15压力管道应力分析

合集下载

压力管道应力分析

压力管道应力分析

压力管道应力分析压力管道是工业生产和生活中常见的工程结构,广泛用于输送水、油、气等介质。

管道内部由于介质压力的作用而产生应力,这些应力的分析对于管道的设计和使用安全至关重要。

本文将从压力管道的应力计算方法、应力分布特点以及应力分析的影响因素等方面进行探讨。

压力管道的应力计算方法主要有两种,即薄壁理论和薄壁理论的改进方法。

薄壁理论是指在管道内径与壁厚比较大的情况下,将管道近似看作薄壁圆筒,应力集中在内径和外径处,通过简化计算得出管道内壁和外壁的应力分布。

该方法适用于绝大部分工程中的压力管道计算。

薄壁理论的改进方法包括厚壁筒薄壁环假设、都笑横断面假设等,通过考虑管道截面的几何形状以及内外径比等因素,提高了应力计算的准确性。

压力管道的应力分布特点主要有三个方面,即轴向应力、周向应力和切向应力。

轴向应力指的是管道轴线方向上的应力,主要由管道内压力和温度差引起。

周向应力指的是管道截面圆周方向上的应力,主要由内压力引起。

切向应力指的是管道截面切线方向上的应力,主要由内压力和薄壁理论简化计算引起。

在传统理论中,管道的轴向应力和周向应力一般为正值,而切向应力为零。

压力管道的应力分析受到多个因素的影响。

首先是管道的材料特性,包括材料的弹性模量、屈服强度、塑性延伸率等。

管道的材料特性直接决定了管道的耐压能力和变形能力。

其次是管道的几何形状,包括内径、外径、壁厚等。

几何形状的不同会导致管道内外径比和界面摩擦等因素的改变,进而影响应力分布。

再次是管道的工作条件,包括温度、压力等。

不同工作条件下管道内部介质的物理性质会发生变化,进而影响管道的应力分布。

最后是管道的固定和支撑方式。

固定和支撑方式的不同会引起管道的应力集中,影响管道的安全性。

为了保证压力管道的正常运行和安全性,需要进行应力分析以及补强设计。

应力分析主要通过有限元分析和解析方法进行。

有限元分析是一种常用的计算机辅助工程分析方法,通过将管道模型离散化为有限个单元,计算每个单元的应力和变形,进而得到整个管道应力分布的方法。

压力管道的弯管与直管连接结构应力分析

压力管道的弯管与直管连接结构应力分析

压力管道的弯管与直管连接结构应力分析压力管道是一种用于输送流体(包括气体和液体)的管道,通常用于工业生产和民用设施。

在实际应用中,压力管道的结构连接是非常重要的,尤其是在弯管与直管连接的结构中,其应力分析更是必不可少的工作。

本文将从理论和实际工程角度出发,对压力管道的弯管与直管连接结构进行应力分析,以期为相关领域的工程师和研究人员提供参考。

压力管道的弯管与直管连接通常有两种形式,一种是焊接连接,另一种是螺纹连接。

焊接连接是将弯管和直管的端部通过焊接工艺连接在一起,形成一个整体结构;螺纹连接则是通过螺纹将弯管和直管的端部螺纹连接在一起,需要使用密封垫片进行密封。

在实际应用中,焊接连接通常用于对密封性要求较高的场合,例如输送腐蚀性介质的管道系统;而螺纹连接则通常用于对拆卸和维护要求较高的场合,例如化工和石油行业的管道系统。

