压力管道应力分析的内容及特点
管道应力分析

管道应力分析
管道应力分析是一种普遍存在的、涉及多项工程设计技术的实用工程方法。
它的目的是为了评估管道系统的机械特性,以满足运行应力以及其它设计要求。
管道应力分析基本上是指在设计、构造和维护水力管道或管道网时,确定压力、载荷以及应力的分布情况。
管道应力分析的原则包括:收集所需的数据,如管道的长度、材质、特性、尺寸、结构和附件;应用结构力学原理,考虑管道配置、材料和运行参数,利用有限元分析、数值分析和扩展Q-T分析等工具,计算出管道的应力和变形;根据计算的应力及其比例,结合管道材料的断裂极限,判断管道是否能够承受设计要求的应力。
管道应力分析可以有效地帮助相关工程人员有效地了解管道的物理行为,从而更好地了解管道的设计特征,可以更准确地估算管道的运行安全性,并且可以有效地与设计团队进行有效沟通,解决可能存在的管道应力问题。
不仅如此,管道应力分析还可以帮助企业识别出其管道系统的弱点,如可能存在的不足的断面和支撑,从而设计出有效的结构及其它补救措施,使管道系统能够达到规定的要求。
总之,管道应力分析对于提高管道设计质量、提高工程经济性和保障管道系统的安全性具有重要意义。
压力管道应力分析

压力管道应力分析压力管道是工业生产和生活中常见的工程结构,广泛用于输送水、油、气等介质。
管道内部由于介质压力的作用而产生应力,这些应力的分析对于管道的设计和使用安全至关重要。
本文将从压力管道的应力计算方法、应力分布特点以及应力分析的影响因素等方面进行探讨。
压力管道的应力计算方法主要有两种,即薄壁理论和薄壁理论的改进方法。
薄壁理论是指在管道内径与壁厚比较大的情况下,将管道近似看作薄壁圆筒,应力集中在内径和外径处,通过简化计算得出管道内壁和外壁的应力分布。
该方法适用于绝大部分工程中的压力管道计算。
薄壁理论的改进方法包括厚壁筒薄壁环假设、都笑横断面假设等,通过考虑管道截面的几何形状以及内外径比等因素,提高了应力计算的准确性。
压力管道的应力分布特点主要有三个方面,即轴向应力、周向应力和切向应力。
轴向应力指的是管道轴线方向上的应力,主要由管道内压力和温度差引起。
周向应力指的是管道截面圆周方向上的应力,主要由内压力引起。
切向应力指的是管道截面切线方向上的应力,主要由内压力和薄壁理论简化计算引起。
在传统理论中,管道的轴向应力和周向应力一般为正值,而切向应力为零。
压力管道的应力分析受到多个因素的影响。
首先是管道的材料特性,包括材料的弹性模量、屈服强度、塑性延伸率等。
管道的材料特性直接决定了管道的耐压能力和变形能力。
其次是管道的几何形状,包括内径、外径、壁厚等。
几何形状的不同会导致管道内外径比和界面摩擦等因素的改变,进而影响应力分布。
再次是管道的工作条件,包括温度、压力等。
不同工作条件下管道内部介质的物理性质会发生变化,进而影响管道的应力分布。
最后是管道的固定和支撑方式。
固定和支撑方式的不同会引起管道的应力集中,影响管道的安全性。
为了保证压力管道的正常运行和安全性,需要进行应力分析以及补强设计。
应力分析主要通过有限元分析和解析方法进行。
有限元分析是一种常用的计算机辅助工程分析方法,通过将管道模型离散化为有限个单元,计算每个单元的应力和变形,进而得到整个管道应力分布的方法。
压力管道的弯管与直管连接结构应力分析

压力管道的弯管与直管连接结构应力分析压力管道通常需要在其线路中使用曲线管来满足管线的转弯需求。
这些曲线管与直管连接起来通常需要一些特殊的结构,以确保管道在工作中能够维持其正常运行。
这篇文章将会对压力管道的弯管与直管连接结构进行应力分析,探讨其应力特点和设计原则。
首先,弯管与直管连接处的应力特点需要根据管道工作环境的不同而定。
例如,在高压和高温的环境中,管道的应力水平可能会比其他工作环境更高。
