 对角线互相垂直的矩形是正方形。

l 对角线相等且互相垂直的平行四边形是正方形。

l 对角线相等且互相垂直、平分的四边形是正方形。

4、连接三角形每两边的中点,就得到了四个全等的三角形和三个平行四边形,所得的三角形的周长是原三角形周长的,所得的三角形
的面积是原三角形面积的。

八、中点四边形
1. 依次连接四边形各边中点所得到的新四边形的形状,取决于原四边形两条对角线的位置关系和数量关系,即两条对角线是否相等或者是否垂直。

2. 依次连接任意四边形各边的中点,就得到一个平行四边形。

3. 依次连接平行四边形各边的中点,就得到一个平行四边形。

4. 依次连接矩形各边的中点,就得到一个菱形。

5. 依次连接菱形各边的中点,就得到一个矩形。

6. 依次连接正方形各边的中点,就得到一个正方形。

7. 依次连接等腰梯形各边的中点,就得到一个菱形。

8. 依次连接两条对角线相等的四边形各边的中点,就得到一个菱形。

9. 依次连接两条对角线互相垂直的四边形各边的中点,就得到一个矩形。

10. 依次连接两条对角线相等且互相垂直的四边形各边的中点,就得到一个正方形。

九年级- 正方形知识点典型例题及练习

九年级- 正方形知识点典型例题及练习

正方形一、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质,即:①正方形的四个角都是直角,四条边都相等;②正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(2)对角线与边的夹角为︒45;(3)正方形是中心对称和轴对称图形,对称中心在两条对角线交点上;对称轴有四条;(4)正方形内任意一点P 到四个顶点的长也满足下列关系: 2222PD PB PC PA +=+二、正方形的判定(1)有一组邻边相等并且有一个角是直角 的平行四边形是正方形。

(2)有一组邻边相等的矩形是正方形。

(3)有一个角是直角的菱形是正方形。

(4)对角线垂直且相等的平行四边形是正方形。

特殊四边的中点四边形:ABCDP等腰梯形的中点四边形是菱形直角梯形的中点四边形是平行四边形梯形的中点四边形是平行四边形平行四边形的中点四边形是平行四边形矩形的中点四边形是菱形菱形的中点四边形是矩形正方形的中点四边形是正方形归纳:特殊四边形的中点四边形:◆平行四边形的中点四边形是平行四边形◆矩形的中点四边形是菱形◆菱形的中点四边形是矩形◆正方形的中点四边形是正方形◆等腰梯形的中点四边形是菱形◆直角梯形的中点四边形是平行四边形◆梯形的中点四边形是平行四边形一般四边形的中点四边形:决定中点四边形EFGH的形状的主要因素是原四边形ABCD的对角线的长度和位置关系例题分析例1 下列叙述错误的是()A.既是矩形又是菱形的四边形是正方形B.有一组邻边相等的矩形是正方形C.有一个角是直角的菱形是正方形D.对角线相等且互相垂直的四边形是正方形例2 如图1-3-1,正方形ABCD 的面积为256,点E 在AD 上,点F 在AB 的延长线上,EC ⊥FC ,∆CEF 的面积是200,则BF 的长是 .例 3 已知E 为边长是1的正方形ABCD 内一点,且AEB S ∆=0.1999,则CED S ∆= .例4 如图1-3-2,正方形ABCD 的边长AB=20,F 为AD 上的一点,连接CF ,作CE ⊥CF 交AB 的延长线于E ,作DG ⊥CF 交CF 于G ,若BE=15,则DG 的长为 .例5 如图1-3-3,正方形ABCD 中,E ,F 为BC ,CD 上的点,且∠EAF=45°,求证EF=BE+DF .1-3-11-3-21-3-3例6 如图1-3-4,正方形ABCD 的边长为4,E ,F 分别为AD ,BC 上的两个点,且BF=DE=1,从EF 的中点O 作EF 的垂直平分线,交CD 于G ,则OG = .例7 如图1-3-5,正方形ABCD 的边长为a ,E ,F ,G ,H 分别在正方形的四条边上,已知EF//GH ,EF=GH ,(1)若AE=AH=13a ,求四边形EFGH 的周长和面积;(2)求四边形EFGH 的周长的最小值.例8 如图1-3-6,已知E 是正方形ABCD 内一点,且∠ECD=∠EDC=15°,则AEB ∠= .90.DEC D DE A DE A AD AEB ∆︒''∆∆∠分析:利用旋转将以为中心顺时针旋转得到,再将以为轴对称即可得出度数1-3-41-3-61-3-51-3-81.在正方形ABCD 内有点P ,使∆PAB 、 ∆PBC 、∆PCD 、∆PDA 都是等腰三角形,那么具有这样性质的点是 个2.已知边长为4的正方形ABCD 中,F 是AD 的中点,E 点在AB 边上,且AE:EB=1:3,那么EFC S ∆= .3.一张边长为6的长方形纸片,按图1-3-7加以折叠,使得一角顶点落在对边上,则折痕长为 .4.若P 是边长为1的正方形ABCD 内一点,且0.31ABP S ∆=,则DCP S ∆= .5.边长为10的正方形,把边长增加同样的长度后,所得面积是625,则边长增加了 .6.如图1-3-8将正方形内接于等腰Rt ABC ∆,如果按照图甲的放法,可求得该正方形的面积是441,如果按照图乙的放法,那么只能放边长为 的正方形1-3-77.如图1-3-9,在面积为1的正方形ABCD 内取一点P ,使PBC ∆为等边三角形,求∆BPD 的面积.8.如图1-3-10,正方形OPQR 内接于∆ABC .已知∆AOR 、∆BOP 和∆CRQ 的面积分别是1、3和1.试求正方形OPQR 的面积.9.如图1-3-11,已知正方形AC 、BD 相交于点O ,BE 平分∠OBA ,CF ⊥BE 与F ,交OB 于G ,求证OE=OG.10.如图1-3-12,点P 在正方形ABCD 内,若PA:PB:PC=1:2:3,求∠APB 的度数.1-3-91-3-101-3-111-3-1211.如图1-3-13,过正方形ABCD 的顶点B 作直线l ,过,A C 作l 的垂线,垂足分别为,E F .若1AE =,3CF =,则AB 的长度为 .练习12(中,折叠与正方形的性质)如图1-3-14,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合。