无论是焊接连接还是螺纹连接,都需要进行应力分析,以确保管道系统的安全性和稳定性。

二、弯管与直管连接结构的应力分析原理1、焊接连接的应力分析原理焊接连接是将弯管和直管的端部通过焊接工艺连接在一起,形成一个整体结构。

在应力分析中,需要考虑以下几个方面的因素:(1)接头的受力情况:焊接接头是整个管道系统中的薄弱环节,其受力情况对整个管道系统的安全性起着至关重要的作用。

在应力分析中需要对焊接接头的受力情况进行详细分析,包括受拉力、受压力和受剪力等情况。

(2)材料的选择:在焊接连接中,材料的选择对整个管道系统的稳定性和安全性具有直接影响。

在应力分析中需要考虑焊接材料的强度、韧性和耐腐蚀性等因素。

(3)焊接工艺的选择:焊接工艺对焊接接头的质量和稳定性具有重要影响。

在应力分析中需要考虑焊接工艺的选择对焊接接头的影响,包括焊接温度、焊接速度和焊接气氛等因素。

三、弯管与直管连接结构的应力分析方法1、有限元分析法有限元分析法是一种广泛应用于工程结构分析领域的数值分析方法,可以较为准确地获取结构的应力分布和受力情况。

压力管道的弯管与直管连接结构应力分析

压力管道的弯管与直管连接结构应力分析

压力管道的弯管与直管连接结构应力分析压力管道通常需要在其线路中使用曲线管来满足管线的转弯需求。

这些曲线管与直管连接起来通常需要一些特殊的结构,以确保管道在工作中能够维持其正常运行。

这篇文章将会对压力管道的弯管与直管连接结构进行应力分析,探讨其应力特点和设计原则。

首先,弯管与直管连接处的应力特点需要根据管道工作环境的不同而定。

例如,在高压和高温的环境中,管道的应力水平可能会比其他工作环境更高。

但一般来说,弯管与直管连接处的应力主要来自以下几个方面:1. 管体弯曲引起的应变应力弯管的曲率半径与管径之比决定了管体在弯曲过程中所需的应变。

应变过大会导致管体产生应变能。

当弯管与直管连接时,由于曲率半径和管径的不同,管体在连接处即产生了应变,进而形成了应力。

这种应力会在管道工作后不断累计,直至形成管体的韧性断裂。

2. 管道内部介质的压力应力弯管与直管连接处由于管径不同,液体在弯管和直管连接处的流速会变化。

这种流速的变化会导致液体在连接处产生压力应力,进而形成一种压力差,即产生流动阻力。

当管道内介质的压力水平越高时,这种应力越显著。

3. 管道的自重应力管道的自重通常也会对其弯管与直管连接处产生应力。

由于曲率半径和管径的不同,连接处的管体在弯曲或水平的工作状态下会受到重力的作用,因此产生自重应力。

根据上述应力特点,设计出一种合理和可靠的弯管与直管连接结构需要遵循以下几个原则:1. 应根据弯管的弯曲半径和直管的管径来选择适当的连接件。

连接件的设计应该满足弯管和直管的直径差异,以确保连接处的应变和应力得以分散。

合适的连接件可以确保管体的韧性,并应对连结处所产生的应力和应变有所缓解。

适当的连接件还可以改善管体的流动特性,并降低压力差。

2. 连接件的安装位置及其环境应符合相关的标准和要求。

连接件应安装到充分的标准上,选取合适的材料和工艺。

同时,安装环境也应满足相关的要求,如适当的温度和湿度。

任何其他环境条件的不合规都会导致连接件安装不稳定。

关于压力管道的应力分析

关于压力管道的应力分析

关于压力管道的应力分析【摘要】压力管道的应力问题在管道检验过程中都会涉及到的,由于压力管道应力的分析和计算过程都要求相对高的技术,这对于检验技术人员来说是很难完成的。

因此,本文着重对压力管道应力分析的内容、应力特征、应力分类以及校核准则进行了论述,以便于为分析人员提供了有效的理论依据。

【关键词】压力管道应力分析一次应力二次应力压力管道的应力影响着压力管道在安装后的安全使用,所以进行应力分析是很有必要的,压力管道应力分析的内容相对较多,主要体现在以下几个方面。

2 压力管道应力分析的特征压力管道在应力分析过程中还不够严谨,其中还存在着一些缺陷,其主要原因是因为压力管道应力由历史根源所造成的校核准则存在不足,但压力管道应力分析有着自身的特点,主要体现在以下几个方面:(1)在压力管道的应力分析之中,没有考虑管道的薄膜应力和局部弯曲应力,从而导致一次应力中没有对一次总体薄膜应力、一次局部薄膜应力和一次弯曲应力进行细分;在一次应力校核准则中往往忽视了对一次弯曲应力和一次局部薄膜应力进行校核,而只对一次总体薄膜应力进行了校核。