但一般来说,弯管与直管连接处的应力主要来自以下几个方面:1. 管体弯曲引起的应变应力弯管的曲率半径与管径之比决定了管体在弯曲过程中所需的应变。
应变过大会导致管体产生应变能。
当弯管与直管连接时,由于曲率半径和管径的不同,管体在连接处即产生了应变,进而形成了应力。
这种应力会在管道工作后不断累计,直至形成管体的韧性断裂。
2. 管道内部介质的压力应力弯管与直管连接处由于管径不同,液体在弯管和直管连接处的流速会变化。
这种流速的变化会导致液体在连接处产生压力应力,进而形成一种压力差,即产生流动阻力。
当管道内介质的压力水平越高时,这种应力越显著。
3. 管道的自重应力管道的自重通常也会对其弯管与直管连接处产生应力。
由于曲率半径和管径的不同,连接处的管体在弯曲或水平的工作状态下会受到重力的作用,因此产生自重应力。
根据上述应力特点,设计出一种合理和可靠的弯管与直管连接结构需要遵循以下几个原则:1. 应根据弯管的弯曲半径和直管的管径来选择适当的连接件。
连接件的设计应该满足弯管和直管的直径差异,以确保连接处的应变和应力得以分散。
合适的连接件可以确保管体的韧性,并应对连结处所产生的应力和应变有所缓解。
适当的连接件还可以改善管体的流动特性,并降低压力差。
2. 连接件的安装位置及其环境应符合相关的标准和要求。
连接件应安装到充分的标准上,选取合适的材料和工艺。
同时,安装环境也应满足相关的要求,如适当的温度和湿度。
任何其他环境条件的不合规都会导致连接件安装不稳定。
试述压力管道应力分析的内容及特点

试述压力管道应力分析的内容及特点作者:杨杰来源:《城市建设理论研究》2013年第15期摘要:本文首先介绍了压力管道应力分析的内容,然后分析了压力管道的柔性设计,最后论述了压力管道应力分析特征,具有一定的参考价值。
关键词:压力管道,应力分析,内容,特征。
中图分类号:TV732.4文献标识码: A 文章编号:一直以来,压力管道在使用中都出现了各种各样的问题,如重力、压力、风、冲击、地震以及压力脉动等荷载与热膨胀,这些因素势必影响到压力管道的正常运行,影响到人们正常生活。
对这些问题进行分析可以发现,热胀冷缩在整个压力管道应力分析中表现尤为突出,其影响程度很大。
因此,分析热膨胀在管道中产生应力至关重要,且能够为压力管道的安装提供理论依据。
一、压力管道应力分析的内容对压力管道进行应力分析是非常有必要的,关系着压力管道安装之后的使用。
而且分析压力管道的应力内容较多,主要有如下几个方面:1应力分析之任务对压力管道进行应力分析之时,其任务主要涉及到静力和动力两个方面,这两个方面各自任务是不相同的,各有各的任务。
1.1静力分析1.1.1对压力管道中应力进行计算,要达到标准规范要求,这样做主要是确保管道的自身安全。
l.l.2对管道和其他相连接机器及设备之间应力进行计算,并且要确保达到标准规范要求,用来保证设备、机器之安全。
1 1 3对压力管道对土建结构与支吊架的应力进行计算,为土建结构及支吊架提供设计参考依据,确保支吊架与土建的安全。
1.1.4对管道的位移范围及应力进行计算,提防过大位移出现支架脱落或者管道碰撞,且给选择弹簧支吊架提供理论依据。
1.2动力分析1.2.1要分析地震之时对管道产生的应力,进而做好地震对管道造成破坏的防范措施;1.2.2分析往复泵管道及压缩机固有频率与振型,提防与压力管道产生机械共振;1.2.3分析往复压缩机对管道产生的强迫振动,进而采取有效方式控制振动应力,防止压力管道出现疲劳破坏;1.2.4分析往复压缩机产生的气脉压力,避免气体固有频率与压力脉动过大,进而破坏了压力管道;1.2.5计算水锤及安全阀在泄放中产生的荷载,给土建结构及支架设计提供数据依据。
压力管道应力分析的内容及特点

压力管道应力分析的内容及特点关键词:压力管道;应力分析;内容特点引言:如今工业中对于压力管道的需求量在不断增加,并且如今大量的工业运输以及承载都需要用到工业管道来作为支撑。