1.3第1课时正方形的性质-北师大版九年级数学上册习题课件

1.3第1课时正方形的性质-北师大版九年级数学上册习题课件

(2)如图 2,结论不变.DM⊥EM,DM=EM.理由:在图 2 中,延长 EM 交 DA
2.正方的形是延轴对长称图线形,于它的对H称.轴∵有(四边) 形 ABCD 是正方形,四边形 EFGC 是正方形,∴∠ADE=∠
10.【易错题】已知正方形ABCD中,点E为直线BC上一点,若AE=2BE,则∠DAE=__________度.
1.正方形具有而矩形不具有的性质是( )
11.如图,正方形OABC的边OA和OC都在坐标轴上,将正方形OABC绕点O旋转到OA′B′C′,这时点A′的坐标为(2,3),则点B′的坐标为__________.
∴∠FAE+∠AED=90°, 注意:正方形既是特殊的矩形,又是特殊的菱形,即有一组邻边相等的矩形是正方形或有一个角是直角的菱形是正方形.
知识点1 正方形的定义 有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形. 注意:正方形既是特殊的矩形,又是特殊的菱形,即有一组邻边相等的矩形是 正方形或有一个角是直角的菱形是正方形.
第一章 特殊平行四边形
上一页 返回导航 下一页
数学·九年级(上)·配北师
知识点2 正方形的性质 (1)定理1:正方形的四个角都是直角,四条边都相等. (2) 定 理 2 : 正 方 形 的 对 角 线 相 等 且 互 相 垂 直 平 分 , 每 一 条 对 角 线 平 分 一 组 对 角. (3)对称性:正方形是中心对称图形,对角线的交点是它的对称中心.正方形是 轴对称图形,两条对角线所在的直线,以及过每一组对边中点的直线都是它的对称 轴.
90°,∴∠DAF+∠EAD=90°,即∠EAF=90°,∴EF= AE2+AF2= 2AE=5 2.
第一章 特殊平行四边形
上一页 返回导航 下一页
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学上册知识点
正方形
问题1:矩形怎样变化后就成了正方形呢?你有什么发现?
问题2菱形怎样变化后就成了正方形呢?你有什么发现?
归纳总结
正方形定义:
有一组邻边相等并且有一个角是直角的平行四边形叫正方形.
归纳总结
平行四边形、矩形、菱形、正方形之间关系:
正方形是特殊的平行四边形,也是特殊的矩形,也是特殊的菱形.所以矩形、菱形有的性质,正方形都有.
性质:1.正方形的四个角都是直角,四条边相等.
2.正方形的对角线相等且互相垂直平分.
5.如图,正方形ABCD的边长为1cm,AC为对角线,AE平分∠BAC,EF⊥AC,求BE的长.
小结
正方形的判定
练习
1.下列命题正确的是()
A.四个角都相等的四边形是正方形
B.四条边都相等的四边形是正方形
C.对角线相等的平行四边形是正方形
D.对角线互相垂直的矩形是正方形
2.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()
A.当AB=BC时,四边形ABCD是菱形
B.当AC⊥BD时,四边形ABCD是菱形
C.当∠ABC=90°时,四边形ABCD是矩形
D.当AC=BD时,四边形ABCD是正方形
小结。

相关文档
最新文档