(2)计算一次应力主要是为了避免管道在安装的时候承受不住压力而塌下来。

计算二次应力是为了防止管道在发生热变形之后是否会出现问题,通过二次应力计算管道是否发生偏移、移位,并防止并排管道所产生的相互影响。

(3)二次应力校核具有着自身的操作方式,最主要是针对其结构的安定性,只需满足结构安定性条件,就可以避免压力管道产生低周疲劳。

(4)一次应力校核主要是校核压力管道的纵向应力,其最主要的特点是不遵循剪应力理论,二次应力校核虽然遵循的是最大剪应力,但其计算应力过程中不会计算管道轴向立,只考虑管道弯矩和扭矩的作用。

3 压力管道的应力分类及校核准则压力管道与压力容器有所不同,对于不同的管道根据管道自身的特点都有着不同的校核准则,由于压力管道的应力分析主要侧重于对管系整体的分析,而压力容器的应力分析主要是对局部进行详细的分析,两者在应力分类的方法和校核准则上都存在着较大的差异。

压力管道应力分析部分

压力管道应力分析部分

压力管道应力分析部分第一章任务与职责1.管道柔性设计的任务压力管道柔性设计的任务是使整个管道系统具有足够的柔性,用以防止由于管系的温度、自重、内压和外载或因管道支架受限和管道端点的附加位移而发生下列情况;1)因应力过大或金属疲劳而引起管道破坏;2)管道接头处泄漏;3)管道的推力或力矩过大,而使与管道连接的设备产生过大的应力或变形,影响设备正常运行;4)管道的推力或力矩过大引起管道支架破坏;2.压力管道柔性设计常用标准和规范1) GB 50316-2000《工业金属管道设计规范》2) SH/T 3041-2002《石油化工管道柔性设计规范》3) SH 3039-2003《石油化工非埋地管道抗震设计通则》4) SH 3059-2001《石油化工管道设计器材选用通则》5) SH 3073-95《石油化工企业管道支吊架设计规范》6) JB/T 8130.1-1999《恒力弹簧支吊架》7) JB/T 8130.2-1999《可变弹簧支吊架》8) GB/T 12777-1999《金属波纹管膨胀节通用技术条件》9) HG/T 20645-1998《化工装置管道机械设计规定》10)GB 150-1998《钢制压力容器》3.专业职责1) 应力分析(静力分析动力分析)2) 对重要管线的壁厚进行计算3) 对动设备管口受力进行校核计算4) 特殊管架设计4.工作程序1) 工程规定2) 管道的基本情况3) 用固定点将复杂管系划分为简单管系,尽量利用自然补偿4) 用目测法判断管道是否进行柔性设计5) L型 U型管系可采用图表法进行应力分析6) 立体管系可采用公式法进行应力分析7) 宜采用计算机分析方法进行柔性设计的管道8) 采用CAESAR II 进行应力分析9) 调整设备布置和管道布置10)设置、调整支吊架11)设置、调整补偿器12)评定管道应力13)评定设备接口受力14)编制设计文件15)施工现场技术服务5.工程规定1) 适用范围2) 概述3) 设计采用的标准、规范及版本4) 温度、压力等计算条件的确定5) 分析中需要考虑的荷载及计算方法6) 应用的计算软件7) 需要进行详细应力分析的管道类别8) 管道应力的安全评定条件9) 机器设备的允许受力条件(或遵循的标准)10)防止法兰泄漏的条件11)膨胀节、弹簧等特殊元件的选用要求12)业主的特殊要求13)计算中的专门问题(如摩擦力、冷紧等的处理方法)14)不同专业间的接口关系15)环境设计荷载16)其它要求第二章压力管道柔性设计1.管道的基础条件包括:介质温度压力管径壁厚材质荷载端点位移等。