这类管道的应用同样能够为整体工业作业提供重要的保障和保护,同时还能够提升整体工程的有效性和安全性。
但是压力管道想要良好进行工作就必须对其进行外界温度、压力以及湿度等一系列因素的考验,只有通过这些考验以及能够承受住足够压力的管道才能够投入到实际使用中。
一、管道应力分析(一)一次应力在管道应力进行分析的过程中,一次应力通常指的是一些外界因素所带来的负荷以及负载,其中包括了管道所承受的重力、内压以及风载等一系列因素产生的剪应力以及正应力。
这两种应力通常会因为其自身的特点以及特性导致了容易与外加负载形成平衡关系,但是达成了平衡关系之后外加应力并不会取消或者停止,反而还会继续增加,若是外加应力逐渐增加并且达到了一个很大的值之后就会超过材料自身所拥有的屈服极限,管道就容易受到影响从而造成了破坏,管道总体也就随之出现了破坏。
相关工作人员应当能够对一次应力进行良好的控制,在进行管道设计时就应当提前给应力留出足够的预留空间,通过这样的方式来帮助整体管道不会出现过度塑性而造成的破坏或者失效。
同时,一次应力的校核也应当结合具体的弹性分析以及极限分析等一系列要求进行处理,通过处理之后才能够准确地对一次应力进行计算,从而将其进行控制。
如图1所示。
图1一次应力受力变形曲线(二)二次应力二次应力相比较于一次应力来说会更加直接,这类应力通常都是来自于对应的热胀冷缩或者其他位移受到约束而造成的剪应力和正应力,其自身具备一个无法和外力之间构成平衡关系的特点,因此其自身也就具备了非常明显的自限性特征[1]。
基本来说材料自身会因为材料以及质量从而具备对应的屈服值,若是二次应力导致了管道的荷载超过了这种屈服极限值之后就容易对管道局部造成变形一类的影响。
这时候相关人员应当对应力重新进行分布和规划,让材料应变能够达到自均衡的要求。
压力钢管安全鉴定的应力分析与强度计算

压力钢管安全鉴定的应力分析与强度计算压力钢管作为一种用于输送气体或液体的重要管道设备,其安全鉴定对于保障工业生产和人员安全至关重要。
在进行安全鉴定时,应力分析和强度计算是必不可少的步骤。
本文将针对压力钢管的应力分析和强度计算进行探讨。
一、应力分析1.1 弹性应力分析弹性应力分析通过对压力钢管所受力的计算,确定其在工作条件下的应力状态。
弹性应力可以分为轴向应力、周向应力和切向应力。
轴向应力是指压力钢管在管轴方向上受到的拉伸或压缩作用产生的应力。
其计算公式为:σz = (P * D) / (2 * t)其中,σz表示轴向应力,P表示管内的压力,D表示管道的直径,t 表示管壁的厚度。
周向应力是指在管壁厚度方向上产生的应力。
其计算公式为:σθ = (P * D) / (4 * t)切向应力是指在周向应力方向上的切应力。
其计算公式为:τ = (P * D) / (2 * t)1.2 塑性应力分析当压力钢管的应力超过弹性极限时,塑性应力开始发挥作用。
塑性应力分析需要考虑材料的屈服强度、变形硬化指数等因素。
塑性应力的计算涉及到材料的本构关系,常用的本构关系有屈服准则、应变硬化准则等。
根据材料的特性和具体情况,可以选取适合的本构关系进行计算。
二、强度计算2.1 材料的强度计算压力钢管的强度计算主要涉及材料的屈服强度和破坏强度。
屈服强度是指在材料屈服时承受的最大应力,破坏强度是指材料在极限状态下承受的最大应力。
通常采用屈服准则或破坏准则进行强度计算。
常用的屈服准则有von Mises准则、Tresca准则等,常用的破坏准则有最大应力准则、最大应变准则等。
2.2 结构的强度计算压力钢管的结构强度计算需要考虑管道本身的结构特点和外部载荷等因素。
常用的计算方法有弹性理论法、有限元法等。
弹性理论法是一种简化的计算方法,适用于结构相对简单、载荷较小的情况。
有限元法是一种更为精确的计算方法,可以考虑更复杂的结构和不同的载荷条件。
压力管道应力分析

压力管道应力分析引言压力管道作为输送流体的重要管线,承受的压力和温度都是极高的。