压力管道应力分析的内容及特点

压力管道应力分析的内容及特点

压力管道应力分析的内容及特点关键词:压力管道;应力分析;内容特点引言:如今工业中对于压力管道的需求量在不断增加,并且如今大量的工业运输以及承载都需要用到工业管道来作为支撑。

这类管道的应用同样能够为整体工业作业提供重要的保障和保护,同时还能够提升整体工程的有效性和安全性。

但是压力管道想要良好进行工作就必须对其进行外界温度、压力以及湿度等一系列因素的考验,只有通过这些考验以及能够承受住足够压力的管道才能够投入到实际使用中。

一、管道应力分析(一)一次应力在管道应力进行分析的过程中,一次应力通常指的是一些外界因素所带来的负荷以及负载,其中包括了管道所承受的重力、内压以及风载等一系列因素产生的剪应力以及正应力。

这两种应力通常会因为其自身的特点以及特性导致了容易与外加负载形成平衡关系,但是达成了平衡关系之后外加应力并不会取消或者停止,反而还会继续增加,若是外加应力逐渐增加并且达到了一个很大的值之后就会超过材料自身所拥有的屈服极限,管道就容易受到影响从而造成了破坏,管道总体也就随之出现了破坏。

相关工作人员应当能够对一次应力进行良好的控制,在进行管道设计时就应当提前给应力留出足够的预留空间,通过这样的方式来帮助整体管道不会出现过度塑性而造成的破坏或者失效。

同时,一次应力的校核也应当结合具体的弹性分析以及极限分析等一系列要求进行处理,通过处理之后才能够准确地对一次应力进行计算,从而将其进行控制。

如图1所示。

图1一次应力受力变形曲线(二)二次应力二次应力相比较于一次应力来说会更加直接,这类应力通常都是来自于对应的热胀冷缩或者其他位移受到约束而造成的剪应力和正应力,其自身具备一个无法和外力之间构成平衡关系的特点,因此其自身也就具备了非常明显的自限性特征[1]。

基本来说材料自身会因为材料以及质量从而具备对应的屈服值,若是二次应力导致了管道的荷载超过了这种屈服极限值之后就容易对管道局部造成变形一类的影响。

这时候相关人员应当对应力重新进行分布和规划,让材料应变能够达到自均衡的要求。

压力管道局部应力分析

压力管道局部应力分析

I.
采用有限元法对特殊管件进行分析,得到应力集中系数;
II. 应力增大系数等于应力集中系数的一半。
应力增大系数应用的注意事项!
根据GB 50316、ASME B31.1和ASME B31.3的规定,计算二次应力时应 采用应力增大系数。这是由于采用应力增大系数的目的,是考虑局部应力 集中的影响,而局部应力集中主要对管件的疲劳破坏产生作用。因为局部 的高应力循环,将使材料产生裂纹并不断扩展,最终导致破坏。校核二次 应力的目的正是为了防止疲劳破坏,因此在计算二次应力时必须考虑应力 集中的影响,应该采用应力增大系数。另外,根据ASME B31.3的标准释 义,计算一次应力可不考虑应力增大系数。这主要是因为校核一次应力是 为了控制管道的整体破坏,局部的应力集中对管道的整体破坏影响不大。 另外一次应力采用弹性分析方法,认为某一点达到屈服管道失效,已经非 常保守,如果在考虑应力集中的影响将导致过分保守。
l 为了能够表示出WRC107、297计算的误差,使用有 限元分析软件(NozzlePro/FEpipe)来进行对比计算。
l 有限元法严格按照理论分析方法,结合ASME Ⅷ-2 中的应力分类来对特定结构进行应力计算,当满足 理想化假设条件时,其结果与真实应力十分接近, 并且有限元分析法不受任何几何条件的限制,计算 精度与网格划分的疏密程度相关。
可以提高至0.6
PPT文档演模板
压力管道局部应力分析
WRC107应用范围及限制条件
PPT文档演模板
压力管道局部应力分析
WRC107应用范围及限制条件
PPT文档演模板
压力管道局部应力分析
WRC297应用范围及限制条件
l WRC297继承了WRC107的一些限制条件,另外,当连接区 域的接管壁厚小于补强壁厚时,其局部应力计算值可能过于 保守

压力管道应力动态分析理论

压力管道应力动态分析理论

02 压力管道应力动态分析理 论基础
材料力学基础
材料力学是研究材料在各种力和力矩 作用下的应力和应变行为的科学。它 为压力管道应力动态分析提供了基本 原理和计算方法,包括材料的弹性模 量、泊松比、剪切模量等参数的确定。
VS
材料力学还涉及到材料的强度理论, 例如最大剪应力理论、最大伸长线应 变理论和能量理论等,这些理论为压 力管道的强度设计和校核提供了依据。
意义
通过应力分析,可以优化管道设计,降低制造成本,提高设备运行效率,保障人员和财产安全。
应力分析的方法和步骤
方法
常用的应力分析方法包括有限元法、有限差分法和边界元法等数值分析方法,以及基于力学理论的解 析法。
步骤
应力分析通常包括前处理、求解和后处理三个步骤。前处理阶段涉及建立模型、设定边界条件和载荷 等;求解阶段通过数值方法计算管道应力;后处理阶段则是对计算结果进行评估和优化。
04 压力管道应力动态分析理 论与其他理论的关联
与流体力学理论的关联
流体力学理论在压力管道应力动态分析中起 着重要作用,特别是在流体流动和压力分布 的计算方面。流体的动力学和热力学性质对 管道中的应力分布和疲劳寿命有显著影响。
压力管道中的流体流动可能导致管道产生振 动和应力集中,这些因素进一步影响管道的 稳定性和安全性。流体力学理论提供了流体 动力学和热力学的基本原理,有助于预测和
压力管道应力分析的未来发展方向
方向1
随着数值计算技术和计算机技术的不断发展,未来应力分析将更加精确和高效,能够更 好地模拟管道的实际运行工况。
方向2
随着新材料和新工艺的不断涌现,未来管道材料的性能将更加优异,能够满足更高压力 和温度的要求。
方向3
随着智能化和远程监控技术的发展,未来管道应力分析将更加智能化和远程化,能够实 现实时监测和预警,提高管道运行的安全性和可靠性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x C
Mxy B Px
方向的位移和转角均为零,而
y
在温差作用情况下,在x方向 Px A 的位移为横管的伸缩量Δb,
在y方向的位移为竖管的Δa, Mxy Py
无角度变化。为保证与实际位移一致,在支座反力的作
用下,应产生与以上位移大小相等,方向相反的位移。
在支座反力的作用下在平面内产生的位移和转角应满足
❖ 活载荷 临时作用于管道上的载荷,如风载荷、地震载荷等
▪按载荷是否随时间变化分类
❖ 静力载荷 缓慢、无振动地加到管道上的载荷,大小和位置均与时间无 关,或极为缓慢地变化,惯性力很小可略去不计的载荷。
❖ 动力载荷 随时间迅速变化的载荷,使管道产生显著的运动,必须考虑 惯性力的影响。如管道的振动、阀门突然关闭时的压力冲击、 地震等
▪ 壁厚附加量C=C1+C2
❖ 无缝弯管壁厚负偏差C1按下式计算:
5 C1 100 S1
❖ 钢板或钢带焊制管的壁厚负偏差C1:壁厚≤5.5㎜, C1=0.5㎜;壁厚≤7㎜,C1=0.6㎜;壁厚≤25㎜, C1=0.8㎜。
❖ 介质对管子的腐蚀速度<0.05㎜/a,单面腐蚀 C2=1~1.5㎜,双面腐蚀C2=2~2.5㎜。
❖ 热应力概念
▪ 示例 给一个例子说明热应力的影响,管材为Q235A,φ159×4.5,操作温度100 ℃ ,安装温度 为0 ℃,其热膨胀系数为12.2×10-6/ ℃,弹性 模量为2.0×105MPa,代入上面热应力计算式, 计算结果其热应力为244MPa,产生的管端推 力为529480N。
压力管道的热应力分析
修正的方法计算,即
S1w
S11
Dw 4R
S1w
PDw