这样就会导致管道中的应力和变形问题,从而产生一定的安全隐患。
因此,对于压力管道的应力分析就显得尤为重要。
压力管道的应力压力管道在运行过程中,会受到各种力的作用,如内压、重力、支架反力、温度等,这些力作用在管道上,就会造成管道内部的应力,如轴向应力、周向应力、径向应力等。
•轴向应力轴向应力是指管道轴向方向的应力,通常是指由流体作用产生的内压力和拉力两部分的影响。
在管道内部,如果内压力太大,轴向应力就会增大,会导致管道的卡铁暴力现象。
•周向应力周向应力是指管道周向方向的应力,主要受到流体和温度两个因素的影响。
当管道内部温度升高,周向应力也会随之升高,如果超过极限值,就可能导致管道的破裂。
•径向应力径向应力是指与管道中心轴线垂直方向的应力,通常是由于弯曲、扭转等变形所引起的。
如果弯曲半径过小或者存在缺陷,就会导致径向应力过大,从而容易引起管道的破裂。
压力管道应力分析压力管道应力分析是针对管道内各种应力进行综合分析的过程。
在分析的过程中,通常需要采用有限元分析等方法,通过建立合适的数学模型和计算,得出管道内部的应力情况和强度,并评估管道是否存在危险的可能性。
在进行应力分析时,一般需要考虑以下几个方面。
1. 材料力学性能材料力学性能直接影响管道的使用寿命和安全性。
因此,对于材料的强度、韧性、塑性等性能参数,都需要进行准确的测定和分析。
常见的材料包括石墨、钢铁、铝合金等。
2. 工况分析针对不同的工况,管道所受的力也会不同。
因此,在进行应力分析之前,需要准确确定工况参数,如内压、外界温度等,以便进行有针对性的分析。
3. 有限元分析有限元分析是应用计算机模拟技术,将管道模型分割成有限个小模型,通过对小模型的计算和组合,分析管道内部的应力和强度分布。
这种方法可以更直观地了解管道内部应力的变化情况,有效评估管道的安全性和强度。
压力管道应力分析是管道设计和使用过程中必不可少的环节。
压力管道应力分析的内容及特点

压力管道应力分析的内容及特点压力管道的应用范围非常广并且应用场所都比较重要,压力管道主要扮演着运输介质物料的角色,主要应用在石油化工、天然气体、电力工程、冶金工程等重要大型建设工程中,运输或供给原料满足某种需求。
压力管道在整个管道系统和外界环境因素的影响下应具有足够的柔性来克服管道因热胀冷缩、端点位移、管道支承设置不当等原因造成的问题,也会受到流体的流动因素影响,这就增加了应力分析的复杂度,压力管道的应力分析必须将管道实际运行的情况尽可能的模拟准确才能得到接近实际的正确的分析结果。
标签:压力管道;应力;内容;特点一、管道应力分类(一)一次应力所谓一次应力过大是指由于外力荷载,如重力或压力等持续性荷载所引起的危害,它与外加载荷有一个平衡关系,会随着外加载荷的递增而递增,且不会由于达到相应材料的屈服点而自身实施限制,所以有一定的非自限性,除此之外,若是一次应力大于屈服点时其所产生管道的变形也非常明显,因此,需加强一次应力的控制,使一次应力小于许用应力值,以防止过度的塑性变形导致管道的破裂垮塌。
一次总体薄膜应力、一次弯曲应力和一次局部薄膜应力都属于一次应力的分类。
一次总体薄膜应力是指由于内压所引起的管道环向应力和轴向应力,拉伸或者压缩杆件所产生的应力。
一次弯曲应力是指沿厚度线性分布的应力,它在内表面和外表面上大小一样且方向相反。
一次弯曲应力的许用应力可以比总体薄膜应力高。
在管道支撑处或者管道与支管连接处由于外载所产生的薄膜应力可划分为一次局部薄膜应力。
(二)二次应力二次应力由热胀、冷缩和端点位移引起的,是指由于变形和其他相邻部件受到约束所引起的正应力或剪应力。
二次应力的效果通常不是平衡外荷载,而是在结构中受到相应荷载时变形所使得应力获得一定的缓解,因为二次应力自限性的特点,使它比一次应力更危险,受到更严格的限制。