2 t •
P
1
Dw 4R
压力管道的强度计算
❖ 弯管壁厚计算
由于弯曲使横截面变得不圆,内外侧面壁厚变化,对应 力分布产生影响,为了使上面壁厚计算式的计算值能保 证管道安全,下式定义的最大外径与最小外径的差值Tu, 必须限制在规定范围内
Tu
如由于管道的自重和机械载荷引起管道的弯曲变形产生的 弯曲应力等
❖一次局部薄膜应力(Pl) 由于压力或机械载荷引起的分布在局部范围内的薄膜应力。
这种应力达到屈服时,由于材料的塑性变形,也只引起局部屈 服,周围仍受到弹性材料的约束,允许在局部区域内产生屈服。 如管道支架处或管道接管连接处产生的应力
二次应力(Q) 由于管道变形受约束而产生的正应力或剪应力,
S1d
S1Z
dw Dw
焊制三通的长度一般为3.5倍管
子外径;高度取1.7倍外径
压力管道的强度计算
❖ 异径管壁厚计算
按锥壳大端的应力分析进行计算 式:
S1t
2 cos
PDn
t •
0.006P
半锥角不得大于30°,且半锥角 和P/([σ]tφ)的关系,不得超过 下表所列的数值,中间值可内插
求取
▪按载荷的作用性质分类
❖ 自限性载荷(属静力载荷) 由于管道结构变形受约束所产生的载荷,不直接与外部
载荷平衡,当管道材料塑性较好时,其最大值限定在一定范 围内,不会无限制增大的载荷。
如管道温度变化产生的热载荷;结构曲率发生突变处附 近的边缘应力等
❖ 非自限性载荷(属静力载荷) 直接由外部作用的外力载荷。如介质压力、管道自重等
下式:
压力管道的热应力分析
❖ 管道热应力计算 Px • xx Py • xy M xy • xm x b
Px • yx Py • yy M xy • ym y a
▪ 多节斜接弯头
上式中的R1值必须满足下列条
件:
R1
A
tg
Dw 2
式中A值由管子壁厚S1决定, 见下表:
S1 (mm) ≤12.7
12.7~22.5 ≥22.5
A (mm) 25.4 2S1
(2 S1/3)+29.7
压力管道的强度计算
❖ 焊接弯头的强度计算
▪ 单节斜接弯头
当θ≤22.5°时的单斜接弯头相 同。当θ>22.5°时,单节斜接 弯头的最大容许压力用下式计 算:
压力管道的强度计算
❖ 参数确定
▪ 焊缝系数φ
❖ 无缝管φ=1.0; ❖ 单面焊接的螺旋线钢管φ=0.6; ❖ 纵缝焊接钢管:
▪ 双面焊的全焊透对接焊缝: ❖ 100%无损探伤,φ=1.0; ❖ 局部无损探伤,φ=0.85。
▪ 单面焊的对接焊缝,沿焊缝根部全长具有垫板: ❖ 100%无损探伤,φ=0.9; ❖ 局部无损探伤,φ=0.8。
管道计算时主要考虑的静力载荷
❖ 介质压力也称压力载荷
❖ 持续外载(或机械载荷) 管道自重、支吊架反力和其它外载
❖ 位移载荷(或热负荷) 热胀冷缩和端点附加位移
❖ 应力分类 由于载荷性质不同,产生的应力性质也不同, 它们对管道的破坏贡献不同。
分类如下:
一次应力(P) 一次应力是由于外载荷作用而在管道内部产生的正 应力或剪应力,它满足与外力平衡的条件。它的特 征是非自限性的,始终随外载荷的增加而增加,最 终达到破坏。由于载荷性质不同,在管道内产生的 应力分布也不同,一次应力又分为:
❖ 热应力概念
▪ 对于平面管系ACB,
b
B端位移为:
Δa
Δb
C
u a2 b2
B Δu
a
T a2 b2
u
Tu
A
与直接从A到B有一根 管子的伸长量相同
压力管道的热应力分析
❖ 管道热应力计算
b
▪ 如果存在温度变化,不仅 Δa 在管内引起热应力,而且
C
在支吊架处引起支座反力 a
的变化,为了保证管道和
P
t •
rp
S1
S1
1.25
S1
rp