(三)峰值应力峰值应力主要是因为荷载以及结构产生突然变化使得局部应力较为集中的最高值,其主要特点就是不会产生较明显的变形,并且在很短的距离之内其根源衰减,是一种引起疲劳破坏或脆性断裂的可能根源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压力管道应力分析的内容及特点
摘要:压力管道应力分析是管道设计中最关键的工作之一。
管道设计应根据工
业金属管道设计规范进行,进行管道设计应该从管道应力、管道材料和配管方面
着手。
因为压力管道上存在复杂性的各种载荷,进行压力管道的应力分析的难度
较大,导致阻碍管道设计工作,而且管道在运行和生产过程中的安全和质量关键
是因为应力而存在的,因此找到管道应力分析的方法具有重要意义。
论述压力管
道的应力特点和分布,能够提供给工程施工、管道选择和管道设计可靠的信息数
据作参考,进而确保土建结构与管道连接的设备和管道自身的安全,保证了整个
生产作业的安全,使压力管道提高使用价值。
关键词:应力;特点;压力;内容;管道
前言:压力管道具有十分广泛的应用范围,而且在各个场所中的应用作用十
分关键,压力管道关键作用是运输物质,在重要的大型建设工程中应用,如冶金
工程、电力工程、天然气体、石油化工等,为满足一些需要进行供给或运输。
因
为外界环境因素与整个管道系统均会很大程度的影响到压力管道应力,而且会受
影响于流体的流动,这使应力分析增加了复杂度,应力分析压力管道应该结合实
际的管道状况,尽量将接近实际、正确的分析结果准确模拟出来。
1应力分析压力管道的涵义
在市政建设行业、化工行业、石油石化等产业普遍应用到管道,这些行业存
在较高要求的工程安全指数与投资额,对压力管道进行应力分析应该对概念充分
了解。
应力指的是管道构件应用在建设需要中承受的单位面积内力,其在荷载外
力下形成的值较大,若是超出能够承受的材料极限强度,将造成管材失稳、破裂、变形等状况,关键在于因为外部热荷载与机械荷载导致的。
应力分析管道的状况下,能够确保良好的使用工艺装置而且保持其柔软性,精准的计算与分析热荷载
与机械荷载后,获取设计管道的配件参数,计算变形与应力、应力与荷载,提供
给管道配置合理的数据凭据,能够使管道产生的震动干扰减少,进而错开震源的
震动频率,使管道的可靠性与安全性得到确保。
2应力分析压力管道的内容
清楚了解分析的种类是应力分析压力管道的重要前提基础,按照不同种类应
力的特点,应用针对性措施是压力管道减小应力,按照压力管道承受应力的作用
方向、范围、强度大小,能够将压力管道上承受的应力分类成一、二次应力与峰
值应力。
应力分析压力管道的关键内容是管道材料的承受力、应力的影响因素、
应力种类、管道应力分布、工作流程、分配的分析任务等。
最重要的是应力种类,关于管道的设计工作技术方面的最基本要求是对应力的种类掌握了解并且快速分析。
2.1压力管道一次应力分析内容
导致压力管道形成一次应力是因为受到一定的外载荷,致使压力管道上存在
外载荷的关键原因为受影响于外界力,如风压、介质压力、重力等,通过受到的
平衡受力得知外界力与一次应力具有相同的大小,一次应力伴随改变的外界力改变,所以所以具备无自限性特点的一次应力所以出于无线增大的外力影响下,压
力管道将无限制增长受到的应力,进而产生压力管道变形或裂缝的现象,然而压
力管道受到的应力方向相反于外界力方向。
因为压力管道受到的不确定方向的外
界力,导致存在不同分布范围的应力,能够按照压力管道受到作用范围的一次应
力,分成局部薄膜弯曲一次应力、一次应力与总体薄膜一次应力导致压力管道变形与破裂的关键原因在于被一次应力所影响,压力管道承受的一次应力大小若是比压力管道材料具备的塑性变形值大的状况下便会产生这种现象,进而致使运输流体在压力管道中对正常运行工程项目产生影响与损失。
所以想要防止产生一次应力超出管材具备的塑性变形值,应该压力管道承受的外界力严格控制,而且在对压力管道选取管材时保证相较于外界力管材具备的塑性变形值更大。