S1

tg
上式是按边缘应力确定的允许
内压力。
压力管道的热应力分析
❖ 热应力概念
物体都具有热胀冷缩的性质,如果不允许物体自由变形 给其施加一约束,便在物体内部产生应力,称为热应力 或温度应力。
▪ 管道的自由伸长量 L T1 T0 L TL
▪ 管端当量轴向力
式中:f 修正系数,交变次数N<7000次时,f=1.0, N≥7000次时,f=0.9
压力管道的强度计算
❖ 承受内压管子的应力分析
pDn 2S
z
pDn2
4SDn
S
r
p 2
上面的 , z , r(分别为:环向应力、轴向应力、
径向应力)三个表达式是承受内压圆筒应力分布
计算式(Lame公式)的平均值。Lame公式是承
P/([σ]tφ) θ
0.2 0.5 1 2 4 8 10 12.5 4 6 9 12.5 17.5 24 27 30
压力管道的强度计算
❖ 焊接弯头的强度计算
▪ 多节斜接弯头 当图中的θ≤22.5°时,用下面 两式计算许用压力,并取两者 的最小值
P
t •
rp
S1
S1
0.643
S1 rp

S1
• tg
压力管道的强度计算
❖ 弯管壁厚计算
在壁厚各处相同,无椭圆效应时, 弯管在内压作用下,环向最大应 力在弯管内侧。而直管弯制时, 弯管外侧壁厚减薄,内侧壁厚加 大,横截面产生一定的椭圆度, 弯管外侧应力增大,内侧应力减 少。相抵一部分后,实际环向应 力仍比直管的大。工程中用考虑 弯曲效应,对直管的壁厚计算式
L
当在管的两端不允许有
x
位移时,可以认为在管
端施加一力P,把其压
(或拉)到原长,即:
L
ΔL
P L EA TEA
x
L
P
压力管道的热应力分析
❖ 热应力概念
▪ 管中的热应力为 P ET
A
从上式可见管中由于温度变化产生的热应力与 材料的线膨胀系数,弹性模量和温差成Dw
100%
GB50235-97《工业金属管道工程施工及验收规范》对弯
制弯管规定:对输送剧毒流体的钢管或设计压力≥10MPa
的钢管Tu不超过5%,输送剧毒流体以外的钢管或设计压 力≤10MPa的钢管Tu不超过8%
压力管道的强度计算
❖ 焊制三通壁厚计算
三通的连接处是曲率半径突 然变化的地方,应力集中非 常明显,但很快衰减。可采 用局部补强或加厚管壁的方 法降低应力值。三通主管的 计算式:
峰值应力 由于载荷、结构形状的局部突变而引起的局部
应力集中的最高应力值。它的特征是整个结构不产 生任何显著的变形,它是疲劳破坏和脆性断裂的可 能根源。如管道中小的转弯半径处、焊缝咬边处等
❖ 一般压力管道应力许用值的限定
▪ 几个概念
❖ 极限状态 当结构元件的某个截面上,达到整个截面发生屈 服时的状态
式中rp=rn+S1/2是管子平均半 径。上式是考虑斜接弯头接头
处的边缘应力(二次应力),
允许的许用压力
压力管道的强度计算
❖ 焊接弯头的强度计算
▪ 多节斜接弯头
P
t •
rp
S1
R1 rp R1 0.5rp
上式是考虑弯曲效应引起
的应力增加,允许的许用
压力。
压力管道的强度计算
❖ 焊接弯头的强度计算
❖ 极限载荷 对应极限状态时施加在结构上的载荷
❖ 极限载荷法 认为结构达到极限状态后,不能再进一步承受附 加载荷,由此来规定结构的许用应力值的设计方 法
❖ 安定性 结构在载荷(包括热负荷)反复变化的过程中,不再发生 塑性变形的连续循环 ❖ 安定性准则 由于塑性材料具有二次应力的局部性和自限性,控制结构 在运行中不发生疲劳破坏,使结构保持安定,而限定二次 应力范围的方法
压力管道的强度计算
相关文档
最新文档