2.2压力管道二次应力分析内容
像气体一样,被温度所影响,流体的体积大小将受到影响,因为对于液体来讲,压力管道具备的变形性特别小,在低温或高温的状况下,压力管道会出现热胀冷缩的状况,而且因为温度等原因导致连接于压力管道的设备出现初始位移,因为管道在这些状况下形成的变形致使被约束于外界条件,如土建结构、设备管口等,使应力形成,二次应力是因为附加位移与热胀冷缩等形成的。
二次应力最基本的不同在于,二次应力没有一次应力存在的无自限性,而且二次应力不会由于改变外界力的大小而受到改变,若是外界力导致产生局部屈服的状况下,管道出现变形直到外界力和一次应力处于平衡状态,也不会影响到二次应力。
在压力管道存在很大的塑性变形值的基础上,压力管道受到初次荷载的状况下,导致破坏压力管道的原因不是二次应力,压力管道受到多次变化的荷载的状况下,导致压力管道不断降低塑性变形值,使管道产生疲劳破坏的状况,压力管道会受到二次压力重要的破坏,关于管道受到二次应力而遭到破坏的状况,并非是受到一次应力限定的破坏时间,是因为循环次数与交变的应力导致的。
2.3压力管道峰值应力分析内容
在局部范畴中压力管道遭受的应力便是峰值应力,并非是压力管道承受的最大应力值,因为压力管道具有十分复杂的形状,会产生形状突变如急转等状况,受影响于突然产生变化的荷载致使峰值应力受力于压力管道,导致产生峰值的原因紧密关系着压力管道中构成设备仪器的形式,峰值压力不会导致压力管道产生破裂与变形的现象,然而在压力管道产生疲劳受力的状况下,若是受到峰值应力将导致压力管道破裂的状况形成。
3应力分析压力管道的特点探讨
伴随我国目前不断发展的科学技术和应力分析压力管道方面不断提高的技术水平,应力分析压力管道的状况下越发能够有效、清楚的将相关应力处理,然而在处理压力管道应力管道应力方面相比于西方发达国家还有明显的差异存在,导致产生差异的关键原因在于规范的校核原则不足。
应力分析压力管道的过程中,设计人员通常情况下对局部薄膜应力和一次弯曲应力分析忽视,无法对产生一次应力的原因与受力全面的了解,进而致使对压力管道分析的数据有一定程度的差错产生,使工作人员编制的后期数据报告存在错误,从而使正常运行压力管道受到影响。
对压力管道分析一次应力的分析目的在于防止未运行压力管道就产生破裂或产生坍塌现象,压力管道的应力分析过程在出现二次应力的分析目的在于防止使用压力管道的时和低温与高温变化的情况下产生管道凹陷与涨裂的状况,对正常的压力管道运输流体造成影响,对峰值应力分析的目的在于避免管道突变的部分产生管道破裂状况。
结束语
总而言之,因为我国是发展中国家,正在不断进行着工业化建设,使用压力管道的情况关系到各个工业领域建设。
特别是化工类工业流程,因为运送介质物料需要大量的管道,使生产系统完整形成。
所以,建设工程的设计环节,十分关
键的设计管道的工作,在设计管道的过程中应力分析对管道的质量安全起到直接
影响,管道是运输介质物料的重要载体,尤为关键的是管道的安全质量,有必要
针对压力管道进行应力分析,对应力分析清楚分布状况与形成原因,进而能够更
加有效的对管道应力问题处理解决。
参考文献
[1]田勃,范国锋,陈红卫,等.压力管道应力分析的内容及特点[J].工程技术:全文版,2016(8):114.
[2]李雪晶.浅析压力管道应力分析[J].纯碱工业,2016,01:34-36.
[3]翁耀祖.浅析压力管道应力分析的内容及特点[J].工程技术:全文版,2016(9):290.
[4]冯兴伟.压力管道应力分析的内容及特点分析[J].工程技术:全文版,2016(11):293.
[5]张其莘,赵静,崔志伟,压力管道的应力分析及计算[J].石化技术,2016,01:
148+204.
[6]邹梅芳.论压力管道应力分析的内容及特点[J].冶金动力,2014(8):43-47.。